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Abstract
Lipid dysmetabolism is one of the main features of diabetes mellitus and 
manifests by dyslipidemia as well as the ectopic accumulation of lipids in various 
tissues and organs, including the kidney. Research suggests that impaired 
cholesterol metabolism, increased lipid uptake or synthesis, increased fatty acid 
oxidation, lipid droplet accumulation and an imbalance in biologically active 
sphingolipids (such as ceramide, ceramide-1-phosphate and sphingosine-1-
phosphate) contribute to the development of diabetic kidney disease (DKD). 
Currently, the literature suggests that both quality and quantity of lipids are 
associated with DKD and contribute to increased reactive oxygen species 
production, oxidative stress, inflammation, or cell death. Therefore, control of 
renal lipid dysmetabolism is a very important therapeutic goal, which needs to be 
archived. This article will review some of the recent advances leading to a better 
understanding of the mechanisms of dyslipidemia and the role of particular lipids 
and sphingolipids in DKD.
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Core Tip: The present review summarizes the recent knowledge about the role of lipids 
and sphingolipids in the development and progression of diabetic kidney disease 
(DKD). The main focus is given to the cholesterol and triglyceride metabolism 
abnormalities, lipid droplet accumulation and role of sphingolipids in DKD.
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INTRODUCTION
Lipids are essential components of a cell plasma membrane with multiple cellular 
functions, highlighting their importance in cell homeostasis and survival. Diabetic 
kidney disease (DKD) is often considered to be a consequence of hyperglycemia in a 
setting of diabetes mellitus. However, lipid accumulation in podocytes, which are 
specialized epithelial cells lining the urinary surface of the glomerular capillary tuft, 
has been recently reported to drive the development of DKD[1]. Lipids are also key 
modulators of insulin signaling in several cell types including the podocyte[2,3].

The toxicity of lipid accumulation (lipotoxicity) in the kidney was first proposed by 
Moorhead et al[4] in 1982 and later updated by Ruan et al[5] in 2009, suggesting that 
lipid dysmetabolism promotes the progression of kidney diseases, including DKD. 
However, the specific contribution of podocyte lipid dysmetabolism to the 
pathogenesis and progression of DKD has been largely unexplored. Growing evidence 
suggests that lipotoxicity-associated renal damage depends not only on the quantity of 
lipids that accumulate in the kidney but also on the lipid species[6]. In recent years, a 
clear role of sphingolipids and glycolipids in the pathogenesis of DKD has been also 
established[7-11]. Given the fact that podocytes, the terminally differentiated epithelial 
cells in the glomerulus, are main contributors to the proper filtration function in the 
kidney, changes in their number[12] and function lead to the development and 
progression of glomerular disease, including DKD. However, what is the cause of 
podocyte detachment and death in DKD remains largely unknown. We have 
previously published several reviews related to the role of lipids and sphingolipids in 
glomerular diseases with focus on insulin signaling[2], inflammation[13], and 
mitochondria dysfunction[14]. This review is an update on the latest knowledge with 
regard to the mechanisms contributing to renal lipid dysmetabolism focusing on 
cholesterol metabolism, fatty acid oxidation, lipid droplet accumulation and 
sphingolipids and how they contribute to the development and progression of DKD.

CHOLESTEROL METABOLISM ABNORMALITIES IN DKD
In any cell, lipid metabolism encompasses the synthesis and degradation of lipids to 
meet the body’s energy needs. Some lipids are being constantly oxidized, while others 
are being synthesized and stored. Thus, triacylglycerols are broken into free fatty acids 
(FFA), which undergo β-oxidation in mitochondria to produce acetyl coenzyme A 
(CoA), utilized in the tricarboxylic acid cycle or ketogenesis to generate energy. FFA 
are also involved into other biosynthetic pathways to produce membrane lipids (such 
as phospholipids, glycolipids, sphingolipids, or cholesterol) or signaling molecules 
(such as prostaglandins, leukotrienes, and thromboxanes). These metabolic pathways 
are tightly regulated by enzyme-catalyzed reactions and defects in any of these 
enzymes is associated with a wide range of health problems.

