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Abstract
Compelling pieces of evidence derived from both clinical and experimental 
research has demonstrated the crucial role of the receptor for advanced-glycation 
end-products (RAGE) in orchestrating a plethora of proinflammatory cellular 
responses leading to many of the complications and end-organ damages reported 
in patients with diabetes mellitus (DM). During the coronavirus disease 2019 
(COVID-19) pandemic, many clinical reports have pointed out that DM increases 
the risk of COVID-19 complications, hospitalization requirements, as well as the 
overall severe acute respiratory syndrome coronavirus 2 case-fatality rate. In the 
present review, we intend to focus on how the basal activation state of the RAGE 
axis in common preexisting conditions in DM patients such as endothelial 
dysfunction and hyperglycemia-related prothrombotic phenotype, as well as the 
contribution of RAGE signaling in lung inflammation, may then lead to the 
increased mortality risk of COVID-19 in these patients. Additionally, the cross-
talk between the RAGE axis with either another severe acute respiratory 
syndrome coronavirus 2 receptor molecule different of angiotensin-converting 
enzyme 2 or the renin-angiotensin system imbalance produced by viral infection, 
as well as the role of this multi-ligand receptor on the obesity-associated low-
grade inflammation in the higher risk for severe illness reported in diabetes 
patients with COVID-19, are also discussed.
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Core Tip: Compelling evidence support that diabetes mellitus increases the risk of 
coronavirus disease 2019 (COVID-19) complications, as well as the overall syndrome 
coronavirus 2 case-fatality. Different reports have suggested the putative involvement 
of several molecular mechanisms underlying this increased risk. We herein discuss the 
contribution of the activation of the receptor for advanced-glycation end-products axis 
to the higher risk for severe illness reported in diabetes patients with COVID-19.

Citation: Rojas A, Lindner C, Gonzàlez I, Morales MA. Advanced-glycation end-products axis: 
A contributor to the risk of severe illness from COVID-19 in diabetes patients. World J 
Diabetes 2021; 12(5): 590-602
URL: https://www.wjgnet.com/1948-9358/full/v12/i5/590.htm
DOI: https://dx.doi.org/10.4239/wjd.v12.i5.590

INTRODUCTION
Coronavirus disease 2019 (COVID-19) is an infectious disease, where the etiological 
agent is a novel coronavirus, the severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2). This disease was initially detected and reported in December 2019 in 
Wuhan, China and then spread rapidly all over the world. This situation forced the 
World Health Organization to declare on January 30, 2020, the COVID-19 as a global 
pandemic, and thus leading humanity to face up an extraordinary challenge of a new 
viral disease.

Lung inflammation is the main cause of life-threatening respiratory disorders at the 
COVID-19 severe stage[1,2], and where lower respiratory tract symptoms and low 
oxygen saturation in the blood resembling acute respiratory distress syndrome 
(ARDS) as well as the requirement of invasive mechanical ventilation.

In addition to the lungs, SARS-CoV-2 may also infect the gastrointestinal tract, 
cardiovascular system, as well as central nervous system[3-5].

SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) molecule as the 
receptor for viral cell entry[6]. ACE2 plays an important role in renin-angiotensin 
system (RAS), and the imbalance between ACE/angiotensin II (Ang II)/angiotensin II 
receptor type 1 (AT1R) pathway and ACE2/Ang (1–7)/Mas receptor pathway in the 
RAS system will lead to multisystem inflammation[7]. The activation of the AT1R by 
Ang II may trigger the activation of proinflammatory signals such as oxidative and 
nitrosative stresses, the induction of cytokines, cell adhesion molecules, as well as the 
activation transcription factors such nuclear factor kappa B[8-11]. Therefore, 
ACE2/Ang-(1-7)/Mas receptor, has been pointed out as a counter-regulator of the 
deleterious effects of Ang II[12].

During the pandemic, it has been shown that DM increases the risk of COVID-19 
complications. Data from different studies have pointed out that increased hospitaliz-
ations, longer and repeated hospital stays as well as the overall SARS-CoV-2 case-
fatality rate are significantly higher in diabetes patients who have poorly controlled 
glycemia when compared to patients without DM[13-16]. Although the huge amount 
of compelling clinical data supporting COVID-19 complications in people with 
diabetes, the molecular mechanisms underlying this association are not fully 
understood.

The receptor for advanced-glycation end-products (RAGE) was discovered as a 
receptor for advanced glycation endproducts (AGEs), which are accelerated formed in 
hyperglycemia. Afterward, RAGE emerged as a multi-ligand receptor able to interact 
with a diverse myriad of non-AGE ligands and being implicated in diverse chronic 
inflammatory states[17,18].

