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A method for utilizing 
automated machine learning 
for histopathological classification 
of testis based on Johnsen scores
Yurika Ito, Mami Unagami, Fumito Yamabe, Yozo Mitsui, Koichi Nakajima, Koichi Nagao & 
Hideyuki Kobayashi*

We examined whether a tool for determining Johnsen scores automatically using artificial intelligence 
(AI) could be used in place of traditional Johnsen scoring to support pathologists’ evaluations. 
Average precision, precision, and recall were assessed by the Google Cloud AutoML Vision platform. 
We obtained testicular tissues for 275 patients and were able to use haematoxylin and eosin 
(H&E)-stained glass microscope slides from 264 patients. In addition, we cut out of parts of the 
histopathology images (5.0 × 5.0 cm) for expansion of Johnsen’s characteristic areas with seminiferous 
tubules. We defined four labels: Johnsen score 1–3, 4–5, 6–7, and 8–10 to distinguish Johnsen scores in 
clinical practice. All images were uploaded to the Google Cloud AutoML Vision platform. We obtained 
a dataset of 7155 images at magnification 400× and a dataset of 9822 expansion images for the 5.0 × 
5.0 cm cutouts. For the 400× magnification image dataset, the average precision (positive predictive 
value) of the algorithm was 82.6%, precision was 80.31%, and recall was 60.96%. For the expansion 
image dataset (5.0 × 5.0 cm), the average precision was 99.5%, precision was 96.29%, and recall was 
96.23%. This is the first report of an AI-based algorithm for predicting Johnsen scores.

The worldwide incidence of infertility problems is about 1 in 7 couples. Over 80% of couples who have regular 
sexual intercourse and do not use contraception will achieve a pregnancy within 1 year, and approximately 
92% can achieve a pregnancy within 2 years1. Infertility affects females and males equally. In male infertility, 
azoospermia is a major problem that prevents a couple from having a child. Azoospermia has two patterns; the 
first is obstructive azoospermia and the second nonobstructive azoospermia. Obstructive azoospermia implies 
adequate sperm production but failure in delivery of sperm into the ejaculate because of ductal obstruction. 
Non-obstructive azoospermia refers to a lack of sperm production2.

Types of infertility treatment are intra uterine insemination (IUI), in vitro fertilization (IVF), and intracy-
toplasmic sperm injection (ICSI). ICSI, which is performed by injecting sperm into an ovum using a thin glass 
needle, has been found to have a higher rate of fertilization than IVF. The history of ISCI is less than 30 years3. 
Through the use of ICSI, patients with severe oligozoospermia are able to father a baby. However, in the case of 
patients with azoospermia, it is necessary to obtain testicular sperm from the testis to perform ICSI. After the 
ICSI technique was performed for the first time, it was reported that ICSI was effective in patients with obstruc-
tive and non-obstructive azoospermia4,5.

Patients with both types of azoospermia require testicular sperm extraction (TESE) to obtain mature sperms. 
It comprises conventional TESE (for obstructive type) and microdissection TESE (micro TESE) (for non-obstruc-
tive type). Conventional TESE was reportedly performed in 231 patients and micro TESE in 695 patients between 
April 2014 and March 2015 in Japan6.

In addition, we check the condition of testis by collecting a piece of testis tissue in TESE, and the Johnsen 
score is an effective means of evaluating histological features of the testis7. The Johnsen score aims to account 
for morphological responses to different pathologies affecting testicular cells8.

However, histopathological evaluation of the testis is not an easy task and takes much time due to the great 
complexity of testicular tissue arising from the multiple, highly specialized steps in spermatogenesis, especially 
in eutherian mammals9. In addition, the Johnsen score was first reported 50 years ago and should evolve to suit 
the modern age.
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In recent years, success has been achieved in the application of neural networks and machine learning algo-
rithms in many medical specialties10–12. However, particular types of technical skill and mathematical knowledge 
are required to create deep learning models for use in clinical practice. Such proficiency is still uncommon. 
Element AI stated that despite the increase in the number of self-reported AI experts worldwide to 36,000, their 
supply does not meet the demand13.