Podocytes are visceral epithelial cells of the glomerulus, which are involved in 
filtration and formation of primary urine. Foot processes are the most recognizable 
characteristic structures of podocytes and the formation of specialized junctions 
between foot process of neighboring podocytes, known as the slit diaphragm, and of 
foot processes and the glomerular basement membrane, known as the adhesion 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-9358/full/v12/i5/524.htm
https://dx.doi.org/10.4239/wjd.v12.i5.524


Mitrofanova A et al. Lipids in DKD

WJD https://www.wjgnet.com 526 May 15, 2021 Volume 12 Issue 5

S-Editor: Gong ZM 
L-Editor: A 
P-Editor: Wang LL

complex, are important for maintaining glomerular function[15]. The podocyte slit 
diaphragm is assembled in lipid rafts, which are small specialized plasma membrane 
domains enriched with cholesterol, sphingolipids and protein complexes with 
important functions in cellular signaling transduction. Cholesterol of the lipid rafts 
plays an important role in regulating the organization, localization and function of 
proteins within the slit diaphragm. Excess of cholesterol negatively affects the binding 
of slit diaphragm proteins to each other[16], or interferes with the ability of podocyte 
slit-diaphragm proteins to bind caveolin-1, an important transductor of the insulin 
receptor signaling in podocytes[17].

Cholesterol is synthesized starting from acetyl CoA in the de novo pathway and/or it 
can be imported from circulating lipoproteins by receptor-mediated endocytosis 
(influx). Excess cholesterol is released through several distinct pathways (efflux). Tight 
regulation of these three mechanisms is very important to maintain proper cholesterol 
metabolism within the cell, as unesterified (free) cholesterol is toxic to cells.

Cholesterol synthesis
Intracellular cholesterol sensing is mainly regulated via sterol regulatory element-
binding protein (SREBP, and its known isoforms SREBP-1a, SREBP-1c, SREBP-2), an 
endoplasmic reticulum resident. Increased expression of SREBP1 and SREBP2 has also 
been reported in glomeruli of DKD patients based on microarray data available from 
the Nephroseq database[18,19]. Increased expression of SREBP has been described to 
contribute to kidney damage in obesity-related diabetes and in mice fed on a high fat 
diet[20-24]. Additional studies demonstrated a role of SREBP1 in the accumulation of 
lipid droplet in murine models of type 1 diabetes[25]. In support, the inhibition of 
SREBP isoforms was found to attenuate the renal phenotype such as albuminuria or 
mesangial expansion in age-related renal disease and in DKD[16-20]. In contrast, a 
recent study reports that fatostatin treatment of 12-wk-old male mice with strepto-
zotocin-induced diabetes, an inhibitor of SREBP-1 and SREBP-2, prevents glomerular 
basement membrane thickening, but does not improve albuminuria or 
hyperfiltration[26]. Thus, further studies are needed to determine if SREBP inhibition 
may be more beneficial in combination with other therapies to prevent DKD 
progression.

Cholesterol influx
Cholesterol is transported in the circulation by two major lipoproteins, low-density 
lipoprotein (LDL) and high-density lipoprotein (HDL). The influx of cholesterol is 
primarily mediated via LDL receptors (LDLR), followed by endocytosis and the 
formation of LDL-containing vesicles connected to lysosomes. Free cholesterol is then 
transported to the endoplasmic reticulum (ER) or plasma membrane via Niemann Pick 
C1 or C2 transporters. In the ER, increased free cholesterol levels activate sterol-O-
acyltransferase 1 (SOAT1; or acyl-CoA:cholesterol acyltransferase (ACAT1)) to form 
cholesterol esters for storage in lipid droplet. We recently demonstrated that genetic 
loss of SOAT1 in diabetic db/db mice ameliorates kidney injury by reducing cholesterol 
esters and lipid droplet accumulation[27]. More recently, proprotein convertase 
subtilisin/Kexin Type 9 (PCSK9) inhibitors, which have been developed to controlled 
hyperlipidemia by affecting LDL uptake and clearance in hepatocytes, have been 
shown to control the hyperlipidemia associated with nephrotic syndrome[28]. As 
PCSK9 is also expressed in the kidney[29], the contribution of PCSK9 to renal 
lipotoxicity remains to be explored.

