Skip to main content
. 2021 May 5;10(6):5. doi: 10.1167/tvst.10.6.5

Table 2.

Postoperative ICL Vault Prediction Performance of Machine Learning and Conventional Models Via Fivefold Cross Validation

Mean Vault ± SD (µm) MAE ± SD (µm) MedAE (µm) RMSE (µm) P Value for MAE
Achieved ICL vault (target value) 514.39 ± 174.85
Predicted ICL vault Stacking ensemble (XGBoost + LightGBM) 517.47 ± 125.45 99.67 ± 76.69 84.72 125.73 Reference
Average ensemble (XGBoost + LightGBM) 513.96 ± 126.21 100.46 ± 75.53 86.12 125.65 0.227
XGBoost (single model) 509.78 ± 116.46 104.54 ± 78.70 89.85 130.82 <0.001
Random forest 511.36 ± 129.53 104.50 ± 78.47 87.61 130.65 <0.001
Support vector machine 511.17 ± 99.20 109.68 ± 87.06 92.92 140.00 <0.001
Linear regression 513.64 ± 120.76 106.63 ± 78.81 91.75 132.56 <0.001
Manufacturer's nomogram (WTW + ACD) 509. 34 ± 77.95 125.49 ± 92.10 110.12 155.62 <0.001
NK formula22 (ACW + CLR) 516.42 ± 77.22 123.58 ± 93.07 105.76 154.67 <0.001

ACD, anterior chamber depth; ACW, anterior chamber width; CLR, crystalline lens rise; ICL, implantable collamer lens; LightGBM, light gradient boosting machine; MAE, mean absolute prediction error; MedAE, median absolute prediction error; RMSE, root mean square error; SD, standard deviation; WTW, white-to-white.