Google (Google Inc., Mountain View, CA) has produced an automated machine learning (AutoML) Vision, 
which leverages any individual medical images and vast cloud-based processing power14. Since there are relatively 
few physicians with skill in programming, automated deep learning is potentially promising as a platform for 
expanding the application of deep learning in medical sciences. When applied to classification tasks, machine 
learning products of this type create a prediction algorithm by automatically matching generic neural network 
architectures to the imaging dataset provided and fine tuning the network to optimize discriminative perfor-
mance. Yet, the extent to which health-care professionals without coding experience can achieve the same level of 
performance as expert deep learning engineers with the support of automated deep learning remains unclear15. 
However, other research groups have already reported on the utility of an automated deep learning approach in 
distinguishing medical images16,17.

In this study, we created a computer vision algorithm for classifying Johnsen scores using Google cloud 
AutoML Vision.

Results
An image dataset of 7155 magnification images was generated (400×). A selection of these images for each label 
can be seen in Fig. 1. The label for a Johnsen score of 1–3 included 2486 images. The training set images, valida-
tion set images, and test set images included 1927, 2 and 557 images, respectively. The label for a Johnsen score 
of 4–5 included 1614 images. The training set images, the validation set images, and the test set images accounted 
for 1244, 2, and 368 images, respectively. The label for a Johnsen score of 6–7 included 2019 images. The training 
set images, the validation set images, and the test set images accounted for 1567, 2, and 450 images, respectively. 
The label for a Johnsen score of 8–10 included 1036 images. The training set images, the validation set images, 
and the test set images accounted for 803, 2, and 231 images, respectively (Fig. 2A).

The average precision (positive predictive value) of the algorithm was 82.6%, precision was 80.31%, and 
recall was 60.96% based on automated training and testing by the Google Cloud AutoML Vision in Fig. 2B. The 
precision recall curves were generated for each individual label as well as for the algorithm overall. We adopted 
a threshold value of 0.5 to yield balanced precision and recall.

Figure 1.   Pathological images for JSC 1–3, 4–5, 6–7, and 8–10. All images are stained with haematoxylin eosin 
and ×400 magnification. JSC 1–2 do not contain any germ cells and JSC 3 includes spermatogonia, with no 
spermatocytes. JSC 4–5 include few or many spermatocytes, with no spermatids. JSC 6–7 include few or many 
spermatids, with no sperms. JSC 8–10 include few or many sperms in a seminiferous tubule.
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A confusion matrix is shown in Fig. 2C. We found that the label for a Johnsen score of 4–5 was most confused 
as a Johnsen score of 6–7, at 30%. On the other hand, the frequency of the label for a Johnsen score of 6–7 being 
confused as a Johnsen score of 4–5 was 23%.

The precision and recall for a Johnsen score of 4–5 were 64.06% and 37.77%, respectively. True positives are 
defined as images for which our model correctly predicted a Johnsen score of 4–5. False negatives are defined 
as images for which our model should have predicted a Johnsen score of 4–5 and false positives are defined as 
images for which our model incorrectly predicted a Johnsen score of 4–5. In the case of false positives, our model 
recognized images with a Johnsen score of 4–5 as those with a Johnsen score of 6–7 (Fig. 3).

The precision and recall for a Johnsen score of 6–7 were 72.39% and 47.78%, respectively. Regarding false 
positives, our model recognized images with a Johnsen score of 6–7 as a Johnsen score of 4–5 or 8–10 (Fig. 4).

An image dataset of 9822 expansion images was generated (5.0 × 5.0 cm). A selection of the cut out images 
(red squares) for each label can be seen in Fig. 5A,B. The label for a Johnsen score of 1–3 included 1483 images. 
The training set images, the validation set images, and the test set images accounted for 1143, 111, and 229 
images, respectively. The label for a Johnsen score of 4–5 included 3437 images. The training set images, the 
validation set images, and the test set images accounted for 2690, 256, and 491 images, respectively. The label 

Figure 2.   (A) Summary of image dataset (magnification ×400). (B) Algorithm performance using Google 
Cloud AutoML Vision, Average precision recall curve for image dataset, magnification ×400. (C) Confusion 
matrix for image dataset, magnification ×400.
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for a Johnsen score of 6–7 included 3523 images. The training set images, the validation set images, and the test 
set images accounted for 2735, 193, and 595 images, respectively. The label for a Johnsen score of 8–10 included 
1439 images. The training set images, the validation set images, and the test set images accounted for 1113, 78, 
and 248 images, respectively, as shown in Fig. 6A.

