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Abstract
Inflammatory bowel disease (IBD) is a complex and multifaceted disorder of the 
gastrointestinal tract that is increasing in incidence worldwide and associated 
with significant morbidity. The rapid accumulation of large datasets from 
electronic health records, high-definition multi-omics (including genomics, 
proteomics, transcriptomics, and metagenomics), and imaging modalities 
(endoscopy and endomicroscopy) have provided powerful tools to unravel novel 
mechanistic insights and help address unmet clinical needs in IBD. Although the 
application of artificial intelligence (AI) methods has facilitated the analysis, 
integration, and interpretation of large datasets in IBD, significant heterogeneity 
in AI methods, datasets, and clinical outcomes and the need for unbiased 
prospective validations studies are current barriers to incorporation of AI into 
clinical practice. The purpose of this review is to summarize the most recent 
advances in the application of AI and machine learning technologies in the 
diagnosis and risk prediction, assessment of disease severity, and prediction of 
clinical outcomes in patients with IBD.
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Core Tip: The application of artificial intelligence (AI) in the field of inflammatory 
bowel disease (IBD) has grown significantly in the past decade. AI has been used to 
analyze genomic datasets, construct IBD risk prediction models, and increase IBD 
diagnosis precision. Machine learning has been used to analyze endoscopic images to 
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improve disease severity grading. AI has enabled the integration of large clinical and 
laboratory datasets with gene expression profiles to predict clinical outcomes such as 
therapy response. Future studies will need to validate these findings in independent 
cohorts and determine whether applying these AI-derived prediction models improves 
clinical outcomes in IBD.
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INTRODUCTION
Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and 
ulcerative colitis (UC), is a chronic inflammatory disorder of the gastrointestinal tract. 
IBD has emerged as a global disease with increasing incidence worldwide and 
associated with significant healthcare utilization[1,2]. The pathogenesis of IBD is 
complex and is thought to involve an interplay between loss of tolerance to 
commensal gut bacteria, intestinal epithelial barrier dysfunction, and immune 
dysregula-tion[3-7]. The diagnosis of IBD is based on a combination of factors 
including clinical data (e.g., chronicity of gastrointestinal symptoms), laboratory values 
(elevated inflammatory markers such as C-reactive protein and fecal calprotectin), 
imaging, endoscopy, and histology (gastrointestinal inflammation with architectural 
distortion)[8]. Although treatment algorithms based on clinical trials and experience 
have been developed to inform clinical management in IBD[9], there is significant 
heterogeneity among patients with IBD with regards to presentation, response to 
therapy, and long-term clinical outcomes such development of strictures and need for 
surgery[10,11]. There is a great need for precision medicine strategies to improve 
diagno-stic and therapeutic approaches in IBD.

Precision medicine efforts in IBD have led to more in-depth phenotyping of patients 
with IBD using large scale databases from clinical trials and cohort studies, deep 
immunophenotyping using whole genome gene expression datasets, proteomics, 
transcriptomics, and metagenomics of gut microbiota, and complex predictive models 
incorporating computer-assisted analysis of endoscopic images and histology[12-14]. 
This has inevitably led to vast arrays of high dimensional data that pose significant 
challenges with traditional statistical and computational methods[15]. Technological 
advances in artificial intelligence (AI) have revolutionized the ability of clinicians and 
researchers to process, analyze, and interpret high dimensional data and large 
datasets.

AI is a broad and multidisciplinary field incorporating concepts from computer 
science, engineering, philosophy, and linguistics aimed at understanding and 
designing systems that display or mimic human intelligence. The term was first coined 
in 1965 by McCarthy J[16,17]. Machine learning (ML) is a subdiscipline of AI where 
computer algorithms apply statistical models to learn associations of predictive power 
from examples in provided datasets (e.g., Dragon dictation, SPAM, Netflix). ML may 
be programmed through supervised learning or unsupervised learning. In supervising 
learning, computer programs are trained to learn associations between inputs and 
outputs in data through analysis of predefined outputs of interest (by human 
operator). Once associations have been learned using existing data, supervised ML 
classifiers could then be used to predict future examples using different datasets. 
Examples of supervised ML include random forest (RF) and support vector machines 
(SVM). In unsupervised learning, computer programs learn associations in data 
without external definitions of associations of interest. This method allows for the 
identification of previously undiscovered predictors. Deep learning, commonly known 
as neural networks, includes newer techniques that are based on models with fewer 
assumptions, rely on multiple layers of representation of the data with successive 
transformations that amplify aspects of the input which improves discrimination 
power and thus able to handle more complex data (e.g., Facebook face recognition, 
credit card fraud)[17]. There has been increased interest in use of AI in IBD in recent 
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years with many prior groups applying ML methods to identify meaningful insights in 
diagnostics and prediction models in IBD. The purpose of this review is to provide a 
comprehensive summary of advances in the application of AI and ML technologies in 
the diagnosis and risk prediction, assessment of disease severity, and prediction of 
clinical outcomes in patients with IBD.