Cholesterol efflux
Excessive cholesterol accumulation in podocytes is also associated with suppressed 
efflux in both experimental[22,30] and human DKD[6]. Cholesterol efflux from cells, 
including podocytes, occurs primarily via ATP-binding cassette transporters sub-class 
A (ABCA1), G (ABCG1) and scavenger receptor class B type I (SR-BI). We previously 
reported that normal human podocytes exposed to serum from patients with type 1 
and type 2 diabetes and early stage of DKD are characterized by increased lipid 
droplet accumulation and reduced expression of ABCA1[3,31,32]. We also found that 
the expression of ABCA1 correlates with markers of DKD progression clinically and in 
experimental mouse models (diabetic BTBR ob/ob and db/db mice)[32]. Studies in 
diabetic NOD mice also demonstrated significant reduction (48%) of ABCA1 
expression in kidneys[30]. While deficiency of ABCA1 is a susceptibility factor in DKD 
and contributes to the accumulation of lipid droplet in podocytes, it is not sufficient to 
cause glomerular injury itself[31,32]. Further studies demonstrated that ABCA1 
overexpression reduces albuminuria in mice with podocyte-specific activation of 
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nuclear factor of activated T cells (NFAT)[31], another susceptibility factor for 
cholesterol-dependent podocyte injury. Interestingly, in human glomerular cells, 
interleukin 1β has also been shown to inhibit cholesterol efflux possibly via 
suppression of ABCA1 expression[33]. By contrast, pharmacological induction of 
cholesterol efflux using cyclodextrin or ezetimibe, a small molecule ABCA1 inducer, 
resulted in amelioration of DKD progression and DKD-like glomerulosclerosis[3,32]. 
Exendin-4, an agonist of glucagon-like peptide 1, has also been shown to upregulate 
ABCA1 in glomerular endothelial cells and improve glomerular hypertrophy, 
basement membrane thickening and mesangial expansion[34]. Interestingly, in 
diabetic patients (n = 1746, all Caucasians), the ABCA1 rs9282541 (R230) 
polymorphism has been shown to be associated with increased risk of diabetes, while 
the ABCA1 rs1800977 (C69T) polymorphism was found to be associated with a 
significantly reduced risk of hypertriglyceridemia[35]. The rs9282541 polymorphism 
has also been reported to be associated with susceptibility to type 2 diabetes in 
patients from Mexico[36]. In contrast, studies in patients with type 2 diabetes (n = 107) 
from Turkey[37] and in Chinese Han population (n = 508)[38] failed to link ABCA1 
rs1800977 polymorphism to lipid dysmetabolism. More recently, an association 
between LXR-alpha and ABCA1 gene polymorphisms was found to be associated with 
the risk for DKD in a Chinese population[39]. While ABCA1 mediates cholesterol 
transport to apolipoprotein A-I (Apo A-I) and pre-β HDL, two other transporters, 
ABCG1 and SR-BI, mediate cholesterol transport to mature HDL. In mouse models of 
DKD, significant suppression of ABCG1 and SR-BI was found in mesangial and 
tubular cells[40].

Taken together, these studies demonstrate that cholesterol accumulation and lipid 
droplet accumulation may represent a hallmark of DKD[41-43]. Based on our own 
studies and reports from others, we conclude that cholesterol accumulation in 
glomerular cells occurs independent of systemic cholesterol levels and that local lipid 
dysmetabolism contributes to DKD progression in patients with diabetes (Figure 1).

TRIGLYCERIDE METABOLISM ABNORMALITIES IN DKD
Fatty acid uptake
In the blood most of the circulating lipids are present as triglycerides within very low-
density lipoprotein (VLDL). Triglycerides are composed of free fatty acid (FFA) and 
glycerol. Several fatty acid transport proteins (FATPs) control uptake of FFA into a 
cell. In the kidney, FATP1, FATP2, and FATP4 were shown to be mostly responsible 
for lipid uptake abnormalities in patients with DKD. Thus, a recent study on a 
population of type 2 diabetic patients (n = 268) demonstrated that expression levels of 
FATP1 and FATP2 in plasma are associated with progression of DKD[44]. In support, 
deletion of FATP2 in different mouse models of DKD (db/db and eNOS-/- diabetic mice 
and low dose streptozotocin-induced diabetic mice on a high fat diet) was sufficient to 
improve the renal outcome[45]. It has been also demonstrated that expression of 
FATP4 is higher in tubules of mice on a high fat diet[46], suggesting a role of FATP4 in 
insulin resistance and obesity. Interestingly, levels of FATP4 in db/db mice were shown 
to be elevated in parallel with increased renal lipid accumulation and progression of 
DKD, which is also associated with vascular endothelial growth factor B (VEGF-B) 
signaling[1]. In obese Wistar rats on high fat diet increased levels of FFA in glomerular 
endothelial cells were shown to be associated with microalbuminuria via VEGF-NO 
axis[47]. In patients with type 2 diabetes FATP4 is associated with glomerular filtration 
rate[48].

Other contributors to the lipid uptake abnormalities in DKD are the fatty-acid 
binding proteins (FABPs), which belong to a super-family of lipid-binding proteins 
and recognize long-chain fatty acids as substrates. Thus, urinary liver-type FABP (L-
FABP) was shown to be a reliable marker of DKD development and progression in 
patients with diabetes[49-52]. Interestingly, in spontaneously diabetic Torii fatty rats 
higher levels of urinary L-FABP were shown, which was ameliorated with Liraglutide 
treatment[53].