The average precision (positive predictive value) of the algorithm was 99.5%, precision was 96.29%, and 
recall was 96.23% based on automated training and testing by the Google Cloud AutoML Vision as shown in 
Fig. 6B. The precision recall curves were generated for each individual label as well as for the algorithm overall. 
We adopted a threshold value of 0.5 to yield balanced precision and recall.

A confusion matrix is shown in Fig. 6C. We found that the label for a Johnsen score of 4–5 was most confused 
as a Johnsen score of 6–7, at 5%. On the other hand, the frequency of confusing a label for a Johnsen score of 6–7 
as a Johnsen score of 4–5 was 3%. In addition, the label for a Johnsen score of 8–10 was confused as a Johnsen 
score of 1–3, at 4%.

We have given the results for all statistical analyses for the image dataset of 7155 magnification images (400×) 
and image dataset of 9822 expansion images (5.0 × 5.0 cm) in the supplement (see supplementary data online).

Discussion
The biggest advantage of Google Cloud AutoML Vision is ease of creating an AI model using a data set with no 
need for coding. In order to manually create an AI model with an algorithm developed specifically for each study, 
engineers expert in deep learning would be required. The code-free deep learning approach that we adopted has 
the potential to improve access to deep learning for clinicians18. From now on, we hope that many clinicians in 
numerous departments will establish AI models by this approach and use them in clinical practice.

Figure 3.   Features of true positives, false negatives, and false positives for JSC4-5.
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We have described the development of an AI-based algorithm for evaluating Johnsen scores combining origi-
nal images (400×) and expansion images (5.0 cm × 5.0 cm), and it achieved high accuracy. This is the first report 
of an algorithm that can be used for predicting Johnsen scores without having to rely on pathologists. In addition, 
we were able to create it through an automated machine learning approach requiring no coding experience.

Other research groups have already reported on medical image classification or otoscopic diagnosis per-
formed using an automated deep learning approach with no coding15,19. We consider that an AI-based algorithm 
would also be suitable for quantification such as that in Gleason grading for prostate cancer. Gleason grading 
is an established scoring system for prostate cancer that is widely used by pathologists worldwide20. In fact, the 
development of a medical grade AI-based algorithm for evaluating prostate core needle biopsies using Gleason 
scores has already been reported21.

In cases of severe male infertility, which have been categorized as non-obstructive azoospermia or obstruc-
tive azoospermia, TESE is needed for obtaining testicular sperm. Non-obstructive azoospermia refers to a lack 
of sperm production, whereas obstructive azoospermia implies adequate sperm production but obstruction of 
the ductal system.

Non-obstructive azoospermia can be the consequence of a number of genetic or environmental conditions 
including Klinefelter syndrome, Y chromosome micro deletions, cryptorchidism, hypogonadism, varicoceles, 
mumps orchitis, chemotherapy or radiation. Additionally, testicular sperm may provide superior outcomes over 
epididymal or ejaculated sperm in properly selected cases22.

Figure 4.   Features of true positives, false negatives, and false positives for JSC6-7.
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In TESE, seminiferous tubules are easily extruded using light manual pressure. A piece of tissue is sent to 
the pathologist to determine the Johnsen score, another piece is teased on a sterile slide with a drop of human 
tubal fluid or sperm wash media and examined under light microscopy. If sperm are seen, more tissue is taken 
from this area and given to the embryologist for use in ICSI. In micro TESE, the surgeon’s non-dominant hand 
holds the split testicle while the dominant hand carefully and systematically dissects the seminiferous tubules 
under high-power magnification23. However, a lower percentage of sperm is retrieved with micro TESE than 
conventional TESE so it is important to examine testis condition using a small piece of testis tissue.

A standardized, reproducible, and objective grading system depends on a number of features. Commonly, 
an assessment of morphometric features (tubular diameter and basement membrane thickness) and/or cellular 
features (number of cells and types of cells seen in each field) is used to create a quantitative description of testis 

Figure 5.   Expanded pathological images for JSC1-3, 4–5, 6–7, and 8–10. Red squares are cut out from 
pathological image (×400) to determine Johnsen score. (B) Characteristics of JSC 1–3, 4–5, 6–7, and 8–10.
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biopsy. The score in the Johnsen scoring system, the most commonly used method for scoring testicular biopsy, 
is predicted on the premise that increasing degrees of testicular damage result in successive depletion of cell 
types from most to least mature. Tubules are thereby scored on a scale from 1 to 10, where 10 represents intact 
spermatogenesis, while a score of 1 indicates the absence of all germ cells7. The ultimate importance of a scoring 
system depends on its ability to differentiate clinically meaningful conditions within the testis, such as maturation 
arrest, from hypo spermatogenesis with contributing partial epididymal obstruction. However, pathologists need 
much experience to make histopathological evaluations of the testis and there is a growing shortage of patholo-
gists worldwide24. Therefore, we considered that an AI-based tool could provide major support to pathologists 
in their evaluation of Johnsen scores, in place of the traditional Johnsen scoring system.