LITERATURE SEARCH
We performed a literature review using PubMed (MEDLINE) from inception to 
December 15, 2020 of studies applying AI in IBD. Our search strategy included the 
following combinations: (((((((((inflammatory bowel disease[Title])) OR (ulcerative 
colitis[Title])) OR (Crohn's disease[Title])) AND (artificial intelligence[Title])) OR 
(computer-assisted[Title])) OR (computer-aided[Title])) OR (neural network[Title])) 
OR (machine learning[Title])) OR (deep learning[Title]). We included studies that used 
AI in the (1) diagnosis or risk prediction of IBD, (2) assessment of disease severity in 
IBD, and (3) prediction of therapy response and clinical outcomes in IBD. We excluded 
reviews, studies with non-human subjects (animal models), or studies that did not 
provide objective measures of the efficacy of AI applications (e.g., measures of 
precision, accuracy, area under the curve (AUC), sensitivity, specificity, etc.).

RESULTS
Our search strategy yielded 98 studies evaluating AI in IBD of which 58 studies[18-74] 
met inclusion criteria and were included in the final review. About 86.2% (50/58) of 
studies were published within the past 5 years (2015 and later). There were 23 
studies[18-39] that focused on IBD diagnosis and risk prediction, 19 studies[40-58] 
which evaluated disease activity, and 17 studies[45,59-74] which predicted IBD clinical 
outcomes (response to therapy, colonic neoplasia, post-surgical complications, quality 
of life, IBD well-being and emotional content). There were 22 studies with combined 
IBD cohorts (CD and UC), 16 studies with UC patients only, 18 studies with CD only, 
and 5 pediatric IBD cohorts. The most common AI classifications used were neural 
networks (convolutional and deep) at 32.7% (19/58 studies), RF at 29.3% (17/58 
studies), and SVM at 29.3% (17/58 studies).

AI in diagnosis and risk prediction of IBD
Table 1 summarizes studies included which applied AI in the diagnosis and risk 
prediction of IBD. There were 17 studies focused on IBD diagnosis, whereas 5 studies 
focused on predicting risk of IBD. Data modalities included genetic/genomic datasets 
(n = 16 studies), imaging and endoscopic datasets (n = 4), and protein expression/ 
proteomics (n = 2 studies). Some groups have used ML to develop IBD risk prediction 
models based on gene expression datasets. In a cross-sectional study of 180 CD 
patients, 149 UC patients and 90 healthy controls by Isakov et al[21], RF and SVM used 
microarray and RNA-seq data sets to classify a list of 16390 genes. Their combined IBD 
risk prediction model demonstrated an AUC, sensitivity, specificity, and accuracy 
values of 0.829, 0.577, 0.880, and 0.808, respectively. In another cross-sectional study of 
18227 CD patients and 34050 healthy controls, Romagnoni et al[20] used gradient 
boosted trees and artificial neural networks to analyze gene expression profiles. Using 
single nucleotide polymorphisms, their final predictive model for CD achieved AUC 
of 0.80. Likewise, a cross-sectional study of 20 UC patients and 20 healthy controls by 
Duttagupta et al[33] used SVM to analyze microRNA profiles. Their SVM classifier 
measurements revealed a predictive score accuracy of 92.8%, specificity of 96.2%, and 
sensitivity of 89.5% in distinguishing UC patients from normal individuals.

