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Abstract

Recent advances in brain imaging have enabled non-invasive in vivo assessment of the fetal brain. Characterizing brain
development in healthy fetuses provides baseline measures for identifying deviations in brain function in high-risk clinical
groups. We examined 110 resting state MRI data sets from fetuses at 19 to 40 weeks’ gestation. Using graph-theoretic
techniques, we characterized global organizational features of the fetal functional connectome and their prenatal
trajectories. Topological features related to network integration (i.e., global efficiency) and segregation (i.e., clustering) were
assessed. Fetal networks exhibited small-world topology, showing high clustering and short average path length relative to
reference networks. Likewise, fetal networks’ quantitative small world indices met criteria for small-worldness (σ > 1,
ω = [−0.5 0.5]). Along with this, fetal networks demonstrated global and local efficiency, economy, and modularity. A
right-tailed degree distribution, suggesting the presence of central areas that are more highly connected to other regions,
was also observed. Metrics, however, were not static during gestation; measures associated with segregation—local
efficiency and modularity—decreased with advancing gestational age. Altogether, these suggest that the neural circuitry
underpinning the brain’s ability to segregate and integrate information exists as early as the late 2nd trimester of
pregnancy and reorganizes during the prenatal period.
Significance statement. Mounting evidence for the fetal origins of some neurodevelopmental disorders underscores the
importance of identifying features of healthy fetal brain functional development. Alterations in prenatal brain
connectomics may serve as early markers for identifying fetal-onset neurodevelopmental disorders, which in turn provide
improved surveillance of at-risk fetuses and support the initiation of early interventions.
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Introduction
The fetal brain develops rapidly during gestation (Stiles and
Jernigan 2010). A series of carefully orchestrated processes
including neurogenesis, neural migration, and neural circuitry
formation, among others, commence during the third embry-
onic week and are shaped by genetic and later, epigenetic
and environmental factors (Rakic et al. 1986; Rakic 1988;

Kostovic and Rakic 1990; Kostović and Jovanov-Milošević 2006;
Bystron et al. 2008; Kostović and Judas 2010; Tau and Peterson
2010; Vasung et al. 2010; Malik et al. 2013; Volpe et al. 2017).
Previously, in vivo assessment of fetal brain structural and
functional changes was not feasible in utero. Recent advances in
noninvasive neuroimaging techniques have afforded scientists
and clinicians promising tools for interrogating fetal and early

https://academic.oup.com/
https://orcid.org/0000-0003-1735-0069


Functional organization of the fetal connectome Asis-Cruz et al. 3035

postnatal brain development (Doria et al. 2010; Schöpf et al. 2011;
Thomason et al. 2013). This is becoming increasingly relevant
as the evidence tracing the roots of prevalent neuropsychiatric
disorders such as major depression, autism, attention deficit
hyperactivity disorder, and schizophrenia are finding their
origins in the womb (Szatmari 2011; Raznahan et al. 2012;
Glover et al. 2018; Al-Haddad et al. 2019; Robinson et al. 2019;
Rotem-Kohavi et al. 2020). Despite numerous studies, the origins
of neurodevelopmental disorders remain poorly understood.

In recent years, researchers have begun using resting state
functional connectivity MRI (rs-fcMRI) to elucidate whole brain
functional connectivity networks in fetuses. Rs-fcMRI detects
fluctuations in blood oxygen level-dependent (BOLD) signals;
these act as surrogates for neuronal activity (Biswal et al. 1995).
The first fetal resting state study by Schopf et al. showed bilat-
eral occipital networks, robust connections between medial and
prefrontal regions, and lateralization in the superior temporal
cortices (Schöpf et al. 2012). Later studies demonstrated an
increasing medial-to-lateral and anterior-to-posterior connec-
tivity gradient with increasing gestational age (GA) (Thomason
et al. 2013), increasing intra- and interhemispheric functional
connectivity strength with maturity (Thomason et al. 2013; Jakab
et al. 2014; Thomason et al. 2014b), weak connectivity in lan-
guage areas of the brain in fetuses eventually born before term
age (Thomason et al. 2017), sexual dimorphism of fetal RSNs
(Wheelock et al. 2019) and adverse effects of lead on cross-
hemispheric connections (Thomason et al. 2019).

Graph theory is a quantitative framework for modeling com-
plex networks and the interactions among their components
(Bullmore and Sporns 2009; Rubinov and Sporns 2010); here,
the fetal brain is modeled as a collection of nodes and edges
where nodes are regions of interest (ROIs) and edges are the
statistical correlations/connections between ROIs’ BOLD activity
over time. An advantage of graph-theoretic techniques over
other approaches is that it allows for the characterization of
the network’s overall organization and not just specific con-
nections. The few studies that have characterized fetal resting
state networks (RSNs) using graph theory (Jakab et al. f; Thoma-
son et al. 2014a;van den Heuvel et al. 2018 ; Turk et al. 2019)
have reported an occipital-temporal-frontal–parietal sequence
of functional maturation in the fetal brain (Jakab et al. 2014),
higher integration between functional modules with increasing
GA (Thomason et al. 2014a), presence of influential nodes or
hubs in sensorimotor regions and some association areas (van
den Heuvel et al. 2018; Turk et al. 2019) and overlapping hubs in
fetuses and adults (Turk et al. 2019). These studies have provided
critical insights into fetal neurodevelopment but have mainly
focused on the mesoscale and regional features of networks.
While the recent study by Turk et al. (Turk et al. 2019) described
small-world organization, it mainly focused on the fetal brain’s
hub architecture and how it compared to adult networks.