Fatty acid uptake: role of CD36
Cluster of differentiation 36 (CD36), a class B scavenger receptor, is the most important 
transmembrane glycoprotein that mediates uptake of oxidized LDLs. CD36 is also the 
main uptake system of FFA in the kidney, where it is highly expressed in proximal 
and distal epithelial cells, podocytes and mesangial cells. Increased expression of CD36 
seems to be associated with kidney damage in DKD. Earlier studies demonstrated that 
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Figure 1 Cellular dyslipidemia in diabetic kidney disease affects cholesterol synthesis, influx and efflux. Sterol regulatory element-binding 
protein 1 or 2 (SREBP1 and SREBP2) is transported from the endoplasmic reticulum to the Golgi apparatus, where it is cleaved followed by translocation to the 
nucleus to initiate cholesterol synthesis. Newly synthesized free cholesterol is then converted into esterified cholesterol by sterol O-acyltransferase 1 (SOAT1) or is 
transported to the plasma membrane for efflux by ATP-binding cassette subfamily A member 1 (ABCA1), subfamily G member 1 (ABCG1) or scavenger receptor 
class B type I (SR-BI). Cholesterol uptake from circulating low density lipoproteins (LDLs) is mediated by LDL receptor (LDLR). In diabetic kidney disease (DKD), 
overexpression of SREBP1 and SREBP2 and decreased expression of ABCA1, ABCG1 and SR-BI results in accumulation of cholesterol inside a cell and increased 
reactive oxygen species production. Accumulation of free cholesterol activates SOAT1, leading to over-production of esterified cholesterol, which is toxic to cells. 
Overexpression of proprotein convertase subtilisin kexin 9 may also contribute to DKD via enhanced degradation of the LDLR, resulting in increased levels of 
circulating LDL cholesterol. This image was created using BioRender software (www.BioRender.com). SREBP1: Sterol regulatory element-binding protein 1; 
SREBP2: Sterol regulatory element-binding protein 2; ER: Endoplasmic reticulum; SOAT1: Sterol O-acyltransferase 1; NCEH: Neutral cholesterol ester hydrolase; 
LDLox: Oxidized low density lipoprotein; PCSK9: Proprotein convertase subtilisin kexin 9; LDLR: Low density lipoprotein receptor; ROS: Reactive oxygen species; 
LCAT: Lecithin:cholesterol acyltransferase; APOL1: Apolipoprotein L1; APOE: Apolipoprotein E; APOM: Apolipoprotein M; APOA1: Apolipoprotein A1; HDL: High 
density lipoprotein; ABCA1: ATP-binding cassette subfamily A member 1; ABCG1: Subfamily G member 1; SR-BI: Scavenger receptor class B type I; ATP: 
Adenosine triphosphate; ADP: Adenosine diphosphate; Pi: Inorganic phosphorus.

high glucose-mediated overexpression of CD36 induces apoptosis in renal tubular 
epithelial cells[54,55] and podocytes[56]. Interestingly, CD36 has also been shown to 
facilitate chronic inflammation, oxidation stress and fibrosis in proximal tubular cells 
under hyperglycemic conditions[57]. Using human podocytes, our studies suggest a 
novel mechanism where discoidin domain receptor 1 (DDR1), a tyrosine kinase 
activated by collagen I, interacts with CD36 and leads to increased CD36-dependent 
FFA uptake[58]. Another study demonstrated that astragaloside IV inhibits overex-
pression of CD36 in human glomerular mesangial cells and diabetic rats (Sprague 
Dawley) in response to palmitate-induced FFA accumulation and attenuates FFA 
uptake, oxidative stress and fibrosis[59].

In mouse podocytes treated with palmitic acid increased expression of CD36 has 
been shown in association with increased reactive oxygen species (ROS) production 
and apoptosis[60]. In mice with transgenic overexpression of CD36 in the kidney, 
accumulation of lipids and triglycerides in kidneys was demonstrated[61]. 
Additionally, CD36 is involved in the generation of other cell-specific responses via 
toll-like receptors (TLRs) 2, 4 and 6[62-64], CD9[65], or integrin[66] leading to the 
activation of pyrin domain-containing 3 (NLRP3) and nuclear factor kappa B (NF-kB) 
signaling pathways[67,68]. Indeed, CD36 can also recognize advanced oxidation 
protein products and advanced glycation end products, which are also involved in 
inflammatory pathway activation[69], including the kidney[57].