In this study, we devised a means of obtaining images of testis tissues for use with an AI algorithm. We found 
that 400× magnification of a seminiferous tubule in an image would be adequate. We also found that it is difficult 
to distinguish between Johnsen scores of 4–5 and 6–7 for typical images obtained.

It has been reported that allocation of images is random in Google Cloud AutoML Vision. When we uploaded 
nine images in a single upload, training and test set images were placed without validation set images. We did 

Figure 6.   (A) Summary of image dataset (expansion, 5.0 × 5.0 cm) (B) Algorithm performance using Google 
Cloud AutoML Vision, Average precision recall curve for image dataset, expansion, 5.0 × 5.0 cm (C) Confusion 
matrix for image dataset, expansion, 5.0 × 5.0 cm.
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not know the reason for validation set images not being placed. Later, we found that more than ten images per 
upload were needed to deploy the training, validation, and test set images randomly.

For the 400× magnification images dataset, we found that the average precision of the algorithm was 82.6%. 
However, we found that accuracy was lower for Johnsen scores of 4–5 and 6–7—55% and 66%, respectively, and 
considered that it is difficult to distinguish between spermatocytes and spermatids when magnification of the 
field is 400×. Therefore, we thought of a way of improving accuracy for Johnsen scores of 4–5 and 6–7.

We cut out 5.0 cm square pieces from the 400× magnification images and found that Johnsen scores could 
be determined for such a small area. This use of the algorithm with this expansion image dataset resulted in 
improving average precision to 99.5%. The precision for Johnsen scores of 4–5 and 6–7 improved to 95% and 97%, 
respectively. However, we realized that cut outs had to be made in a special way to determine the Johnsen score. 
They had to be designed to contain the parts of images that a human would consider to be the most clinically 
relevant in making a classification, to avoid reducing the validity of AI-tool model. Therefore, we were careful 
to ensure that cells that were morphologically the same were included in each 5.0 cm square cut out from 400× 
magnified images of seminiferous tubules.

Regarding observer bias, humans tend to see what they want to see or expect to see when observing 
objects. The subjectivity of the annotator who cuts out the squares will inevitably be reflected in the areas cut 
out for expansion. As a measure against such bias, we made definite guidelines for making decisions on areas to 
be cut out for individual Johnsen score ranges. For Johnsen scores of 1–2, the basal membrane of seminiferous 
tubules and/or Sertoli cells had to be included in the 5.0 × 5.0 cm square. For a Johnsen score of 3, Sertoli cells 
and/or spermatogonia had to be included. For Johnsen scores of 4–5, spermatocytes had to be included. For 
Johnsen scores of 6–7, spermatids had to be included and for Johnsen scores of 8–10, sperms had to be included 
in the 5.0 × 5.0 cm square.

The guidelines also stated that two persons (I·Y and U·M) had to cut out the 5.0 × 5.0 cm squares from the 
histopathology images to magnify characteristic areas for determining Johnsen scores. In addition, a third per-
son (K·H) had to check all the images and upload them to Google Cloud AutoML Vision. However, even with 
the above guidelines for determining cut-out areas checking images and uploading them, we cannot exclude 
observer bias completely.

Furthermore, the accuracy of the AI-based algorithm for evaluating Johnsen scores would change, depend-
ing on the quality of tissue, differences in tissue fixation methods, differences in microscopes, differences in 
digital cameras, differences in how individual pathologists carry out scoring, and differences in training sets. 
Differences in testis tissue fixation methods in particular would have the potential to produce differences in the 
average precision of an AI-based algorithm for evaluating Johnsen scores. Therefore, when other research groups 
establish their own AI-based algorithms for evaluating Johnsen scores in the future, the algorithm we have created 
in this study could be a benchmark for comparing models. We are sharing the dataset of all images used in this 
research as well as the details of the process for using Google Cloud AutoML Vision. Hereafter, we will refine our 
AI-based algorithm for evaluating Johnsen scores based on our results and through its use in clinical practice.

