Skip to main content
. 2021 May 5;10(6):5. doi: 10.1167/tvst.10.6.5

Table 4.

Postoperative ICL Vault Prediction Performance of Machine Learning and Conventional Models in the External Validation Dataset from the Japanese Patients (External Validation)

Mean Vault ± SD (µm) MAE ± SD (µm) MedAE (µm) RMSE (µm) P Value for MAE
Achieved ICL vault (target value) 476.56 ± 249.06
Predicted ICL vault Stacking ensemble (XGBoost + LightGBM) 473.04 ± 164.94 143.69 ± 118.76 118.68 186.29 Reference
Average ensemble (XGBoost + LightGBM) 473.57 ± 162.70 144.07 ± 138.89 105.89 199.95 0.927
XGBoost (single model) 468.22 ± 143.11 144.11 ± 141.72 100.01 201.94 0.923
Random forest 473.41 ± 144.97 145.22 ± 141.38 108.35 202.51 0.723
Support vector machine 474.56 ± 107.32 166.15 ± 163.48 134.49 232.90 0.002
Linear regression 476.38 ± 139.56 146.58 ± 138.91 108.74 201.78 0.500
Manufacturer's nomogram (WTW + ACD) 522.97 ± 93.06 179.36 ± 150.69 156.28 234.09 <0.001
NK formula22 (ACW + CLR) 456.12 ± 83.09 167.45 ± 169.90 127.45 238.35 0.002

ACD, anterior chamber depth; ACW, anterior chamber width; CLR, crystalline lens rise; ICL, implantable collamer lens; LightGBM, light gradient boosting machine; MAE, mean absolute prediction error; MedAE, median absolute prediction error; RMSE, root mean square error; SD, standard deviation; WTW, white-to-white.