In patients with DKD increased expression of CD36 was reported[55,60]. 
Interestingly, a circulating soluble form of CD36 (sCD36), whose derivation is not 
entirely clear, may play a role as a cellular source of CD36 in diabetic patients and 
correlates with insulin resistance[70,71]. A recent study demonstrated elevated levels 
of sCD36 in both plasma and urine of patients with DKD[72]. However, while one 
study suggests that sCD36 Levels are elevated in patients with type 2 diabetes and 
proposes to use it as a biomarker[73], another study reports no differences in the 
sCD36 Levels between patients with type 1 and type 2 diabetes[74].
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Thus, CD36 has an important role in the lipid homeostasis in the kidney with an 
important role in the crosstalk between CD36 Ligands and inflammation or apoptosis 
signaling pathways. Therefore, CD36 may represent a promising target for therapeutic 
intervention. However, further studies of the role of CD36 in DKD progression are 
needed to answer the questions: (1) How is sCD36 formed in patients with diabetes 
and what is the tissue-specific role of sCD36? (2) What are the particular mechanisms 
of increased FFA uptake in tubular cells vs podocytes? And (3) What are the 
mechanisms involved in the kidney cell-specific regulation of CD36 levels or function 
(tubular cells vs podocytes)? A better understanding of the mechanisms regulating the 
FFA uptake in rodents and its translation to humans will be a determinative factor in 
the development of novel peptides aimed at regulating CD36 Levels with minimum 
off-target effects.

Fatty acid oxidation
Fatty acid oxidation (FAO), also called beta oxidation, is the aerobic process of fatty 
acid (short-, medium- or long-chain saturated fatty acyl coenzyme A, acyl-CoA) 
breakdown that occurs in mitochondria to provide energy from fats. During FAO, 
acetyl coenzyme A (acetyl-CoA), five molecules of ATP, and water are generated. 
Interestingly, FAO covers more than half of renal oxygen consumption. In the setting 
of kidney disease, genes that are associated with FAO are significantly downregulated 
in kidneys of mice and humans[61], which is also associated with increased fatty acid 
synthesis and higher intracellular lipid deposition. We have recently reported that 
human podocytes cultured in the presence of serum from DKD patients have 
significantly decreased expression of FAO genes (PPARα, ACADM, ACOX1/2), which 
was also observed in mouse models of DKD and in our mouse model of ABCA1 
deficiency[32]. In a longitudinal study on American Indians with type 2 diabetes (n = 
92), a significant reduction of FAO has been shown, which was also associated with 
lower abundance of C16-C20 acylcarnitines[75]. Pharmacological or genetic increase in 
FAO has been shown to be beneficial to improve kidney disease progression[61].

Peroxisome proliferator-activated receptors (PPARs) play a key role in the 
regulation of FAO in the kidney. PPARg, one of the PPARs isoforms, is highly 
expressed in different compartments of a nephron while decreased expression 
contributes to diabetes-associated kidney damage. Activation of PPARg (using 
thiazolidinediones) is associated with attenuation of kidney function in diabetic 
patients and mouse models of DKD[76-78]. Recently, a role of micro-RNA-27a (miR-
27a) in the regulation of PPARg activity was demonstrated[79], suggesting miR-27a as 
a potential therapeutic target in DKD. In a streptozotocin-induced diabetic mouse 
model of DKD, activation of PPARδ ameliorates diabetes-associated renal damage 
[80]. Lack of PPARα, another PPAR isoform, has also been shown to accelerate DKD in 
a streptozotocin-induced diabetic mouse model[81]. Tesaglitazar, the PPARα/g dual 
agonist, markedly attenuated albuminuria and lowered collagen deposition in kidneys 
of db/db mice[82]. In contrast, use of a PPARα agonist, CP-900691, showed no effect 
on albuminuria and amelioration of DKD in the BTBR ob/ob diabetic mouse model[83]. 
Therefore, while activation of PPARg seems to have constitutive renoprotective effects 
in DKD, the role of PPARα activation in improving renal function remains 
questionable. A summary of the suggested mechanism of triglyceride abnormalities in 
DKD is shown in Figure 2.

SPHINGOLIPIDS IN DKD
Sphingolipids are important components of cell homeostasis. Sphingolipids are a class 
of lipids composed of hydrophobic and hydrophilic regions with variable fatty acid 
composition. In recent years, sphingolipids and sphingolipid metabolites have been 
recognized as important regulators of cell signaling contributing to the development 
and progression of numerous diseases. The most studied sphingolipid metabolites are 
ceramide, sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), which 
have been shown to regulate cell differentiation, membrane fluidity, protein 
anchoring, immune activation, insulin sensitivity, autophagy, and cell death. The role 
of S1P signaling in renal cells and in kidney diseases has been extensively 
reviewed[84].