A major challenge in IBD diagnosis is the distinction between CD and UC which is 
based on clinical features such as the distribution of inflammation along the 
gastrointestinal tract. The misdiagnosis of IBD subtype is not uncommon[74]. 
Distinguishing between CD and UC is clinically important as IBD subtype informs 
clinical management. AI has been employed to analyze molecular data to distinguish 
between CD and UC. In a cross-sectional study of 59 CD patients, 26 UC patients, and 
42 healthy controls applying deep belief networks (DBNs) and SVM to gene 
expression datasets, Smolander et al[25] explored the diagnosis UC from CD. Using 
DBN only, the accuracy for diagnosis of UC was 97.06% and CD was 97.07%. Using 
both DBN and SVM, accuracy for diagnosis of UC was 97.06% and CD was 97.03%. In 
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Table 1 Artificial intelligence in diagnosis and risk prediction of inflammatory bowel disease

Ref. AI classifier vs comparator IBD 
type

Study design and 
sample size Modality Outcome Study results/validation cohort

Mossotto et al
[18], 2017

Support vector machines (SVM) vs 
linear discriminant

Peds 
CD/UC

Prospective cohort, 287 
IBD patients

Endoscopic and histologic 
inflammation

Diagnosis 
of IBD

Diagnostic accuracy of 82.7% with an AUC of 0.87 in diagnosing Crohn's disease or ulcerative colitis. 
Validation cohort included

Wei et al[19], 
2013

SVM with gradient boosted trees 
(GBT) vs simple log odds method

CD/UC Cross-sectional, 30000 
IBD patients, 22000 
healthy controls

Genetics, ImmunoChip Risk of IBD The SVM demonstrated very comparable performance (AUC 0.862 and 0.826 for CD and UC, 
respectively), whereas GBT showed inferior performance (AUC 0.802 and0.782 for CD and UC, 
respectively. Validation cohort included

Romagnoni 
et al[20], 2019

Artificial neural networks (ANNs) vs 
penalized logistic regression (LR), 
and GBT

CD Cross-sectional, 18227 
CD patients, 34050 
healthy controls

Genetics, ImmunoChip Risk of IBD Using single nucleotide polymorphisms (SNPs), final predictive model achieved AUC of 0.80. 
Validation cohort included

Isakov 
et al[21], 2017

Random forest (RF), SVM with 
svmPoly), extreme gradient boosting 
vs elastic net regularized generalized 
linear model (glmnet)

CD/UC Cross-sectional, 180 CD 
patients, 149 UC 
patients, 90 healthy 
controls

Expression data 
(microarray and RNA-seq)

Risk of IBD The method was used to classify a list of 16390 genes. Each gene received a score that was used to 
prioritize it according to its predicted association to IBD. The combined model demonstrated AUC, 
sensitivity, specificity, and accuracy values of 0.829, 0.577, 0.88, and 0.808, respectively. Validation 
cohort included

Yuan 
et al[22], 2017

Sequential minimal optimization vs 
DisGeNET (Version 4.0)

CD/UC Cross-sectional, 59 CD 
patients, 26 UC patients, 
42 healthy controls

Gene Expression datasets Risk of IBD By analyzing the gene expression profiles using minimum redundancy maximum relevance and 
incremental feature selection, 21 genes were obtained that could effectively distinguish samples from 
IBD and the non-IBD samples. Highest total prediction accuracy was 97.64% using the 1170th feature 
set. Validation cohort included

Hübenthal 
et al[23], 2015

SVM vs RF CD/UC Cross-sectional, 40 CD 
patients, 36 UC patients, 
38 healthy controls

MicroRNAs Diagnosis 
of IBD

Measured by the AUC the corresponding median holdout-validated accuracy was estimated as 
ranging from 0.75 to 1.00 and 0.89 to 0.98, respectively. In combination, the corresponding models 
provide tools for the distinction of CD and UC as well as CD, UC and healthy control with expected 
classification error rates of 3.1 and 3.3%, respectively. Validation cohort included

Tong et al[24], 
2020

RF vs convolutional neural network 
(CNN)

CD/UC Retrospective Cohort, 
875 CD patients, 5128 
UC patients

Colonoscopy Endoscopic 
Images

Diagnosis 
of IBD

RF sensitivities/specificities of UC/CD were 0.89/0.84, 0.83/0.82, and 0.72/0.77, respectively, while 
the values for the CNN of CD was 0.90/0.77. The precisions/recalls of UC-CD when employing RF 
were 0.97/0.97, 0.65/0.53, respectively, and when employing the CNN were 0.99/0.97 and 0.87/0.83, 
respectively. Validation cohort included