In the present review, we will discuss the possible contribution of the activation of 
the RAGE axis to the higher risk for severe illness in diabetes patients infected with 
COVID-19.

RAGE AXIS
RAGE was initially reported in 1992, as a membrane-associated molecule that can bind 
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AGEs[19]. AGEs are a heterogeneous group of molecules formed from the non-
enzymatic reaction of reducing sugars with free amino groups of proteins, lipids, and 
nucleic acids to form a freely reversible Schiff base, which spontaneously rearranges 
itself into an Amadori product, as is the case of the well-known hemoglobin A1c[20]. 
Hemoglobin A1c is an important indicator of long-term glycemic control with the 
ability to reflect the cumulative glycemic history of the preceding two to three 
months[21].

The formation of AGEs is thought to be the major cause of different diabetic 
complications in large part through their interactions with RAGE. Of note, AGEs may 
also contribute to diabetic complications through the formation of cross-links between 
key molecules in the basement membrane of the extracellular matrix, and thus altering 
the constitution of the matrix and increases stiffness[22-25].

RAGE is a single-pass transmembrane protein, which belongs to the immu-
noglobulin superfamily of cell surface receptors, which is now considered as a pattern 
recognition receptor[26]. This multi-ligand receptor is regarded as a central mediator 
in chronic inflammatory and immune responses[27,28].

RAGE is found in human airways with high basal levels of RAGE expressed in 
pulmonary tissue[29]. It is also found on vascular cells, neurons, cardiomyocytes, 
adipocytes, glomerular epithelial cells, or podocytes[30], as well as on pro-inflam-
matory and immuno-competent cells such as neutrophils, monocytes, macrophages, 
and T and B lymphocytes[31].

Besides AGEs, RAGE can recognize many other ligands including the alarmin high 
mobility group box 1 protein (HMGB1), members of the S100 protein family, glycosa-
minoglycans, and amyloid β peptides[32].

As a consequence of RAGE engagement by its ligands, multiple signaling pathways 
are triggered, including reactive oxygen species, p21ras, erk1/2 (p44/p42) MAP 
kinases, p38 and SAPK/JNK MAP kinases, rhoGTPases, phosphoinositol-3 kinase, and 
the JAK/STAT pathway, having crucial downstream inflammatory consequences such 
as activation of nuclear factor kappa B, AP-1 and Stat-3[33].

RAGE AXIS ACTIVATION AND DIABETES COMPLICATIONS
Endogenous formation of AGEs is markedly increased in diabetes as the result of 
hyperglycemia and increased oxidative stress. At present, an increasing prevalence of 
diabetes and its complications is reported worldwide. Elevated levels of circulating 
AGEs are believed to play a major role in the pathogenesis of macrovascular and 
microvascular disease in diabetes mellitus.

Additionally, it has been demonstrated that dietary AGEs also play a major role in 
maintaining a high body pool of AGEs in diabetes[34].

The diabetic condition is a chronic systemic low-grade inflammation[18], and 
consequently, other RAGE ligands are bioavailable as is the case of some members of 
the S100 family and HMGB1, which can be either passively released from damaged 
cells or actively secreted by immune cells. A compelling body of evidence 
demonstrates that both AGEs and non-AGEs ligands accumulate in the plasma/serum 
of human subjects with diabetes[35,36].

Compelling data derived from both clinical and experimental studies support the 
crucial contribution of RAGE activation in vascular complications in diabetes[37].

Endothelial cells actively regulate cellular adhesion, thromboresistance, smooth 
muscle cell proliferation, and vessel wall inflammation. Therefore, dysfunction of the 
vascular endothelium is considered as an important factor in the pathogenesis of the 
micro-and macro-angiopathies observed in diabetes patients, and where the activation 
of the RAGE axis is an important contributor to this dysfunctional state[38-40].

DM has been associated with platelet hyper-reactivity, which plays a central role in 
the hyperglycemia-related pro-thrombotic phenotype[41,42]. In this sense, the 
activation of the RAGE axis has been pointed out as an important contributor to the 
development of a pro-thrombotic state, by its capacity to activate platelets[43,44].