Ceramide
In kidney cortices of diabetic db/db mice, elevated levels of long-chain ceramides 
(C14:0, C16:0, C18:0, C20:0) and decreased levels of very-long-chain ceramides (C24:0, 
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Figure 2 Abnormalities in triglyceride homeostasis contribute to lipid droplet accumulation in diabetic kidney disease. Increased expression 
of scavenger receptor class B (CD36), fatty acid transporter protein 1 (FATP1), FATP2, FATP4 and fatty acid-binding protein leads to accumulation of fatty acids 
inside a cell, abnormalities in triglyceride (TG) metabolism and formation of TG-enriched lipid droplets. Altered activity of perilipin protein family members (PLIN2 and 
possibly PLIN5) also contributes to lipid droplet formation. In turn, accumulation of TG-enriched lipid droplet causes alteration in oxidative phosphorylation, cardiolipin 
accumulation and reactive oxygen species overproduction. Together with increased expression of NLR family pyrin domain containing 3 and interleukin 1β CD36 
overexpression causes podocyte injury in diabetic kidney disease. This image was created using BioRender software (www.BioRender.com). FFA: Free fatty acid; 
DDR1: Discoidin domain receptor 1; FATP1: Fatty acid transporter protein 1; FATP2: Fatty acid transporter protein 2; FATP4: Fatty acid transporter protein 4; FABP: 
Fatty acid transporter protein; NLRP3: NLR family pyrin domain containing 3; PLIN2: Perilipin protein family member 2; PLIN5: Perilipin protein family member 5; TG: 
Triglyceride; OXPHOS: Oxidative phosphorylation; ROS: Reactive oxygen species; IL-1β: Interleukin 1 beta.

C24:1) have been described[85], which is in accordance with our own studies[7]. In 
support of previous studies, ceramide accumulation was associated with increased 
reactive oxygen species production in OLEFT rats and in mice fed on a high-fat diet 
with DKD[86]. Elevated levels of long-chain ceramides (C16:0, C18:0 and C20:0)[87,88] 
and very-long-chain ceramides (C22:0, C24:0)[88] were also found in patients with 
early or overt DKD. Podocyte-specific deletion of the acid ceramidase main catalytic 
subunit (Asah1 gene) results in elevated ceramide levels in glomeruli and development 
of nephrotic syndrome in mice[89]. In patients with DKD enrolled into ONTARGET 
and TRANSCEND-randomized controlled trials rs267734 gene variant of ceramide 
synthase 2 (CerS2), a CerS2 isoform with high expression in the kidney, has been 
shown to be associated with increased albuminuria[90].

Sphingosine-1-phosphate
In the setting of diabetes, increased levels of S1P in plasma of rodents with type 1[91] 
or type 2 diabetes[92] have been reported. In mice with streptozotocin-induced 
diabetes increased renal levels of S1P were also reported[93,94]. Recent studies in mice 
and humans demonstrated that mutations in SGPL1 gene, which encodes S1P lyase 1, 
are associated with the development of nephrotic syndrome[9,10,95]. In rats with 
streptozotocin-induced DKD the use of an unselective S1P receptor agonist (FTY720) 
was found to have a renoprotective effect[96]. Interestingly, plasma levels of S1P in 
patients with type 2 diabetes negatively correlate with levels of albuminuria, while less 
S1P is observed in patients with macroalbuminuria[97]. A role of S1P lyase activity 
reduction has been demonstrated to contribute to the development of podocyte-based 
kidney toxicity in wildtype rodents[11]. Furthermore, S1P receptor signaling plays a 
significant role in glomerular injury. Five S1P receptors (S1PR1-S1PR5) exist, of which 
S1PR1 to S1PR4, but not S1PR5, are expressed in the kidney[98]. In mouse models of 
DKD, activation of S1PR1 or inhibition of S1PR2 prevented the renal injury 
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phenotype[96]. Using a single cell RNA sequencing approach to profile glomerular 
cells in mouse models of DKD (streptozotocin-induced diabetic endothelial nitric 
oxide synthase-deficient mice), significantly lowered expression of S1P receptor 3 
(S1PR3) in mesangial cells was demonstrated[99]. Previous studies also revealed a 
significant role of sphingosine kinase (SPHK), an enzyme that generates S1P from 
sphingosine, in the kidney fibrosis in STZ-induced diabetic mice and in humans with 
DKD[100]. In a mouse model of alloxan-induced diabetes, increased glomerular 
SPHK1 expression and activity were demonstrated leading to S1P accumulation[101]. 
In addition, SPHK1 upregulation was demonstrated in STZ-induced mouse model of 
DKD, where it protects from the fibrotic process[100]. A more detailed review on the 
role of S1P signaling in the kidney was previously published by us[84].