Our study aimed to characterize the global network organiza-
tion of fetal RSNs and to determine the trajectory of these met-
rics from 19 to 40 weeks gestation. We assessed the small-world
organization of fetal RSNs using multiple small world indices
(Humphries et al. 2006; Humphries and Gurney 2008; Telesford
et al. 2011); using two indices gives a more nuanced understand-
ing of the ‘small worldness’ of a network. To further understand
underlying global organizing principles, we described the degree
distribution and quantified network modularity, efficiency, and
economy of fetal RSNs; to the best of our knowledge, except
for modularity (Thomason et al. 2014a), none of these metrics
have previously been reported in healthy fetuses. Availability of
these metrics provides baseline healthy information on which

to compare clinical groups against. Individuals with ASD, for
example, have aberrant network efficiency (You et al. 2013; Ita-
hashi et al. 2014). Lastly, we examined the associations between
global metrics and advancing gestational age. We expected that
metrics will change over time, reflecting the brain’s response to
the changing gestational environment.

Materials and Methods
Participants

Resting state data acquired from the fetuses of 95 pregnant
women who were recruited as part of an ongoing prospective,
longitudinal study examining brain development in fetuses and
infants with congenital heart disease at Children’s National
in Washington DC were included in the study. There were 110
datasets analyzed (i.e., 15 women were scanned twice) from 95
fetuses, 49 females and 46 males, between 19.14–39.71 weeks
GA (see Supplemental Material for additional details). All fetal
brain MRI studies were reviewed by an experienced pediatric
neuroradiologist (GV) and were reported to have structurally
normal brains. Maternal exclusion criteria included pregnant
women with known psychiatric/metabolic/genetic disorders,
complicated pregnancies (i.e., preeclampsia and gestational
diabetes), multiple pregnancies, alcohol, and tobacco use,
maternal medications, and contraindications to MRI. Fetuses
from healthy pregnancies with normal fetal echocardiogram
and ultrasonogram were eligible for the study. Fetal exclusion
criteria included: dysmorphic feature by antenatal ultrasound,
chromosomal abnormalities by amniocentesis, presentation
after 28 weeks gestational age, multiple gestations, and evidence
of congenital infections. The Institutional Review Board (IRB) of
Children’s National approved this study, and all experiments
were performed following the regulations and guidelines of the
IRB. Written informed consent was obtained from each study
participant.

MRI Acquisition

Anatomical and functional MRI data were acquired using a 1.5
Tesla MRI scanner (GE Healthcare, Milwaukee, WI) with an 8-
channel receiver coil. Single-shot fast spin-echo anatomical T2-
weighted images (i.e., sagittal, axial, and coronal slices) were col-
lected using the following settings: TR, 1100 ms; TE 160 ms, flip
angle, 90◦; and slice thickness, 2 mm; resting state echo planar
images (EPI) were acquired using the following parameters: TR,
3000 ms; TE, 60 ms; voxel size, 2.578 x 2.578 x 3 mm; flip angle,
90◦; field of view, 33 cm; matrix size, 128 x 128.

Processing of Resting State Data

To minimize the potential effects of noise on the measured BOLD
signal, resting state data were temporally and spatially denoised.
Preprocessing was performed using the Analysis of Functional
Neuroimage (AFNI) (Cox 1996) software package unless specified
otherwise. After slice time correction, the time series’s first
four frames were discarded to allow the magnetic gradients
to stabilize. Fetal BOLD EPI images were then oriented to their
anatomic counterpart, which was previously oriented to an age-
matched GA template (Gholipour et a. 2017), using landmark-
based rigid registration implemented using IRTK (https://githu
b.com/BioMedIA/IRTK). Once the fetal EPI images were in radio-
logic orientation, they were despiked, bias-field corrected (using
N4BiasFieldCorrection tool) (Tustison et al. 2010), and corrected
for motion using an algorithm optimized for motion in fetuses
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and newborns (Joshi et al. 2011; Scheinost et al. 2018). The latter
uses a two-pass registration approach to align all volumes of
the time series to a reference EPI volume, the boundaries of
which are defined using a brain mask. This mask was generated
using an in-house whole brain segmentation approach based on
UNet, a deep learning algorithm; the fetal mask was carefully
examined to ensure full coverage of the reference volume. After
motion correction, a second EPI brain mask, this time based on
the mean of the motion-corrected images, was created using
the same technique; this was the final mask used to extract
the fetal brain from the surrounding maternal tissues. The T2
anatomical image was then registered to the motion-corrected
resting state data using FMRIB’s Linear Image Registration Tool
(FLIRT) (Jenkinson and Smith 2001; Jenkinson et al. 2002). The
resting state images were then intensity scaled to a global mode
of 1000 (Ojemann et al. 1997), smoothed using an isotropic
4.5 mm full-width half-maximum Gaussian kernel and band-
pass filtered to include signals within the range 0.01 Hz–0.1 Hz.
Nuisance regression with censoring of frames assessed as low
quality was then performed; residual BOLD signals from this
regression were analyzed.