COVID-19, DIABETES, RAGE AXIS, AND LUNG INJURY
DM is associated with increased disease severity and a higher risk of mortality in 
patients with COVID-19, who can rapidly progress to ARDS, septic shock, and 
multiple organ dysfunction syndrome[13-16].
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Several mechanisms have been claimed for explaining the exacerbating effect of 
diabetes on COVID-19. These mechanisms include those directly related to 
hyperglycemia and the associated imbalances in pathways involved in virus entry into 
the cell as well as in the immune and inflammatory response. At present, the role of 
RAGE axis activation has been demonstrated in different animal models of ARDS and 
where RAGE inhibition attenuated lung injury (LI) and restored alveolar fluid 
clearance[45,46].

In this context, it is important to highlight that the release of the RAGE ligand 
HMGB1 is increased under hyperglycemic conditions[47,48], as well as the crucial role 
of HMGB1 in lung inflammation in diabetes[49-51].

Additionally, the contribution to LI by HMGB1-mediated RAGE signaling is well- 
documented in other viral diseases of the respiratory tract, as reported for the 
influenza virus[52].

Considering the abundance of RAGE in the lungs, the robust proinflammatory 
signaling triggering after the engagement, as well the relatively high expression levels 
in RAGE in diabetes patients[53], the activation of the RAGE axis may be an important 
contributor in exacerbating clinical complications in COVID-19 patients with diabetes. 
In this sense, it is important to highlight the contribution of RAGE axis activation in 
preexisting conditions such as endothelial dysfunction as well as the hyperglycemia-
related prothrombotic phenotype, which increases the mortality risk of COVID-19 in 
DM patients.

Noteworthy, the RAGE ligand S100A12 is overexpressed in COVID-19, as recently 
reported[54]. This molecule is also closely related to the pathogenesis of sepsis-
induced ARDS[55].

THE IMBALANCE OF RENIN-ANGIOTENSIN SYSTEM IN DIABETES
The association of the RAS with the endocrine system is particularly illustrated by the 
prominent role of Ang II in diabetes and metabolic syndrome. RAS has been 
extensively described to be involved in the onset and progress of hypertension, 
retinopathy, nephropathy, and cardiovascular disease in DM patients. RAS is 
considered an important pharmacological target in the management of micro-and 
macrovascular complications for these patients[56-59].

Of particular importance, individuals with diabetes have a reduced ACE2 
expression. This enzyme is found in multiple organs including the lungs. ACE2 plays 
an important role in the RAS, and the imbalance between ACE/Ang II/AT1R pathway 
and ACE2/Ang (1–7)/ Mas receptor pathway in the RAS system will lead to 
multisystem inflammation. This reduced expression confers to individuals with 
diabetes an increased risk of severe LI as well as ARDS if infected by COVID-19[60].

SARS-CoV-2 INFECTION, RENIN-ANGIOTENSIN SYSTEM IMBALANCE, 
AND THE RAGE AXIS
As already mentioned SARS-CoV-2 uses ACE2 molecule as the receptor for viral cell 
entry[6]. ACE2 is a key counter-regulatory element in the pathway of the renin-
angiotensin system, which acts to opposite the actions of Ang II by generating Ang-
(1–7), and thus reducing inflammation and fibrosis and mitigate end-organ 
damage[61].

Strikingly, SARS-CoV-2 hijacks ACE2 to invade and damage cells, downregulating 
ACE2, reducing its protective effects, and exacerbating injurious Ang II effects[62].

Considering the facts that diabetes patients have a reduced expression of ACE-2, as 
well as the capacity of SARS-CoV-2 to hijacks ACE2, ACE2 exhaustion will be 
produced in patients with diabetes during infection and, thus reducing its capacity to 
fully function as a counterbalancing element of RAS through the ACE2/Ang-(1-
7)/mas receptor pathway.

Decades of research have demonstrated that the activation of ATR1 by Ang II, 
triggers a robust inflammatory response involving the recruitment and activation of 
inflammatory cells, as well as apoptosis of both alveolar epithelial cells and pulmonary 
microvascular endothelial cells, and consequently, a marked increased microvascular 
permeability and loss of epithelial and endothelial integrity[63].

RAGE axis is an important contributor to the pathophysiology of lung inflammation 
because the use of different inhibition strategies can increase arterial oxygenation, 
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reduce alveolar inflammation, and improve lung damage in acute lung 
inflammation[46,64].

Strikingly, a novel ligand-independent mechanism for RAGE transactivation has 
been recently reported to occur following activation of the AT1R by Ang II and thus 
leading to nuclear factor kappa B dependent expression of pro-inflammatory 
mediators[65]. This novel mechanism is expected to continuously fuel the lung inflam-
matory environment in diabetes patients during SARS-CoV-2 infection, considering 
both the high expression of RAGE and the reduced levels of ACE-2 in the lungs[66].