In conclusion, we created an AI-tool model for classification according to Johnsen scores with no coding 
experience. Through the use of this model, classification using Johnsen scores should become more widespread 
in clinical practice.

Conclusion
We describe the development of an AI-based algorithm for evaluating Johnsen scores combining original images 
and expansion images. We found that the algorithm achieved relatively high accuracy for the initial dataset. 
Although the expansion dataset showed very high accuracy, it has the limitation of potential observer bias. This 
is the first report of an AI-based algorithm for predicting Johnsen scores that does not have to rely on patholo-
gists. We were able to create it using an automated deep learning approach requiring no coding experience. 
An accurate and convenient AI-based algorithm for determining Johnsen scores will be an important tool for 
pathologists and urologists treating male infertility worldwide. So far, Johnsen scores have been determined by 
pathologists but with our AI-based algorithm, they can be automatically determined without pathologists being 
present. It also allows us to obtain results more quickly than before.

AI has the potential for bringing about major changes in the field of reproductive medicine in the near future. 
We believe that this article shows novel scientific and clinical features and will promote the use of AI systems 
in reproductive medicine.

In this study, we created a computer vision algorithm for classifying Johnsen scores using Google cloud 
AutoML Vision. This algorithm has the potential for use by pathologists or urologists treating male infertility 
and could be beneficial in remote areas and developing countries in evaluating Johnsen scores for timely referral.

Methods
Study population.  From January 2010 to December 2019, 275 patients with obstructive or non-obstruc-
tive azoospermia who underwent testicular sperm extraction (TESE) were included in this study. In detail, 248 
patients underwent micro TESE and 25 patients underwent conventional TESE. Testis biopsy was performed in 
2 patients. The study protocol was approved by the Ethics Committee of Toho University Omori Medical Center 
(approval No. M20103). All methods were performed in accordance with the relevant guidelines and regula-
tions as well as with the Declaration of Helsinki. We could not obtain individual consent from all patients. The 
presented study design was accepted by the ethics committee on the condition that a document that declares an 
opt-out policy by which any potential patients and/or their relatives could refuse to be included in this study was 
uploaded to the website of the Toho University Omori Medical Center.
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Histological analyses.  Small pieces of testicular tissue were obtained from the lateral testis for histopatho-
logical examination to determine its structural condition. Testis tissue was fixed in formalin solution for at least 
30 min, submerged in formaldehyde and embedded in paraffin. A microtome was used to obtain 4 µm thick 
slices, which were mounted on appropriate glass microscope slides for analysis. Hematoxylin–eosin staining was 
used to facilitate adequate visualization of the spermatogenic cells. On microscopic evaluation, a sample was 
considered satisfactory if at least 10–30 seminiferous tubules were visible for cell counting. We used glass micro-
scope slides from 264 of the 275 patients for this study. Those from 11 patients were excluded because a Johnsen 
score could not be determined. We used 238, 24, and 2 glass microscope slides from micro TESE, conventional 
TESE, and testis biopsy, respectively.

To obtain the Johnsen score, slides were examined under an optical microscope (magnification, 100× and 
400×). A score was assigned for each tubule counted. The number of tubules with a given score was multiplied by 
the score. The result was summed across different scores and then divided by the number of evaluated tubules, 
giving the final Johnsen score. The final score was decided by at least two pathologists in Omori Hospital, School 
of Medicine, Toho University.

Johnsen score.  For the evaluation of the testis, we used the criteria formulated by Johnsen7. Johnsen scores 
use a ten-point scoring system for quantifying spermatogenesis according to the profile of the cells encountered 
along the seminiferous tubules. A Johnsen score of 10 indicates maximum spermatogenesis activity, whereas a 
score of 1 indicates complete absence of germ cells.

We defined four specific labels for classifying clinical cases based on Johnsen scores from 1 to 10. The four 
labels were for Johnsen scores of 1–3, 4–5, 6–7, and 8–10. Johnsen scores 1 and 2 do not contain any germ cells 
and Johnsen score 3 contains only spermatogonia as germ cells, a Johnsen score of 4–5 includes spermatocytes, 
a Johnsen score of 6–7 includes spermatids and a Johnsen score of 8–10 includes mature sperms. In our original 
categories, Johnsen scores of 1–3, 4–5, 6–7, and 8–10 accounted for 117, 44, 36, and 67 cases, respectively, total 
264 cases.