Ceramide-1-phosphate
Even less is known about the role of C1P in the kidney. In contrast to S1P, C1P is most 
likely released from damaged cells[102]. Our studies demonstrated that increased 
sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) in the db/db mouse model 
of DKD is associated with a state of C1P deficiency in podocytes[7]. SMPDL3b is a 
lipid-raft associated protein[103] that regulates plasma membrane fluidity[104] by 
blocking access of ceramide kinase, an enzyme that generates C1P from ceramide, to 
ceramide[8]. We also reported that elevated expression of SMPDL3b occurs in 
glomeruli of patients with DKD[105] and that SMPDL3b overexpression in podocytes 
results in the accumulation of S1P[106]. In support, podocyte-specific deficiency of 
Smpdl3b resulted in restoration of the renal C1P content in association with delayed 
DKD progression in diabetic mice[7]. To the contrary, others demonstrated that the 
knockout of ceramide kinase in mice is sufficient to prevent glomerular disease[107]. 
However, it remains to be established how bioactive sphingolipids contribute to the 
development of DKD and what are the best options for their use as possible 
biomarkers or therapeutic targets.

Glycosphingolipids
Dysmetabolism of other sphingolipids, such as gangliosides (mainly GM3, which is 
the most abundant ganglioside in the kidney), has also been reported to contribute to 
development of DKD[108]. Increased levels of sialic acid, a component of gangliosides, 
were found in patients with DKD and positively correlated with blood glucose, 
HbA1c, creatinine and microalbuminuria[109]. Increased GM3 species (C16:0, C18:0, 
C20:0, C22:0, C24:0) in kidney cortex from diabetic rats at an early stage of DKD have 
also been described[110]. Interestingly, GM3 was found to contribute to diabetic 
nephropathy via the alteration of pro-survival receptor-associated Akt signaling[111]. 
Another study reported that levels of glycosylated sphingolipids, such as lactosyl-
ceramide, are associated with microalbuminuria in patients with type 1 diabetes[112]. 
A proposed mechanism indicating how dysregulation of sphingolipid metabolism 
contributes to DKD is shown in Figure 3.

LIPID DROPLET ACCUMULATION IN DKD
Lipid droplet (or lipid bodies) are lipid-rich cellular organelles that regulate storage 
and hydrolysis of lipids or serve as a reservoir for cholesterol and acyl-glycerol in 
different eukaryotic cells. Structurally, lipid droplets are composed of a neutral lipid 
core (triacylglycerol and cholesteryl esters) and a phospholipid monolayer. In an 
eukaryotic cell, lipid droplet formation may be induced by different stimuli, such as 
growth factors, long-chain unsaturated fatty acids, oxidative stress and inflammatory 
stimuli (reviewed in Ref.[113]). Once intracellular, the fatty acids can form part of the 
triglyceride and phospholipid components of the lipid droplet[114,115]. Increased 
lipid droplet accumulation is observed in patients with DKD[6] and mouse models of 
DKD[116,117]. We previously showed that treatment of human podocytes with serum 
from patients with DKD results in lipid droplet accumulation[3]. Kidneys of 
hyperglycemic mice (STZ-induced diabetes) are characterized by the concomitant 
presence of oxidative stress markers-positive (xanthine oxidoreductase and 
nitrotyrosine with tail-interacting protein of 47 kDa) lipid droplets in glomerular 
and/or tubular cells[117]. In Sprague-Dawley rats with STZ-induced diabetes, 
increased advanced glycation end products have been shown to cause lipid droplet 
accumulation[118].