SARS-CoV-2, CD-147, AND THE RAGE AXIS
Increased infiltration and accumulation of macrophages is a common process in many 
of the complications of diabetes patients[67].

CD147, originally described in tumor cells, is a highly glycosylated 58-kDa 
transmembrane protein belonging to the immunoglobulin superfamily and also 
known as extracellular matrix metalloproteinase functions as a matrix metallopro-
teinases (MMPs) inducer, predominantly MMP-2 and MMP-9. Of note, the expression 
of this protein is markedly increased by AGEs by a RAGE-dependent mechanism[68].

Degradation of protein components in the alveolar epithelial–endothelial unit by 
both MMP-2 and MMP-9 is considered a central process in the pathogenesis of 
ALI/ARDS[69-71]. Strikingly, SARS-CoV-2 spike protein may bind also to CD147 
glycoprotein[72], and thus mediating viral invasion. Due to the high expression levels 
of this protein in diabetes, this condition may then increase the accessibility of virus to 
tissue in patients with diabetes. A recent report demonstrates the Meplazumab, a 
humanized anti-CD147 antibody efficiently improved the recovery of patients with 
SARS-CoV-2 pneumonia with a favorable safety profile[73].

SARS-CoV-2, THROMBOTIC MICROANGIOPATHY, AND RAGE AXIS
Thrombotic microangiopathy is reported as a frequent event in COVID-19[74]. In 
patients with diabetes, endothelial dysfunction is a very common condition, and 
events such as enhanced vasoconstriction, platelet hyperactivity and thrombus 
formation are activated due to the metabolic milieu, and where the activation of the 
RAGE axis is continuously fueled by hyperglycemia, insulin resistance, and the 
oxidative stress seen in diabetes[75]. Noteworthy, platelets can be activated by a 
RAGE-dependent mechanism[43].

The dysfunctional state of the endothelium is linked to an impairment of nitric 
oxide production and activity, which may then affect not only the vasodilator tone and 
platelet activity but also the recruitment of endothelial progenitor cells, which directly 
contribute to the homeostasis and repair of the endothelial layer in blood 
vessels[76-78].

Very recently, clinical findings suggest that SARS-CoV-2 infection facilitates the 
induction of endotheliitis in several organs as a direct consequence of viral 
infection[79]. However, these data have generated controversy about the nature of the 
viral-type particles reported because of endoplasmatic reticulum may mimic SARS-
CoV-2 particles on electron microscopy[80,81]. Additionally, other pieces of evidence 
show the absence of viral ribonucleic acid inside endothelial cells, suggesting that 
indirect effects rather than direct viral infection might trigger endothelial damage[82]. 
On the other hand, SARS-CoV-2 spike protein may bind also to CD147 glycoprotein 
which is upregulated by hyperglycemia and by RAGE activation[68]. CD147 
expression is significantly upregulated in activated endothelial cells[83]. Therefore, 
these findings raise the intriguing possibility that RAGE activation may play a role 
also in viral invasion to host cells.

The activation of the RAGE axis has been widely documented to be crucial to prime 
proinflammatory mechanisms and rendering endothelial cells into an activation state 
and thereby amplifying proinflammatory mechanisms in many chronic inflammatory 
disorders[84-86]. Thus, preexisting blood vessel damage may put people with COVID-
19 at heightened risk of complications from the infection.

A dysfunctional endothelium as observed in diabetes, leading to detrimental shifts 
in the vascular equilibrium towards vasoconstriction, inflammation, and a pro-
coagulant state resulting in thrombosis, constitute a much more proper condition to 
fuel inflammation in the blood vessel wall and then putting diabetes patients with 
COVID-19 at heightened risk of complications from the infection.
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SARS-CoV-2, OBESITY, DM-2, AND RAGE AXIS
More than 90% of patients with type 2 diabetes have obesity or overweight[87]. In the 
context of the COVID-19 outbreak, many reports highlight that obesity and type 2 
diabetes as comorbidities of SARS development in COVID-19 patients[88-90].

Both obesity and type 2 diabetes are associated with a chronic low-grade inflam-
matory state, and this particular basal state could then aggravate the inflammatory 
response to SARS-CoV-2 infection observed in severe COVID-19 cases.

In this context, there are shreds of evidence suggesting a key role of RAGE axis 
activation in fat tissue inflammation, and thus contributing to the obesity-associated 
low-grade inflammation, as well as to the reported dysregulation of adipokines[91,92].

