Table 2. The classification results of all the models.
Classifiers | ACC | Sen | Spe | AUC | F1_score | MCC | Log_loss |
---|---|---|---|---|---|---|---|
RF | 0.759 (0.074) | 0.726 (0.018) | 0.791 (0.061) | 0.84 | 0.727 | 0.511 | 8.325 |
LR | 0.643 (0.016) | 0.619 (0.029) | 0.657 (0.045) | 0.669 | 0.53 | 0.272 | 12.335 |
LR-L1 | 0.670 (0.014) | 0.667 (0.020) | 0.675 (0.014) | 0.656 | 0.641 | 0.336 | 11.41 |
LR-PCA | 0.741 (0.034) | 0.644 (0.014) | 0.824 (0.078) | 0.777 | 0.688 | 0.473 | 8.943 |
CNN | 0.750 (0.029) | 0.683 (0.103) | 0.807 (0.048) | 0.725 | 0.708 | 0.492 | 8.635 |
CapsNet | 0.813 (0.018) | 0.822 (0.070) | 0.807 (0.048) | 0.852 | 0.796 | 0.624 | 6.476 |
ACC, Sen, and Spe are displayed as mean (standard deviation). ACC, accuracy; Sen, sensitivity; Spe, specificity; AUC, area under the curve; MCC, Matthews correlation coefficient; RF, random forest; LR, logistic regression; PCA, principal component analysis; AUC, area under curve; CNN, convolutional neural network; CapsNet, capsule network.