Histopathology images (data source).  Regarding the numbers of pathological glass slides per a patient 
for the 264 patients, 214 patients had one slide, 15 patients had 2 slides, 30 patients had 3 slides, 1 patient had 
4 slides, 2 patients had 6 slides, 1 patient had 9 slides, and 1 patient had 12 slides. The average number of slides 
per patient was 1.4.

We obtained histopathology images for the testis using a BX43 microscope (magnification, 400×) (Olympus, 
Japan) and a digital camera DP27 (Olympus, Japan). Images were 1224 × 960 or 2448 × 1920 pixels in size and 
saved as jpg files. We obtained 21.2 histopathology images per case from Johnsen scores of 1–3, 39.8 histopathol-
ogy images per case from Johnsen scores of 4–5 and 6–7, and 12.0 histopathology images per case from Johnsen 
scores of 8–10, referring to the raw Johnsen scores determined by pathologists. We counted 10–50 seminiferous 
tubules on one pathological glass slide to obtain histopathology images.

In addition, we took cut outs of the histopathology images (5.0 × 5.0 cm) to magnify characteristic areas for 
determining Johnsen scores within seminiferous tubules using Adobe Photoshop Elements 2020 (Adobe Inc., 
USA).

Two persons (IY and UM) performed all processes for taking histopathology images of the testis using 
a microscope based on pathologist reports and cutting out histopathology images using Adobe Photoshop 
Elements.

After these two persons took the histopathology images of the testis, KH checked all the images and uploaded 
them to Google Cloud AutoML Vision. Since the processes of taking images and uploading them are described 
in detail, the results we obtained are reproducible.

We share the raw uncompressed image files at: jsc_classifier: an image dataset of 7155 magnification images 
(400×) https://​conso​le.​cloud.​google.​com/​stora​ge/​brows​er/​jsc_​class​ifier/​jsc_​class​ifier_​part2: an image dataset of 
9822 expansion images (5.0 × 5.0 cm) https://​conso​le.​cloud.​google.​com/​stora​ge/​brows​er/​jsc_​class​ifier_​part2.

Annotation and algorithm generation.  We used Google Cloud AutoML Vision in Google Cloud Plat-
form (GCP) (Google Inc.) for this research. Images were uploaded to the Google Cloud AutoML Vision platform 
as jpg images, not CSV files. Uploaded images were saved to Google Cloud Storage in GCP. We did not use any 
programming to upload images to the Google Cloud AutoML Vision platform. We defined four labels. Label 1 
included Johnsen scores from 1 to 3 and label 2 included Johnsen scores of 4 and 5. Label 3 included Johnsen 
scores of 6 and 7 and label 4 included Johnsen scores from 8 to 10. All images were divided according to the four 
labels. A single label classifier architecture was utilized. All of this process was performed by one physician (KH).

We have explained how to use Google Cloud AutoML Vision (see supplementary information: Methods 
online).

Artificial neural network (ANN) programming and training.  Using the Google Cloud AutoML 
Vision platform, the training set images, the validation set images, and the test set images were randomly selected 
from the dataset automatically. The training set images, the validation set images and the test set images were 
independent of each other. We had to have all of the image types (training set images, validation set images and 
the test set images) to perform the learning process for the algorithm. The number of images selected for the test 
set was proportional to the number in the training set. The algorithm was naïve to the images in the training set. 
Eight nodes (1 h) were utilized to train the algorithm on the AutoML Vision cloud-based graphical processing 
units. A single label image classification architecture was utilized.

https://console.cloud.google.com/storage/browser/jsc_classifier/jsc_classifier_part2
https://console.cloud.google.com/storage/browser/jsc_classifier_part2
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Statistical analysis.  The code for Google Cloud AutoML Vision platform has not been made publicly 
available by Google, the company responsible for its development.

AutoML Vision provided metrics that are commonly used by the AI community. These are precision (posi-
tive predictive values) and recall (sensitivity) for the stated threshold and area under the curve (AUC). We have 
also provided confusion matrices for each model, which cross-reference the true labels against those predicted 
by the deep learning model15.

Using extracted binary diagnostic accuracy data, we constructed contingency tables showing calculated 
specificity at the threshold of 0.5. The contingency tables showed true-positive, false-positive, true-negative, 
and false-negative results.