Smolander 
et al[25], 2019

Deep belief networks (DBNs) vs SVM CD/UC Cross-sectional, 59 CD 
patients, 26 UC patients, 
42 healthy controls

Gene Expression datasets Diagnosis 
of IBD

Using DBN only, accuracy for diagnosis of UC was 97.06% and CD was 97.07%. Using both DBN and 
SVM, accuracy for diagnosis of UC was 97.06% and CD was 97.03%. Validation cohort included

Abbas 
et al[26], 2019

RF vs network-based biomarker 
discovery

Peds 
CD/UC

Cross-sectional, 657 IBD 
patients, 316 healthy 
controls

Large dataset of new-
onset pediatric IBD 
metagenomics biopsy 
samples

Diagnosis 
of IBD

For the diagnosis of IBD, highest AUC attained by top Random Forest classifiers was 0.77. No 
validation cohort included

Khorasani 
et al[27], 2020

SVM vs recently developed feature 
selection algorithm (robustness-
performance tradeoff, RPT)

UC Cross-sectional, 146 UC 
patients, 60 healthy 
controls

Gene Expression dataset Diagnosis 
of IBD

Our model perfectly detected all active cases and had an average precision of 0.62 in the inactive 
cases. Validation cohort included

Rubin 
et al[28], 2019

CITRUS supervised machine 
learning algorithm. No comparator

CD/UC Cross-sectional, 68 IBD 
patients

Peripheral blood 
mononuclear cells and 
intestinal biopsies mass 
cytometry

Diagnosis 
of IBD

An 8-parameter immune signature distinguished Crohn's disease from ulcerative colitis with an 
AUC = 0.845 (95%CI: 0.742-0.948). No validation cohort included
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Pal et al[29], 
2017

Naïve Bayes and with a consensus 
machine learning method vs Critical 
Assessment of Genome 
Interpretation (CAGI) 4 method

CD Cross-sectional, 64 CD 
patients, 47 healthy 
controls

Genotypes from Exome 
Sequencing Data

Risk of IBD The AUC for predicting risk of Crohn's disease using the SNP model was 0.72. No validation cohort 
included

Aoki et al[30], 
2019

Deep CNN. No comparator CD Retrospective Cohort, 
115 IBD patients

Wireless capsule 
endoscopy images

Diagnosis 
of IBD

The AUC for the detection of erosions and ulcerations was 0.958 (95%CI: 0.947-0.968). The sensitivity, 
specificity, and accuracy of the CNN were 88.2% (95%CI: 84.8-91.0), 90.9% (95%CI: 90.3-91.4), and 
90.8% (95%CI: 90.2-91.3), respectively. Validation cohort included

Bielecki 
et al[31], 2012

SVM vs human reader (pathologist) CD/UC Cross-sectional, 14 CD 
patients, 13 UC patients, 
11 healthy controls

Raman spectroscopic 
imaging of epithelium 
cells

Diagnosis 
of IBD

Raman maps of human colon tissue sections were analyzed by utilizing innovative chemometric 
approaches. Using SVM, it was possible to separate between healthy control patients, patients with 
Crohn's Disease, and patients with ulcerative colitis with an accuracy of 98.90%. No validation cohort 
included

Cui et al[32], 
2013

Recursive SVM vs unsupervised 
learning strategy

CD/UC Cross-sectional, 124 IBD 
patients, 99 healthy 
controls

16S rRNA gene analysis Diagnosis 
of IBD

Selection level of 200 features results in the best leave-one-out cross-validation result (accuracy = 
88%, sensitivity = 92%, specificity = 84%). Validation cohort included

Duttagupta et 
al[33], 2012

SVM. No comparator UC Cross-sectional, 20 UC 
patients, 20 healthy 
controls

MicroRNAs Diagnosis 
of IBD

SVM classifier measurements revealed a predictive score of 92.8% accuracy, 96.2% specificity and 
89.5% sensitivity in distinguishing ulcerative colitis patients from normal individuals. Validation 
cohort included

Daneshjou et 
al[34], 2017

Naïve bayes, neural networks, 
random forests vs CAGI methods

CD Cross-sectional, 64 ICD 
patients, 47 healthy 
controls

Exome Sequencing Diagnosis 
of IBD

In CAGI4, 111 exomes were derived from a mix of 64 Crohn’s disease patients. Top performing 
methods had an AUC of 0.87. Validation cohort included