To elaborate on the nuisance regression previously men-
tioned, tissue- and motion-related signals were included as
regressors (Behzadi et al. 2007; Jo et al. 2010; Hallquist et al. 2013).
Tissue signals were derived from the white matter and ventri-
cles, initially delineated in the high-resolution anatomy. Specif-
ically, anatomical component correction (aCompCor) using the
first three principal components of the white matter signal
(Behzadi et al. 2007; Muschelli et al. 2014) and localized white
matter regression (ANATICOR)(Jo et al. 2010, 2013) defined nui-
sance signals originating from these tissues. Motion regressors
included linearly detrended rigid motion parameters and their
temporal derivatives (Friston et al. 1996). In addition, low qual-
ity volumes defined by high frame-by-frame motion and high
number of voxel intensity outliers (determined using AFNI’s
3dToutcount) were censored from the time series. High motion
included those with frame-by-frame motion exceeding 1 mm
and rotational motion greater than 1.5◦ (Thomason et al. 2017,
2019; van den Heuvel et al. 2018; Li et al. 2019; Wheelock et al.
2019). Volumes where more than 10% of voxels had intensities
deviating from the voxel time series’ median absolute deviation
were excluded. After low quality volumes were removed, only
fetuses with at least four minutes of good quality resting state
data were included.

Graph Analysis
Graph Formation

The fetal brain was parcellated into 200 cortical, subcortical,
and cerebellar regions of interest (ROIs) defined using a spec-
tral clustering algorithm applied to functional data (Craddock
et al. 2012), an approach we have previously used (De Asis-Cruz
et al. 2020a). The BOLD signal for an ROI is the average BOLD
signal of all voxels that comprise the ROI; these were measured
after intensity-based masking of individual label masks (Peer
et al. 2016) to ensure that voxels with significant signal dropout
were removed in the analysis. The Pearson product–moment
correlation coefficient was then computed across all ROI pairs,
yielding 19 900 correlations. The correlation, r, between a pair
of ROIs represents its functional connectivity. A subject’s graph
thus consists of 200 nodes and their connections (edges). To
remove spurious correlations, as described in our previous work

(De Asis-Cruz et al. 2018), only positive edges significant at
pFDR < 0.05 were included. In addition, to obtain reliable graph-
theoretic metrics, each fetal graph was thresholded as follows:
we analyzed graphs where at least 95% of the nodes were con-
nected for all subjects and where the average degree, k > 2 ∗ ln
(number of nodes) (Achard et al. 2006; Bassett et al. 2006). These
defined graphs within the edge density (or cost) range = 0.10–051
(interval = 0.01). Global network metrics were computed from
each subject’s 200 x 200 binary, undirected graphs at each inter-
val within these range, then averaged across the full range
(Lynall et al. 2010).

Graph-theoretic Metrics

The publicly available Brain Connectivity Toolbox found here
(https://sites.google.com/site/bctnet/) was used to compute
graph metrics (Rubinov and Sporns 2010). These included
clustering coefficient (C), characteristic path length (L), global
efficiency (GE), local efficiency (LE), and modularity (Q). Briefly,
clustering coefficient describes the tendency of neighbors of
a node to also be connected to each other. Characteristic path
length is the average shortest distance between any two nodes
in a network. Related to path length is global efficiency (i.e.,
inverse of path length) which quantifies how well information
is exchanged in the entire network. On the other hand, local
efficiency is more closely related to clustering coefficient and
describes the ease of exchange of information among neighbors
of one node when this node is removed. Modularity measures
the tendency of nodes of a network to form subnetworks where
nodes are more densely connected with other nodes in their
subgroup and sparsely connected to other clusters (Newman
2006). Here, L and GE were used to index network integration; C,
LE, and Q were used to represent segregation (or specialization)
(Cohen and D’Esposito 2016; Lowe et al. 2016).

To characterize small-world topology, captured by the scalar
values σ (Humphries et al. 2006; Humphries and Gurney 2008)
and ω (Telesford et al. 2011), and network economy, quantified
using cost efficiency (CE = Eglob—cost), 100 reference random
and lattice networks that preserved the degree distribution of
the original network at each threshold for each subject were
generated. Small-worldness is commonly quantified using σ ;
however, recent studies (Telesford et al. 2011; Muldoon et al.
2016) have suggested that normalizing a subjects’ clustering
coefficients to highly clustered lattice networks, such as the
case with the metric ω, may be more appropriate. Both were
presented here to provide a more nuanced assessment of small-
world topology in fetal RSNs. A network is considered small
world when σ > 1 and when ω is within the range [−0.5 0.5].
To assess the statistical significance of σ , a one-sample t-test
against a mean of 1 was performed. The closer ω is to 0, the more
a network is considered small world; positive values suggest
more similarity to random networks and negative to lattice
networks. We assessed the difference between the fetal net-
work metrics previously described and reference networks using
a one-way analysis of variance (ANOVA). As for the network
economy, a network was considered economical when the cost
efficiency (CE) at all cost intervals was greater than 0.