Mitrofanova A et al. Lipids in DKD

WJD https://www.wjgnet.com 532 May 15, 2021 Volume 12 Issue 5

Figure 3 Dysregulation of sphingolipid metabolism contributes to the progression of diabetic kidney disease. Decreased activity of desaturase 
(DEGS2) results in the accumulation of dihydroceramides. Increased activity of ceramide synthase 2 (CERS2) leads to increased production of ceramide (Cer), which 
leads to increased production of sphingosine (Sph) and sphingosine-1-phosphate (S1P) via decreased activity of sphingosine-1-phosphate lyase 1. Cer can also be 
translocated to the Golgi apparatus via ceramide transport protein, where it results in production of sphingomyelin. At the plasma membrane, decreased activity of 
sphingomyelin phosphodiesterase 2 affects Cer production, while elevated activity of alkaline ceramidase 2 increases levels of Sph, which, in turn, leads to 
accumulation of S1P via increased activity of sphingosine kinase 1. Overproduction of S1P results in increased S1P efflux via S1P transporters (such as ATP-binding 
cassette transporters ABCA1, ABCG1, ABCC1 and S1P transporter SPNS2), where S1P can act as a paracrine factor to activate S1P receptor signaling (primarily, 
S1P receptors 1-3, S1PR1, S1PR2, S1PR3), leading to dysregulation of many cellular processes, including migration, proliferation, survival or inflammation. 
Accumulation of gangliosides (GM3) can also affect cell survival in diabetic kidney disease. This image was created using BioRender software (www.BioRender.com). 
SMPD2: Sphingomyelin phosphodiesterase 2; SM: Sphingomyelin; C1P: Ceramide-1-phosphate; CERK: Ceramide kinase; SMPDL3b: Sphingomyelin 
phosphodiesterase acid-like 3b; Cer: Ceramide; Sph: Sphingosine; S1P: Sphingosine-1-phosphate; S1PR1: Sphingosine-1-phosphate receptor 1; S1PR2: 
Sphingosine-1-phosphate receptor 2; S1PR3: Sphingosine-1-phosphate receptor 3; GM3: Ganglioside M3; CERT: Ceramide transport protein; SGPL1: Sphingosine-
1-phosphate lyase 1; DH-Cer: Dihydroceramide; ASAH1: N-acylsphingosine amidohydrolase 1; CERS2: Ceramide synthase 2; DEGS2: Delta(4)-desaturase, 
sphingolipid 2; SPTLC2: Serine palmitoyltransferase 2; CoA: Acyl-coenzyme A; ROS: Reactive oxygen species.

While the composition of lipid droplets is not very well investigated, perilipins are 
the best characterized proteins of the lipid droplet coat. This family of perilipin 
proteins includes perilipin 1 (PLIN1), perilipin 2 (PLIN 2), perilipin 3 (PLIN 3), 
perilipin 4 (PLIN 4) perilipin 5 (PLIN 5). Not much data about the role of these 
proteins in DKD development and progression, and a recent case report suggests that 
mutation in PLIN1 may be associated with DKD-like kidney damage in a patient with 
type 4 familial partial lipodystrophy[119]. Another randomized case-control study of 
an Iranian population (n = 200) showed an association of the polymorphism rs4578621 
in the PLIN gene with type 2 diabetes[120]. Interestingly, decreased Plin1 expression 
was reported in adipocytes of db/db mice, while deficiency of Plin1 in adipose tissue in 
wildtype mice resulted in insulin resistance and secretion of pro-inflammatory lipid 
metabolites, such as prostaglandins[121]. Expression of PLIN2 is significantly 
upregulated in kidneys from diabetic db/db mice[122] and in podocytes of patients 
with DKD[1], which may indicate that increased PLIN2 expression may contribute to 
increased lipid droplet accumulation in the diabetic kidney. Similarly, increased levels 
of urinary PLIN2 were reported in patients with DKD[123]. To date, no studies 
examining the role of other perilipin proteins in DKD have been performed. A role for 
PLIN5 in diabetes has recently been suggested as upregulation of PLIN5 in β-cells was 
shown to improve glucose tolerance in isolated islets from mice or human[124]. 
Because PLIN5 is also expressed in kidneys[125] under PPAR control, it would be 
important to investigate its role in lipid-associated kidney diseases in future investig-
ations.
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Among other factors contributing to lipid droplet accumulation in the kidney, 
autophagy has been shown to regulate lipid metabolism and lipid droplet 
formation[126-128] and to significantly contribute to renal fibrosis progression in 
kidney diseases. Serine/threonine protein kinase 25 (STK25), which plays an 
important role in skeletal muscle metabolism, is also highly expressed in human and 
rodent kidney[129] and was shown to aggravate renal lipid accumulation and 
exacerbate kidney injury in a high-fat diet mouse model of DKD[130].

CONCLUSION
The kidney is a target organ of the harmful effects of lipotoxicity in diabetes, 
suggesting that, similar to the liver, chronic kidney disease is a form of fatty kidney 
disease. In this review, we summarize new research trends and new scientific 
knowledge acquired within the past few years that have shed light on the role of 
particular lipids in diabetes-associated kidney injury. However, our knowledge with 
regard to the cross-talk between glucose homeostasis and lipid metabolism in health 
and disease remains incompletely understood and further research is needed. 
Similarly, more insight into the role of specific lipids in podocyte physiology is 
required to answer remaining questions. Which lipids are toxic to the podocytes? 
What factors are driving the pathophysiology of lipid accumulation in podocytes? 
Which lipids might be the best targets for possible therapeutic intervention in DKD? 
Answering these questions will help to pave the way to new diagnostic and 
therapeutic approaches in DKD.
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