Geurts et al
[35], 2005

RF vs SVM CD/UC Prospective cohort, 30 
CD patients, 30 CD 
patients

Proteomic Mass 
Spectrometry

Diagnosis 
of IBD

Random forest model to diagnosis IBD had a sensitivity of 81.67%, specificity of 81.17%. Support 
vector machine model to diagnosis IBD had a sensitivity of 87.92%, specificity of 87.87%. Validation 
cohort included

Li et al[36], 
2020

RF vs ANN UC Cross-sectional, 193 UC 
patients, 21 healthy 
controls

Gene Expression Profiles Diagnosis 
of IBD

The random forest algorithm was introduced to determine 1 downregulated and 29 upregulated 
differentially expressed genes contributing highest to ulcerative colitis occurrence. ANN was 
developed to calculate differentially expressed genes weights to ulcerative colitis. Prediction results 
agreed with that of an independent data set (AUC = 0.9506/PR-AUC = 0.9747). Validation cohort 
included

Wingfield 
et al[37], 2019

RF vs SVM CD Cross-sectional, 668 CD 
patients

Metagenomic Data Diagnosis 
of IBD

Highest RPT measure for Crohn’s disease was random forest 0.60 and SVM 0.58. For ulcerative 
colitis, RPT was random forest 0.70 and SVM 0.48. Validation cohort included

Han et al[38], 
2018

RF vs LR, CORG CD/UC Cross-sectional, 24 CD 
patients, 59 UC patients, 
76 healthy controls

Gene Expression Profiles Diagnosis 
of IBD

The gene-based feature sets had median AUC on the validation sets ranging from 0.6 to 0.76). 
Validation cohort included

Wang 
et al[39], 2019

AVADx (Analysis of Variation for 
Association with Disease) vs two 
GWAS-based CD evaluation 
methods

CD Cross-sectional, 64 CD 
patients, 47 healthy 
controls

Whole Exome or Genome 
Sequencing Data

Diagnosis 
of IBD

AVADx highlighted known CD genes including NOD2and new potential CD genes. AVADx 
identified 16% (at strict cutoff) of CD patients at 99% precision and 58% of the patients (at default 
cutoff) with 82% precision in over 3000 individuals from separately sequenced panels. Validation 
cohort included

AI: Artificial intelligence; IBD: Inflammatory bowel disease; CD: Crohn’s disease; UC: Ulcerative colitis; AUC: Area under the curve.
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a cross-sectional study of 68 IBD patients using a CITRUS supervised ML algorithm to 
analyze single cell immunophenotyping of peripheral blood mononuclear cells by 
mass cytometry, Rubin et al[28] demonstrated that an 8-parameter immune signature 
distinguished CD from UC with an AUC = 0.845 [95% confidence interval (CI): 0.742-
0.948]. ML algorithms have also been applied to analyze large arrays of endoscopic 
images to differentiate between UC and CD. In a recent retrospective cohort study of 
875 CD patients and 5128 UC patients by Tong et al[24] using RF and convolutional 
neural networks (CNNs) on endoscopic images, the precision of diagnosing UC/CD 
with RF and CNNs were 0.97/0.65 and 0.99/0.87, respectively. Taken together, these 
studies suggest that AI classifiers have high performance in diagnosing or predicting 
risk of IBD but have some variability with type of AI classifier and modality of data 
(molecular vs endoscopic).

AI in assessment of disease severity in IBD
The assessment of disease activity and grading of severity in IBD could be 
accomplished using validated clinical symptom scores (e.g., Harvey Bradshaw Index 
for CD, Mayo Score for UC)[75,76], biomarkers of inflammation (e.g., C-reactive 
protein, fecal calprotectin)[77,78], endoscopic inflammation indices (e.g., Mayo 
endoscopic score, simple endoscopic score)[79,80], and histologic scoring systems (e.g., 
Geboes Score, Robarts Histopathology Index)[81,82]. However, these systems may be 
subject to recall bias, heterogeneity in patient clinical presentation, and intraobserver 
and interobserver variability[83]. AI has been applied to these existing systems to 
improve precision and accuracy of quantifying disease severity in IBD.