We also evaluated if fetal RSNs possessed a right-tailed distri-
bution. Most complex real-world networks, including the human
brain (Achard et al. 2006; De Asis-Cruz et al. 2015), present with a
heavy-tailed distribution with a few nodes having higher degree.
We averaged individuals’ unthresholded networks and created
a group matrix with the top 10% of edges (i.e., proportional

https://sites.google.com/site/bctnet/
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Table 1 Fetal Clinical Characteristics

Characteristics Median 25 75 IQR

Female male (n) 49 46
GA at scan, weeks 34.93 31.29 36.57
GA at birth, weeks 39.57 38.71 40.29
Birthweight, grams 3170 3170
Apgar score at 1 minute 8 8 9
Apgar score at 5 minutes 9 9 9
Mode of delivery
Vaginal 59
Cesarean 27

Note:∗Data unavailable for some participants (characteristic, missing): GA at
birth, 3; birthweight, 6; APGAR scores. 20; mode of delivery 9

thresholding). A histogram was plotted to visualize the presence
of highly connected nodes in the network. Then, we assessed
which model—exponentially truncated power law, power law,
or exponential—best fit our data distribution using the Akaike
information criteria (AIC). The R package brainwaver (Achard
et al. 2006) was used for this analysis.

We then evaluated the relationship between the network
metrics above and gestational age using generalized estimating
equations (GEE) (Zeger et al. 1988). GEE was used to account
for repeated measurements in 15 fetuses. We included age and
gender as covariates of interest. This analysis was performed
in SAS Studio Version 13.1 (Release 3.8) using the GENMOD
function.

Results
Participant Characteristics

The clinical characteristics of our cohort are shown in Table 1. A
total of 110 fetal resting state scans from 95 healthy fetuses from
low-risk pregnancies with normal structural brain MRIs were
analyzed. Gestational ages ranged between 19.14–39.71 weeks
(median ± MAD: 34.93 ± 3.12).

Quality Assurance of Resting State Data

High motion volumes, those with frame-by-frame translational
and rotational displacement > 1 mm and > 1.5◦, respectively,
were removed from the time series. Data with at least 80 vol-
umes remaining (i.e., 4 minutes duration) after censoring of
motion corrupted frames were included in the analysis. While
on average, 108 ± 17 volumes were available for analysis, only
80 volumes were used per participant to eliminate the effect of
having a variable number of data points on correlation strength
(i.e., higher number of data points lead to higher correlation;
Table 2). Fetal head motion, summarized using average (median,
[25–75] IQR: 0.50, [0.39–0.61]) and maximum (1.38, [1.27–1.49])
framewise displacement (Power et al. 2012), did not correlate
with gestational age at scan or any of the graph metrics. Table 3
provides a summary of fetal head motion data.

Small World Organization of Fetal RSNs

Graph metrics were measured from binarized fetal resting state
networks with edge density between 0.10 and 0.51 (see Meth-
ods). To evaluate small-world topology, clustering coefficients
and path lengths were measured from individual networks,

Table 2 Duration of resting state scans

Duration (min) Frames (volumes)

Median 25 75 IQR Median 25 75 IQR

Total 7 7 7 140 140 140
Data after

preprocessing
5.35 4.6 6 107 91 120

Data analyzed 4 80

Table 3 Average and maximum frame-by-frame displacement

Duration (min) Frames (volumes)

Median 25 75 IQR Median 25 75 IQR

x (mm) 0.1173 0.0917
0.1413

0.5098 0.4248
0.6239

y (mm) 0.1199 0.0994
0.1550

0.5098 0.4248
0.5972

z (mm) 0.1542 0.1269
0.2090

0.6166 0.5098
0.7646

pitch (◦) 0.2057 0.1565
0.2549

0.9164 0.7187
1.2385

yaw (◦) 0.1996 0.1572
0.2488

0.9070 0.7021
1.1563

roll (◦) 0.1903 0.1569
0.2458

1.0322 0.8007
1.2552

averaged across the cohort, and then across the threshold range.
Clustering refers to the tendency of neighbors of a node to con-
nect with each other; path length refers to the average distance
between any two nodes in a network. This architecture allows
networks to be simultaneously segregated (or specialized) and
integrated. A small-world network has high clustering similar
to a lattice network and short path length similar to a random
network (Maslov and Sneppen 2002).

We quantified small-worldness using the indices
σ (Humphries et al. 2006; Humphries and Gurney 2008) and
ω (Telesford et al. 2011). The index σ compares C and L of
the brain network to 100 equivalent random networks. Small-
world networks have higher clustering than random networks,
Cfetus > > Crandom, and longer or comparable path lengths,
Lfetus ≥ Lrandom. Within the range of evaluated density thresh-
olds, Cfetus (median [25–75 IQR]: 0.58 [0.57–0.60] was greater than
Crandom (0.34 [0.33–0.36]; p < 0.001; Fig. 1), suggesting that fetal
brain networks had higher levels of local organization compared
to random networks. As graphs grew sparser, Cfetus decreased.
The characteristic path length for the fetal brain, Lfetus, was
longer than random networks, Lrandom: 1.86 [1.84–189] versus
1.71 [1.71–1.72]. As expected, path lengths became longer as
graphs became less dense, as more nodes needed to be traversed
to reach other nodes. The small world index σ is the ratio
between normalized clustering coefficient (λ = Cfetus/Crandom;
1.86 [1.75–1.94]) and normalized path length (γ = Lfetus/Lrandom;
1.08 [1.07–1.09]); to be considered small world, σ , or λ/γ , must
be greater than 1. For our cohort, σ = 1.69 [1.58–1.77] (p < 0.0001),
suggesting that fetal RSNs are small world.