Data sharing.  KH has ownership for the image data used with Google Cloud AutoML Vision and it can be 
utilized in other research by only paying the download cost to Google. The data collected during this study is 
patient data obtained with the Ethical Committee’s approval and cannot be shared.

Received: 6 January 2021; Accepted: 26 April 2021

References
	 1.	 Chan, B. R. A. P. Handbook of Andrology 2nd edn. (The American Society of Andrology, 2010).
	 2.	 Kobayashi, H., Nagao, K. & Nakajima, K. Focus issue on male infertility. Adv. Urol. 2012, 823582. https://​doi.​org/​10.​1155/​2012/​

823582 (2012).
	 3.	 Palermo, G., Joris, H., Devroey, P. & Van Steirteghem, A. C. Pregnancies after intracytoplasmic injection of single spermatozoon 

into an oocyte. Lancet 340, 17–18. https://​doi.​org/​10.​1016/​0140-​6736(92)​92425-f (1992).
	 4.	 Schoysman, R. et al. Pregnancy after fertilisation with human testicular spermatozoa. Lancet 342, 1237. https://​doi.​org/​10.​1016/​

0140-​6736(93)​92217-h (1993).
	 5.	 Hauser, R., Temple-Smith, P. D., Southwick, G. J. & de Kretser, D. Fertility in cases of hypergonadotropic azoospermia. Fertil. Steril. 

63, 631–636. https://​doi.​org/​10.​1016/​s0015-​0282(16)​57437-8 (1995).
	 6.	 Yumura, Y. et al. Nationwide survey of urological specialists regarding male infertility: Results from a 2015 questionnaire in Japan. 

Reprod. Med. Biol. 17, 44–51. https://​doi.​org/​10.​1002/​rmb2.​12065 (2018).
	 7.	 Johnsen, S. G. Testicular biopsy score count–a method for registration of spermatogenesis in human testes: Normal values and 

results in 335 hypogonadal males. Hormones 1, 2–25. https://​doi.​org/​10.​1159/​00017​8170 (1970).
	 8.	 Teixeira, T. A. et al. Cut-off values of the Johnsen score and Copenhagen index as histopathological prognostic factors for postop-

erative semen quality in selected infertile patients undergoing microsurgical correction of bilateral subclinical varicocele. Transl. 
Androl. Urol. 8, 346–355. https://​doi.​org/​10.​21037/​tau.​2019.​06.​23 (2019).

	 9.	 Lupold, S. Ejaculate quality and constraints in relation to sperm competition levels among eutherian mammals. Evolution 67, 
3052–3060. https://​doi.​org/​10.​1111/​evo.​12132 (2013).

	10.	 Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus 
photographs. JAMA 316, 2402–2410. https://​doi.​org/​10.​1001/​jama.​2016.​17216 (2016).

	11.	 Walczak, S. & Velanovich, V. An evaluation of artificial neural networks in predicting pancreatic cancer survival. J. Gastrointest. 
Surg. 21, 1606–1612. https://​doi.​org/​10.​1007/​s11605-​017-​3518-7 (2017).

	12.	 Tan, J. H. et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD 
ECG signals. Comput. Biol. Med. 94, 19–26. https://​doi.​org/​10.​1016/j.​compb​iomed.​2017.​12.​023 (2018).

	13.	 ElementAI. Global AI talent report. ElementAI,  https://​www.​eleme​ntai.​com/​news/​2019/​2019-​global-​ai-​talent-​report. Accessed 
22 July 2019 (2019).

	14.	 Google Vision AI. AutoML Vision: Automated Machine Learning Console for training for computer vision algorithms. Available 
at: http://​cloud.​google.​com/​vision/. Accessed 1 April  2019 (2019).

	15.	 Faes, L. et al. Automated deep learning design for medical image classification by health-care professionals with no coding experi-
ence: A feasibility study. Lancet Digital Health 1, E232–E242. https://​doi.​org/​10.​1016/​S2589-​7500(19)​30108-6 (2019).

	16.	 Myburgh, H. C., van Zijl, W. H., Swanepoel, D., Hellstrom, S. & Laurent, C. Otitis media diagnosis for developing countries using 
tympanic membrane image-analysis. EBioMedicine 5, 156–160. https://​doi.​org/​10.​1016/j.​ebiom.​2016.​02.​017 (2016).