Table 2 summarizes studies included which applied AI in the assessment of disease 
severity in IBD. There were 2 studies that assessed clinical disease activity, 2 studies 
that assessed disease activity by biomarker (C-reactive protein), 13 studies that focused 
on endoscopic inflammation, and 3 studies that focused on histologic inflammation. 
Data modalities included electronic health records (n = 2), molecular datasets (n = 3), 
endoscopic datasets (n = 11 studies), and histologic datasets via endomicroscopy/ 
endocytoscopy (n = 2). Using RF to integrate and analyze clinical and laboratory data 
from publicly available clinical trials (UNITI-1, UNITI-2, and IM-UNITI) data 
consisting of 401 CD patients, Waljee et al[42] constructed a CD remission prediction 
model using the week 6 albumin to C-reactive protein ratio with an AUC of 0.76 
(95%CI: 0.71-0.82). Reddy et al[44] applied gradient boosting machines to electronic 
health records and predicted inflammation severity in a retrospective cohort of 3335 
CD patients with a very high accuracy (AUC) = 92.82%. In a CNN analysis of 
colonoscopy images from a retrospective cohort of 841 UC patients by Ozawa et al[55], 
the CNN-based computer aided diagnostic system showed a high level of performance 
with AUC of 0.86 and 0.98 to identify Mayo 0 and 0-1, respectively. The performance 
of the CNN was better for the rectum than for the right side and left side of the colon 
when identifying Mayo 0 (AUC = 0.92, 0.83, and 0.83, respectively). Likewise, in an 
ordinal CNN analysis of wireless capsule endoscopy images in a retrospective cohort 
of 49 CD patients by Barash et al[50], the classification accuracy of the algorithm was 
0.91 for grade 1 vs grade 3 ulcers, 0.78 for grade 2 vs grade 3, and 0.624 for grade 1 vs 
grade 2. The role of AI in grading severity of histologic inflammation in IBD has also 
been explored. For example, in a retrospective cohort study of 187 UC patients by 
Maeda et al[46], application of SVM to data derived from endocytoscopy to assess 
histologic inflammation provided diagnostic sensitivity, specificity, and accuracy of 
74% (95%CI: 65-81), 97% (95%CI: 95-99), and 91% (95%CI: 83-95), respectively. These 
examples highlight the clinical utility, versatility, and performance of AI classifiers in 
grading the disease activity of IBD patients at the clinical, endoscopic, and histologic 
level. AI performance may be affected by location of inflammation and may be limited 
by ability to discriminate between subtle differences.

AI in prediction of therapy response and clinical outcomes in IBD
The armamentarium of therapies in IBD have expanded significantly in recent years 
with diverse mechanisms of action ranging from biologics that inhibit 
proinflammatory cytokines (anti-tumor necrosis factor-α, anti-interleukin-12/23) and 
leukocyte trafficking to the gut (anti-α4β7) to small molecule inhibitors of the JAK-
STAT signaling pathway[84-86]. Despite several IBD treatment options available to 
clinicians, there are no effective biomarkers or tools to predict response to therapy or 
to guide selection of alternative therapies after a failed response. Likewise, there is also 
an unmet clinical need to predict long term clinical outcomes in IBD such as colon 
cancer. To address these challenges, several groups have applied AI and ML 
algorithms to existing clinical and molecular datasets.
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Table 2 Artificial Intelligence in assessment of disease severity in inflammatory bowel disease

Ref. AI classifier vs 
comparator

IBD 
type

Study design and 
sample size Modality Outcomes Study results/validation cohort

Kumar 
et al[40], 2012

Support vector 
machines (SVM) vs 
human observers

CD Cross-sectional, 50000 
images (number of 
patients not given)

Small bowel capsule 
endoscopy

Endoscopic Inflammation Database of 47 studies including 50000 capsule endoscopy images evaluating severity of small 
bowel lesions.  Method had good precision (> 90% for lesion detection) and recall (> 90%) for 
lesions of varying severity. Validation cohort included

Biasci et al[41], 
2019

Logistic regression with 
an adaptive Elastic-Net 
penalty. No comparator

CD/UC Prospective cohort, 
118 IBD patients

Transcriptomics from purified 
CD8 T cells and/or whole 
blood

Disease severity, 
medication escalation

A 17-gene qPCR-based classifier stratified patients into two distinct subgroups.  IBDhi patients 
experienced significantly more aggressive disease than IBDlo patients (analogous to IBD2), with 
earlier need for treatment escalation [HR 2.65 (CD), 3.12 (UC)] and more escalations over time [for 
multiple escalations within 18 months: sensitivity=72.7% (CD), 100% (UC); negative predictive 
value = 90.9% (CD), 100% (UC)]. Validation cohort included