An alternative metric for quantifying small worldness is ω.
Telesford and colleagues proposed that network clustering is
more appropriately normalized to the clustering coefficients of
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Figure 1. Global network features of the fetal functional connectome. Top shows small world properties of fetal RSNs (Fet). Indices s and w met criteria for small-
worldness, marked by the black dashed line. Fetal metrics shown relative to values from reference random (Ran) and lattice networks (Lat).

maximally clustered lattice graphs (Telesford et al. 2011). A net-
work is considered small world if ω, defined as Lrandom/Lfetus—
Cfetus/Clattice, is within the range [−0.5 0.5]. The closer ω is to 0,
the more the network exhibits small-world properties. Our fetal
cohort’s networks had lower clustering and shorter path length
compared to reference lattice networks (Clattice = 0.75 [0.74–0.75],
Llattice = 2.00 [1.95–2.04]). As with σ , ω suggested that fetal RSNs
were small world with ω = 0.15 [0.12–0.18].

Economy of Fetal Networks

We then determined whether fetal networks were economical.
We computed global (GEfetus) and local (LEfetus) efficiency by
averaging efficiency values across all subjects at each cost (edge
density) threshold (Fig. 2). Fetal networks’ global (0.626 [0.621–
0.629]) and local (0.786 [0.780–0.793]) efficiency were interme-
diate to random (GErandom: 0.649 [0.648–0.650], LErandom: 0.645
[0.637–0.656]) and lattice (GElattice: 0.608 [0.602–0.625], LElattice:
0.873 [0.871–0.875]) networks. Within the evaluated cost range,
global and local efficiency of fetal networks exceeded network
costs, suggesting economy. Cost efficiency (CEfetus = GEfetus—
Costfetus) was highest when 19% (3781/19900) of all possible

connections in the network where present. At cost of 0.19,
CEfetus = 0.35.

Right-Tailed Degree Distribution of Fetal Networks

Figure 3 shows the degree distribution, p(k), of the group-
averaged connectivity matrix at network density of 0.10, the
lowest density at which we evaluated individual networks.
The degree distribution, which describes the frequency of
connections per node, was heavy-tailed; there were a few nodes
(hubs) in the right tail of the distribution that were highly
connected to other nodes. Three models were compared to best
describe the degree distribution. Of the three, the exponentially
truncated power, p(k) = kα-1/ek/kc, best fitted the data (Akaike’s
information criterion, AIC: 1326). Other model fits evaluated
were power law, p(k) ∼ k-α , and exponential, p(k) = e-(α)(k); AIC
values for these were 2004 and 1598, respectively.

Modularity of Fetal Networks

Modularity describes the tendency of networks to organize
into groups of nodes, called modules or communities, whose
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Figure 2. Economy of fetal RSNs. Global and local efficiency of fetal networks, as a function of network cost, are shown relative to random and lattice networks. Fetal
RSNs are cost efficient (right); CE values >0 at all costs tested. Maximum cost efficiency denoted by dashed vertical line.

Figure 3. Degree distribution of fetal RSNs. Right tailed distribution at cost (edge density) = 10% is shown (left). A few nodes that have high degree occupy the right
side of the distribution. Right show log–log plots of degree vs cumulative distribution; different model fits are presented with truncated power law showing the

best fit.

members are densely connected to each other but sparsely
connected to other modules (Newman 2006). The modularity,
Q, of fetal RSNs was 0.31 [0.29–0.33], suggesting its modular
organization (Fig. 1). Q of fetal networks was significantly higher
compared to random (0.093 [0.091–0.094]; p < 0.0001) and lower
compared to lattice (0.40 [0.39–0.41]; p < 0.0001) networks. The
modularity of the group averaged matrix when connection
density was 10% was 0.54.

Fetal Gestational Age and Network Metrics

We assessed the relationship between fetal gestational age
and the previously described network measures (Fig. 4). Of
these, modularity, local efficiency, normalized clustering
coefficient, and the small world index σ significantly decreased

with increasing GA (Table 4; p < 0.05). Clustering coefficient
decreased, as well, but its effect on GA was only trending
towards significance. The patterns observed remained after
excluding fetuses less than 25 weeks and greater than
39 weeks (see Supplemental Material). We did not observe a
significant correlation between GA and the rest of the metrics—
L, λ, ω, and GE. None of the metrics were associated with
fetal sex.

Discussion
Using fMRI and network analysis techniques, we delineated
global features of resting state networks in a large sample of
healthy fetuses in the latter half of gestation (19.14–39.71 weeks

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa410#supplementary-data
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Figure 4. Normalized clustering, modularity, small world index (σ ), and local efficiency decrease with advancing gestational age. Males (dot); females (diamond).