Furthermore, many RAGE ligands such as AGEs, HMGB1, and S100/calgranulins, 
accumulate in adipose tissue in many models of obesity as well as in obese 
subjects[93-96], where they can trigger a robust proinflammatory secretion profile, 
which in turn, establishes a vicious loop, and thus rendering more inflammation[97].

The low-grade inflammation in adipose tissue is characterized, in addition to the 
robust secretion of proinflammatory cytokines, by the recruitment of leukocytes, 
mainly macrophages in this tissue. The accumulation of macrophage into adipose 
tissue correlates to both the degree of adiposity as well as the production of monocyte 
chemoattractant protein-1, which in turn, recruit more macrophages and thereby 
promote the chronicity of inflammation[98].

Furthermore, macrophages infiltrated in adipose tissue undergo a polarization 
process towards a spectrum of different phenotypes where two extremes are 
represented by the classically activated type 1 macrophages and the alternative 
activated type-2 macrophages[99]. Noteworthy, RAGE ligands accumulation and 
macrophage type 1 macrophages polarization are much more prevalent in 
perivascular adipose tissues[100] and thus, adding more inflammation to the vascular 
system.

During this pandemic, some alerts have been raised on side effects of some widely 
used drugs on diabetic COVID-19 patients, particularly lactic acidosis and ketoacidosis 
(DKA) for metformin and sodium-glucose cotransporter 2 inhibitors, res-
pectively[101,102].

The RAGE axis has been recently suggested to be a crucial contributor to the acute 
inflammatory insult during the medical crisis and treatment of DKA and thus acting as 
a constant source of subclinical inflammation leading to chronic diabetic vascular 
complications, including those of the heart[103].

Additionally, 3-deoxyglucosone is significantly elevated before and during the 
treatment of DKA[104]. 3-Deoxyglucosone is a dicarbonyl species that may lead to the 
formation of AGEs, and then fueling inflammation by RAGE engagement[105].

One mechanism by which metformin increases plasma lactate levels relates to the 
inhibition of mitochondrial respiration responsible for lactate removal[106,107], which 
correlate with the inhibition of mitochondrial oxidative phosphorylation[108].

The activation of the RAGE axis is known to increase cytosolic reactive oxygen 
species production which, in turn, facilitates mitochondrial superoxide production in 
hyperglycemic environments, and thus rendering a mitochondrial dysfunctional 
state[109,110]. This particular dysfunctional state could be a particular life-threatening 
condition in diabetic COVID-19 patients[111].

CONCLUSION
At present, a compelling body of evidence supports the crucial role of the RAGE axis 
in the pathophysiology of diabetes, being a key contributor in the onset and 
sustainment of low-grade and chronic inflammation state observed in patients with 
diabetes, and consequently, marked impairment of endothelial functions. Thus, this 
basal hyper-activated state of the RAGE axis, as occurs in diabetes patients may 
represent a crucial element in many clinical complications in diabetes patients who 
develop COVID-19 (Figure 1).

Furthermore, the novel ligand-independent transactivation of the RAGE axis by 
AT1R/Ang II further strengthens the hyperactivation state of the axis and 
consequently, fueling a robust pro-inflammatory environment particularly in the low 
respiratory tract, where the high expression of RAGE and AT1R receptors plays an 
essential role in the pathophysiology of the lung inflammation observed in those 
diabetic patients.
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Figure 1 The chronic and low-grade inflammatory state preexisting in diabetes patients as well as in one of the most frequent co-
morbidities observed in diabetes seems to be particularly exacerbated in coronavirus disease 2019 patients with diabetes. The receptor for 
advanced-glycation end-products axis hyper- activation, either by ligand-dependent or cognate-ligand independent mechanisms, is emerging as crucial contributor to 
this huge inflammatory response leading to acute respiratory distress syndrome, endotheliitis and thrombotic complications. ARDS: Acute respiratory distress 
syndrome; AT1R: Angiotensin II receptor type 1; COVID-19: Coronavirus disease 2019; RAGE: Receptor for advanced-glycation end-products; RAS: Renin-
angiotensin system.

In summary, in light of what is known about the poor clinical outcomes of diabetic 
patients who develop COVID-19, the RAGE axis seems to be one of the key players in 
the enhanced inflammatory response and the high mortality rates of these patients. 
While the precise mechanisms by which the RAGE axis activation contributes to the 
higher risk of severe illness in diabetes patients infected with SARS-CoV-2 remain to 
be fully understood, it is important to strengthen future clinical research in this area.
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