Waljee 
et al[42], 2019

RF. No comparator CD Post-hoc analysis of 
prospective clinical 
trials, 401 CD patients

Clinical and laboratory data 
from publicly available 
clinical trials (UNITI-1, 
UNITI-2, and IM-UNITI)

Crohn's disease remission, 
C-reactive protein < 5 
mg/L

A prediction model using the week-6 albumin to C-reactive protein ratio had an AUC of 0.76 [95% 
confidence interval (CI): 0.71-0.82]. Validation cohort included

Mahapatra 
et al[43], 2016

RF. No comparator CD Cross-sectional, 35 
CD patients

Abdominal magnetic 
resonance imaging

Segmentation of diseased 
colon (intestinal 
inflammation)

Model segmentation accuracy ranged from 82.7% to 92.2%. Validation cohort included

Reddy 
et al[44], 2019

Gradient boosting 
machines vs logistic 
regression

CD Retrospective, 3335 
CD patients

Electronic medical record Severity of intestinal 
inflammation (by C-
reactive protein)

Machine-learning-based analytic methods such as gradient boosting machines can predict the 
inflammation severity with a very high accuracy (AUC) = 92.82%. Validation cohort included

Douglas 
et al[45], 2018

RF. No comparator Peds 
CD

Cross-sectional, 20 
CD patients, 20 
healthy controls

Shotgun metagenomics 
(MGS), 16S rRNA gene 
sequencing

Disease State 
(Relapse/Remission)

MGS modules significantly classified samples by disease state (accuracy = 68.4%, P = 0.043 and 
accuracy = 65.8%, P = 0.03, respectively), 16S datasets had a maximum accuracy of 68.4% and P = 
0.016 based on strain level for disease state. Validation cohort included

Maeda 
et al[46], 2019

SVM vs human reader UC Retrospective cohort, 
187 UC patients

Endocytoscopy Histologic inflammation Computer aided diagnosis (CAD) of histologic inflammation provided diagnostic sensitivity, 
specificity, and accuracy as follows: 74% (95%CI: 65-81), 97% (95%CI: 95-99), and 91% (95%CI: 83-
95), respectively. Its reproducibility was perfect (k = 1). Validation cohort included

Charisis 
et al[47], 2016

SVM vs human reader CD Retrospective cohort, 
13 CD patients

Wireless capsule endoscopy 
(WCE) images

Endoscopic Inflammation Experimental results, along with comparison with other related efforts, have shown that the 
hybrid adaptive filtering [HAF-Differential Lacunarity (DLac) analysis (HAF-DLac)] via SVM 
approach evidently outperforms them in the field of WCE image analysis for automated lesion 
detection, providing higher classification results, up to 93.8% (accuracy), 95.2% (sensitivity), 92.4% 
(specificity) and 92.6% (precision). Validation cohort included

Klang 
et al[48], 2020

Convolutional neural 
network (CNN) vs 
human reader

CD Retrospective cohort, 
49 CD patients

WCE images Endoscopic Inflammation Dataset included 17640 CE images from 49 patients: 7391 images with mucosal ulcers and 10249 
images of normal mucosa. For randomly split images results, AUC was 0.99 with accuracies 
ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were 0.94-0.99. 
Validation cohort included

Ungaro 
et al[49], 2021

Random survival forest. 
No comparator

Peds 
CD

Retrospective case-
control, 265 peds CD 
patients

Protein biomarkers using a 
proximity extension assay 
(Olink Proteomics)

Penetrating and stricturing 
complications

A model with 5 protein markers predicted penetrating complications with an AUC of 0.79 
(95%CI: 0.76-0.82) compared to 0.69 (95%CI: 0.66-0.72) for serologies and 0.74 (95%CI: 0.71-0.77) 
for clinical variables. A model with 4 protein markers predicted structuring complications with an 
AUC of 0.68 (95%CI: 0.65-0.71) compared to 0.62 (95%CI: 0.59-0.65) for serologies and 0.52 (95%CI: 
0.50-0.55) for clinical variables. Validation cohort included
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Barash 
et al[50], 2021