Table 4 Association between graph metrics and fetal gestational age and sex

GA at scan Sex

M β SE z p β SE z p

C -0.0014 0.0008 -1.68 0.0931 -0.0079 0.0050 -1.59 0.1120
L -0.0021 0.0014 -1.50 0.1340 -0.0119 0.0097 -1.23 0.2187
Q -0.0034 0.0010 -3.52 0.0004 -0.0033 0.0058 -0.57 0.5695
GE 0.0002 0.0002 1.05 0.2945 0.0022 0.0015 1.45 0.1482
LE -0.0008 0.0004 -2.05 0.0407 -0.0039 0.0022 -1.78 0.0753
CE 0.0002 0.0002 1.05 0.2948 0.0022 0.0015 1.45 0.1482
λ -0.0012 0.0007 -1.58 0.1145 -0.0071 0.0048 -1.49 0.1365
γ -0.0098 0.0034 -2.84 0.0045 -0.0398 0.0317 -1.26 0.2090
σ -0.0079 0.0032 -2.46 0.0140 -0.0176 0.0321 -0.55 0.5832
ω 0.0025 0.0021 1.24 0.2163 0.0182 0.0121 1.51 0.1302

Note: Results, Fetal gestational age and network metrics

gestational age). In this normative fetal cohort, using differ-
ent small world metrics, we showed that fetal RSNs exhib-
ited efficient and economic small-world topology and modular
organization. These findings suggest that fetal networks are
simultaneously specialized—demonstrated by the tendency to
organize into modules—and integrated and that this efficiency

is achieved at a minimal cost. We also demonstrated that fetal
RSNs have heavy-tailed degree distribution, implying the pres-
ence of highly connected hubs in the right tail of the distribution
that facilitate integration within and across modules. Lastly, we
showed that some network metrics, such as local efficiency and
modularity, decreased with increasing gestational age. Taken
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together, these findings suggest that some important patterns
of global network organization observed in mature brains are
already present in utero, with some still dynamically changing
during gestation.

We reported economic and efficient small-world networks
in fetuses with gestational ages between 19 and 40 weeks.
Histologic and electroencephalographic (EEG) events during this
period show the emergence of transient neuronal circuitry and
maturation of thalamocortical/corticothalamic fibers. The fetal
neural circuity begins to emerge during the mid-fetal period
(15–23 weeks) (Keunen et al. 2017; Kostović et al. 2019b). By 15
gestational weeks, both the cortical plate and subplate, transient
fetal compartments essential to the formation of the first neural
connections, have already formed (Molliver et al. 1973; Kostovic
and Molliver 1974; Kostovic and Rakic 1990; Shatz 1992; Bystron
et al. 2008; Rakic 2009; Kostović et al. 2019a). The subplate, com-
prised of extracellular matrix and differentiated post-migratory
neurons (Kostovic and Molliver 1974; Kostovic and Rakic 1990),
is the substrate for early fetal neural connectivity. Before reach-
ing their cortical targets, thalamocortical fibers project to the
subplate neurons forming a transient circuitry (Kostović and
Jovanov-Milošević 2006). This circuitry has been associated with
the emergence of spontaneous activity transients (SATs) in pre-
mature infants (Vanhatalo and Kaila 2006; Tolonen et al. 2007).
Recorded using EEG, SATs are endogenous, intermittent, high
amplitude bursts of neuronal activity that drive proper wiring
of brain networks before somatosensory input is ever received
(Vanhatalo and Kaila 2006, 2011; Luhmann et al. 2009, 2016;
Sun et al. 2010); SATs have also been associated with more
favorable neurodevelopmental outcomes in premature incomes
(Benders et al. 2015). With the formation of thalamocortical
connections at around 24–26 weeks (Krmpotić-Nemanić et al.
1980, 1983; Krsnik et al. 2017) and dissolution of the subplate
at about 32 weeks (Kostovic and Rakic 1990), sensory-driven
and more complex electrical activity (Khazipov and Luhmann
2006), including evoked potential (Kostović et al. 1992), begin
to emerge (Kostović and Judas 2007; Milh et al. 2007). Compu-
tational modeling of neuronal networks has shown that burst
activity timing influenced the formation of cortical synapses
and the emergence of small-world architecture (Hartley et al.
2020). Specifically, long-range temporal correlations (LTRC), a
complex temporal ordering of bursts observed in premature
infants using EEG (Milh et al. 2007; André et al. 2010), facilitated
the formation of small-world networks (Hartley et al. 2020).

Determining the association between electrical activity in
the fetal brain and macroscale network organization measured
using resting state BOLD signals depends on a clear under-
standing of neurovascular coupling. Even in human adults, this
relationship is not well understood, but available evidence sug-
gests that hemodynamic responses reflect postsynaptic poten-
tials of local neuronal populations (i.e., local field potentials)
(Logothetis et al. 2001; Logothetis 2002, 2003). To be able to
infer neural activity from BOLD signals, both neural and vas-
cular elements need to be sufficiently mature (see Review by
(Vasung et al. 2019)). Another consideration is that, unlike in
adults, components of the neurovascular coupling cascade in
fetuses undergo significant modification during gestation. This,
in turn, renders discerning the details of neurovascular cou-
pling in fetuses very challenging. Postnatal data on rodents and
premature and term human infants have shown systematic
hemodynamic response maturation and suggest fMRI reliability
in detecting neural connectivity patterns (Colonnese et al. 2008;
Arichi et al. 2012).