	17.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://​doi.​org/​10.​1038/​natur​e14539 (2015).
	18.	 Korot, E. et al. Code-free deep learning for multi-modality medical image classification. Nat. Mach. Intell. https://​doi.​org/​10.​1038/​

s42256-​021-​00305-2 (2021).
	19.	 Livingstone, D. & Chau, J. Otoscopic diagnosis using computer vision: An automated machine learning approach. Laryngoscope 

130, 1408–1413. https://​doi.​org/​10.​1002/​lary.​28292 (2020).
	20.	 Yang, C. & Humphrey, P. A. False-negative histopathologic diagnosis of prostatic adenocarcinoma. Arch. Pathol. Lab. Med. 144, 

326–334. https://​doi.​org/​10.​5858/​arpa.​2019-​0456-​RA (2020).
	21.	 Pantanowitz, L. et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: 

A blinded clinical validation and deployment study. Lancet Digital Health 2, E407–E416 (2020).
	22.	 Greco, E. et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum. Reprod. 20, 

226–230. https://​doi.​org/​10.​1093/​humrep/​deh590 (2005).
	23.	 Schlegel, P. N. Testicular sperm extraction: Microdissection improves sperm yield with minimal tissue excision. Hum. Reprod. 14, 

131–135. https://​doi.​org/​10.​1093/​humrep/​14.1.​131 (1999).
	24.	 Metter, D. M., Colgan, T. J., Leung, S. T., Timmons, C. F. & Park, J. Y. Trends in the US and Canadian pathologist workforces from 

2007 to 2017. JAMA Netw. Open 2, e194337. https://​doi.​org/​10.​1001/​jaman​etwor​kopen.​2019.​4337 (2019).

Acknowledgements
A microscope and a digital camera were provided by Department of Pathology, Toho University School of Medi-
cine. K·H has received support in the form of a Grant-in-Aid for Scientific Research (C) from the Japan Society 
for the Promotion of Science (JSPS) (JSPS KAKENHI Grant Number JP19K09701). We are particularly grateful 
to Alexander Cox for his painstaking work as medical editor.

https://doi.org/10.1155/2012/823582
https://doi.org/10.1155/2012/823582
https://doi.org/10.1016/0140-6736(92)92425-f
https://doi.org/10.1016/0140-6736(93)92217-h
https://doi.org/10.1016/0140-6736(93)92217-h
https://doi.org/10.1016/s0015-0282(16)57437-8
https://doi.org/10.1002/rmb2.12065
https://doi.org/10.1159/000178170
https://doi.org/10.21037/tau.2019.06.23
https://doi.org/10.1111/evo.12132
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1007/s11605-017-3518-7
https://doi.org/10.1016/j.compbiomed.2017.12.023
https://www.elementai.com/news/2019/2019-global-ai-talent-report
http://cloud.google.com/vision/
https://doi.org/10.1016/S2589-7500(19)30108-6
https://doi.org/10.1016/j.ebiom.2016.02.017
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s42256-021-00305-2
https://doi.org/10.1038/s42256-021-00305-2
https://doi.org/10.1002/lary.28292
https://doi.org/10.5858/arpa.2019-0456-RA
https://doi.org/10.1093/humrep/deh590
https://doi.org/10.1093/humrep/14.1.131
https://doi.org/10.1001/jamanetworkopen.2019.4337


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9962  | https://doi.org/10.1038/s41598-021-89369-z

www.nature.com/scientificreports/

Author contributions
All authors contributed to the conception and design of the study. I.Y. and U.M. took the pathological digital 
images. K.H. provided training in the automated deep learning models. I.Y. and K.H. drafted the manuscript.

Funding
The funder of the study had no role in the study design, data collection, data analysis, data interpretation, or 
writing of this manuscript. The corresponding author had full access to all the data in this study and had final 
responsibility for the decision to submit for publication.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​89369-z.

Correspondence and requests for materials should be addressed to H.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-89369-z
https://doi.org/10.1038/s41598-021-89369-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A method for utilizing automated machine learning for histopathological classification of testis based on Johnsen scores
	Results
	Discussion
	Conclusion
	Methods
	Study population. 
	Histological analyses. 
	Johnsen score. 
	Histopathology images (data source). 
	Annotation and algorithm generation. 
	Artificial neural network (ANN) programming and training. 
	Statistical analysis. 
	Data sharing. 

	References
	Acknowledgements


