Skip to main content
. 2021 May 5;10(6):5. doi: 10.1167/tvst.10.6.5

Table 3.

Postoperative ICL Vault Prediction Performance of Machine Learning and Conventional Models in the Internal Validation Dataset From the Korean Patients (Internal Validation)

Mean Vault ± SD (µm) MAE ± SD (µm) MedAE (µm) RMSE (µm) P Value for MAE
Achieved ICL vault (target value) 516.82 ± 195.98
Predicted ICL vault Stacking ensemble (XGBoost + LightGBM) 517.76 ± 134.52 106.88 ± 90.67 82.91 140.14 Reference
Average ensemble (XGBoost + LightGBM) 517.18 ± 127.31 107.40 ± 98.49 83.09 145.69 0.678
XGBoost (single model) 514.72 ± 124.08 110.33 ± 100.31 84.50 149.08 0.018
Random forest 517.45 ± 123.89 110.74 ± 100.35 85.05 149.42 0.008
Support vector machine 518.92 ± 103.71 123.78 ± 114.30 97.54 168.44 <0.001
Linear regression 517.10 ± 115.21 112.31 ± 99.67 86.78 150.14 <0.001
Manufacturer's nomogram (WTW + ACD) 520.11 ± 79.91 138.16 ± 114.89 118.54 179.65 <0.001
NK formula22 (ACW + CLR) 515.48 ± 79.98 133.12 ± 121.12 107.56 179.93 <0.001

ACD, anterior chamber depth; ACW, anterior chamber width; CLR, crystalline lens rise; ICL, implantable collamer lens; LightGBM, light gradient boosting machine; MAE, mean absolute prediction error; MedAE, median absolute prediction error; RMSE, root mean square error; SD, standard deviation; WTW, white-to-white.