We report that fetal resting state networks exhibited small-
world organization. This finding is consistent with observations
in human fetuses (Turk et al. 2019), premature infants as early as
30 weeks PMA (van den Heuvel et al. 2014; Cao et al. 2016), full-
term neonates (Fransson et al. 2011; De Asis-Cruz et al. 2015),
infants (Gao et al. 2014), children (Fair et al. 2009; Supekar et al.
2009), and adults (Achard et al. 2006; Bullmore and Sporns 2009).
It has been reported across a wide range of neuroscience studies
involving different species (Watts and Strogatz 1998; Oh et al.
2014; van den Heuvel et al. 2016; Rilling and van den Heuvel
2018) at different scales, using different imaging modalities (e.g.,
diffusion tensor imaging and EEG) (Ferri et al. 2007) including in
vitro cellular studies (Bettencourt et al. 2007). In a review, Bassett
et al. (Bassett and Bullmore 2017) suggested that this ‘near
universality’ of small-world topology likely reflects evolutionary
selection pressures, implying that the balanced integration and
segregation that facilitates efficient and economical informa-
tion transfer in the brain is beneficial to the organism and
increases its survivability.

Previous studies on premature infants between 31–41 weeks
PMA (Cao et al. 2016) showed that clustering coefficient,
path length, and normalized path length positively correlated
with postmenstrual age (PMA) at scan, suggesting enhanced
specialization/segregation. We did not observe these trends in
our fetal cohort; instead, we observed decreasing modularity,
local efficiency, and clustering, although the last is only trending
in significance. Functional connectivity differences between
healthy fetuses and premature infants/healthy fetuses eventu-
ally born premature have recently been described (Thomason
et al. 2017; De Asis-Cruz et al. 2020b). Here, we speculate that in
premature infants, early exposure to the ex-utero environment
likely favors increased segregation, as the ex utero fetus would
need to rely on specialized brain functions (i.e., vision and motor
function) to adapt to the environment. While our findings differ
from those in premature infants, the decreased modularity that
we reported was similarly noted by Thomason and colleagues
in fetuses (Thomason et al. 2014a). They noted that young
fetuses (GA < 31) had higher modularity than older fetuses.
The decreased clustering, modularity, and local efficiency with
advancing GA are also consistent with connectivity patterns and
trajectories presented in the few studies, mostly on premature
newborns and a few on fetuses, using different analysis
techniques (i.e., independent component and seed-based
correlation analyses). In these, they showed that distant, cross-
hemispheric connections begin to develop later in development,
and dense, anatomically constrained connections predominate
early (Doria et al. 2010; Smyser et al. 2010; Thomason et al.
2013). During the late second and early third trimester, resting
state networks of fetuses are typically organized into local,
anatomically proximal groups (Thomason et al. 2013; Jakab
et al. 2014; Thomason et al. 2014b). This could present as high
clustering because voxels or regions close to each other would
likely be connected. The reduction in clustering during the later
third trimester could possibly represent fine-tuning of these
local connections as the brain matures. While neurons typically
proliferate during gestation, prenatal neural regression also
takes place where more than 50% of neurons in certain brain
regions are lost (Stiles and Jernigan 2010). Prenatal neuronal
apoptosis (Rabinowicz et al. 1996; Rakic and Zecevic 2000) may
account for the decrease in segregation as the brain likely only
retains connections that it requires to flexibly adapt to its
environment. Notably, the decreasing values in metrics that
encapsulate network segregation contrast with trends observed
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in postnatal brain, where clustering, modularity, and local
efficiency increase with age. Likely, this suggests a non-linear
relationship between these metrics and age.

Small world networks imply an efficient architecture for data
processing and information flow at minimal cost (i.e., wiring
needs). It is important to understand wiring costs in the fetal
brain as altered cost efficiency has been associated with neuro-
logic disorders such as schizophrenia and ADHD, among others.
Our current study showed that functional economy emerges
during the fetal period, as demonstrated by cost efficiency val-
ues greater than cost at all measured thresholds. This is con-
sistent with observations in neonates (De Asis-Cruz et al. 2015)
and adults (Achard and Bullmore 2007). The fetal brain exhibited
economy comparable to neonates (cost efficiency values of 0.35
and 0.34, respectively). Formation of synapses and establish-
ment of the brain’s neural circuitry during the third trimester
of gestation are energy-demanding processes. It is not surpris-
ing then that the human brain prioritizes economy during the
early fetal period as the fetus’ survival likely depends on the
proper allocation of metabolic resources. Cost efficiency in fetal
networks was greater than cost at all measured thresholds.

We also showed that local efficiency in fetal resting state
networks was higher in younger compared to older fetuses. This
is consistent with the decreasing clustering coefficient value
and modularity. The high modularity, high local efficiency con-
figuration during the early third trimester may signal a trade-off
between higher integrative capacity in the brain and lowering
metabolic costs. Oxygen supply in the fetal brain outpaces con-
sumption (Jones et al. 1982), but resources may potentially be
allocated first to building connections between proximate neu-
rons before distant ones. It is also likely that the relative hypox-
emia of the fetal brain contributes to the need for maintain-
ing metabolic requirements minimal. While fetal hypoxemia is
compensated for by increased red cell mass, higher affinity of
fetal hemoglobin to oxygen, and the previously mentioned lower
oxygen consumption (de Ungria and Daru 2007), the brain may
have redundant systems for protecting the developing brain.
Keeping metabolic costs at a minimum gives the brain more
flexibility to respond when there are sudden, unanticipated
demands for increased resources. However, this is purely spec-
ulative and will require the simultaneous in vivo measurement
of fetal cerebral blood flow and BOLD in future studies.

