Skip to main content
. 2021 Jun;11(6):2756–2765. doi: 10.21037/qims-20-734

Table 2. The classification results of all the models.

Classifiers ACC Sen Spe AUC F1_score MCC Log_loss
RF 0.759 (0.074) 0.726 (0.018) 0.791 (0.061) 0.84 0.727 0.511 8.325
LR 0.643 (0.016) 0.619 (0.029) 0.657 (0.045) 0.669 0.53 0.272 12.335
LR-L1 0.670 (0.014) 0.667 (0.020) 0.675 (0.014) 0.656 0.641 0.336 11.41
LR-PCA 0.741 (0.034) 0.644 (0.014) 0.824 (0.078) 0.777 0.688 0.473 8.943
CNN 0.750 (0.029) 0.683 (0.103) 0.807 (0.048) 0.725 0.708 0.492 8.635
CapsNet 0.813 (0.018) 0.822 (0.070) 0.807 (0.048) 0.852 0.796 0.624 6.476

ACC, Sen, and Spe are displayed as mean (standard deviation). ACC, accuracy; Sen, sensitivity; Spe, specificity; AUC, area under the curve; MCC, Matthews correlation coefficient; RF, random forest; LR, logistic regression; PCA, principal component analysis; AUC, area under curve; CNN, convolutional neural network; CapsNet, capsule network.