The degree distribution of fetal networks has not been
previously characterized. The degree distribution describes
the relative frequency of edges/connections for each node/ROI
in the network. A right- or heavy-tailed distribution suggests
that there are a few influential nodes (hubs) that are highly
connected to others; the rest would have significantly fewer
neighbors. This is in keeping with what we would expect in an
economical brain where wiring costs are minimized, but the
system remains integrated via hubs (Bassett et al. 2009; Chen
et al. 2013; Tomasi et al. 2013). Our finding is consistent with
previous rs-fcMRI studies in newborns and adults (Achard et al.
2006; Bassett et al. 2008; Hayasaka and Laurienti 2010; De Asis-
Cruz et al. 2015). Comparable truncated power-law distributions
have also been described in other types of complex ecological,
social, and technological networks (Newman 2001; Amaral
et al. 2000; Strogatz 2001; Lusseau and Newman 2004). This
type of distribution likely arises because of constraints in node
processing capability or restrictions in network growth. In fetal
networks, for example, physiological, anatomic, and metabolic
constraints likely prohibit the occurrence of ultra-high degree
hubs such as seen in scale-free networks; instead, a distributed
set of hubs are usually observed. Truncated power-law networks

confer some advantages over power-law or scale-free networks;
they are more resilient to insult (Achard et al. 2006; De Asis-Cruz
et al. 2015), more resistant to network over synchronization (i.e.,
epilepsy), and capable of more specialized, independent activity
(Hayasaka and Laurienti 2009).

We did not observe a significant effect of sex on global net-
work organization. In contrast, two recent studies have demon-
strated sex-related structural and functional asymmetries in
the fetal brain. Vasung et al. reported greater fetal cortex (i.e.,
cortical plate and subplate) volume in the inferior frontal gyrus
and greater subplate volume in the inferior frontal gyrus, per-
icalcarine area, and cingulate cortex in male fetuses (Vasung
et al. 2020). Wheelock and colleagues showed sex-specific GA-
functional connectivity associations in different brain regions,
such as the cerebellum and frontoparietal cortices (Wheelock
et al. 2019). Based on their findings, we speculate that dimor-
phism in global network topology emerges later in brain devel-
opment, preceded by regional or connection-wise differences
in the fetal period. Research in children and adults does show
differences in structural and functional global network param-
eters, with the divergence becoming more pronounced during
adolescence and early adulthood (Wu et al. 2013; Ingalhalikar
et al. 2014; Zhang et al. 2016). Fetal testosterone levels at 13–
20 weeks, right around the hormone’s first peak (12–18 weeks,
(Finegan et al. 1989)), has been shown to influence regional
gray matter dimorphism in children (Lombardo et al. 2012); this
period’s role, along with the influence of the second peak of
testosterone levels at 34–41 weeks (de Zegher et al. 1992) on
the emergence of global network sexual dimorphism remains
undetermined.

The limitations of our study bear mention. First, we focused
on characterizing global properties of fetal networks because
the few published fetal resting state papers focused on network
community structure and hubs. Although beyond the scope
of our current study, understanding how small-world properties
relate to intermediate and local features of fetal networks would
further enhance our understanding of fetal brain development.
Second, while we studied a large sample of healthy fetuses,
a cohort where younger gestational ages, i.e., second-early
third trimester, are equally represented is ideal. While global
network organization patterns were preserved in a subsample
that excluded extreme ages, more robust mapping of functional
connectivity changes would require higher numbers of second-
trimester fetuses. This is especially important in understanding
the gestational trajectories (i.e., linear vs. non-linear) of different
global metrics. Another methodological consideration is the
selection of nodes or regions of interest. A critically examined
issue in network neuroscience (Fornito et al. 2013; Bassett and
Sporns 2017; Hallquist and Hillary 2019; Doucet et al. 2020)
because of its potential influence on connectivity estimates and
network organization (Marrelec and Fransson 2011; Hallquist
and Hillary 2019), selecting the ‘correct’ atlas is especially
challenging in the rapidly evolving fetal brain. Based on a
recent fetal study by Turk and colleagues that demonstrated
robust intermediate and global network metrics across different
types of parcellation (Turk et al. 2019)—a finding also noted in
adults (Lord et al. 2016)—we expect the global patterns observed
in our study to remain consistent across different atlases.
Nevertheless, future studies that systematically evaluate the
impact of node selection is essential for developing pipelines
optimized for the developing brain. Lastly, motion correction
in fetuses is very challenging. Apart from maternal sources of
motion (i.e., respiration), fetuses also move in an unconstrained
manner. To minimize the effects of motion, we censored
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high motion volumes and included motion parameters in
our model.

Fetal fMRI-based network analysis provides crucial insights
into healthy fetal brain connectome development. Our results
showed that efficient and economic small-world networks
with right tailed degree distributions emerge during the fetal
period. In addition, local efficiency, modularity, and clustering
decreased with gestational age, suggesting greater segregation
in younger compared to older fetuses. Our findings suggest that
some key features of complex brain networks can already be
detected in utero and may serve as potential markers for early
detection of deviations from healthy brain development.
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