Ordinal CNN. No 
comparator

CD Retrospective cohort, 
49 CD patients

WCE images Ulcer Severity Grading The classification accuracy of the algorithm was 0.91 (95%CI: 0.867-0.954) for grade 1 vs grade 3 
ulcers, 0.78 (95%CI: 0.716-0.844) for grade 2 vs grade 3, and 0.624 (95%CI: 0.547-0.701) for grade 1 
vs grade 2. Validation cohort included

Lamash 
et al[51], 2019

CNN vs semi-
supervised and active 
learning models

CD Retrospective cohort, 
23 CD patients

Magnetic resonance imaging Active Crohn’s Disease CNN exhibited Dice similarity coefficient of 75% ± 18%, 81% ± 8%, and 97% ± 2% for the lumen, 
wall, and background, respectively. The extracted markers of wall thickness at the location of min 
radius (P = 0.0013) and the median value of relative contrast enhancement (P = 0.0033) could 
differentiate active and nonactive disease segments. Other extracted markers could differentiate 
between segments with strictures and segments without strictures (P < 0.05). Validation cohort 
included

Takenaka 
et al[52], 2020

Deep neural networks 
vs human reader 
(endoscopist)

UC Prospective cohort, 
2012 UC patients

Colonoscopy images Endoscopic inflammation Deep neural network identified patients with endoscopic remission with 90.1% accuracy (95%CI: 
89.2-90.9) and a kappa coefficient of 0.798 (95%CI: 0.780-0.814), using findings reported by 
endoscopists as the reference standard. Validation cohort included

Bossuyt et al
[53], 2020

Computer algorithm 
based on red density 
(RD) vs blinded central 
readers

UC Prospective cohort, 29 
UC patients, 6 healthy 
controls

Colonoscopy Images Endoscopic and histologic 
inflammation

In the construction cohort, RD correlated with rhi (r = 0.74, P < 0.0001), Mayo endoscopic 
subscores (r = 0.76, P < 0.0001) and Endoscopic index of severity scores (r = 0.74, P < 0.0001). The 
RD sensitivity to change had a standardized effect size of 1.16. in the validation set, RD correlated 
with rhi (r = 0.65, P = 0.00002). Validation cohort included

Bhambhvani et 
al[54], 2021

CNN vs human reader 
(endoscopist)

UC Retrospective cohort, 
777 UC patients

Colonoscopy images Mayo Endoscopic Scores 
(MES)

The final model classified MES 3 disease with an AUC of 0.96, MES 2 disease with an AUC of 0.86, 
and MES 1 disease with an AUC 0.89. Overall accuracy was 77.2%. Across MES 1, 2, and 3, 
average specificity was 85.7%, average sensitivity was 72.4%, average PPV was 77.7%, and the 
average NPV was 87.0%. Validation cohort included

Ozawa et al
[55], 2019

CNN vs human reader 
(endoscopist)

UC Retrospective cohort, 
841 UC patients

Colonoscopy images MES The CNN-based CAD system showed a high level of performance with AUC of 0.86 and 0.98 to 
identify Mayo 0 and 0-1, respectively. The performance of the CNN was better for the rectum than 
for the right side and left side of the colon when identifying Mayo 0 (AUC = 0.92, 0.83, and 0.83, 
respectively). Validation cohort included

Bossuyt 
et al[56], 2021

Automated CAD 
Algorithm vs human 
reader

UC Prospective cohort, 48 
UC patients

Colonoscopy images with 
confocal laser 
endomicroscopy

Histologic Remission The current automated CAD algorithm detects histologic remission with a high performance 
(sensitivity of 0.79 and specificity of 0.90) compared with the UCEIS (sensitivity of 0.95 and 
specificity of 0.69) and MES (sensitivity of 0.98 and specificity of 0.61). No validation cohort 
included

Stidham 
et al[57], 2019

CNN vs human reader UC Retrospective cohort, 
3082 UC patients

Colonoscopy images Endoscopy severity The CNN was excellent for distinguishing endoscopic remission from moderate-to-severe disease 
with an AUC of 0.966 (95%CI: 0.967-0.972); a PPV of 0.87 (95%CI: 0.85-0.88) with a sensitivity of 
83.0% (95%CI: 80.8-85.4) and specificity of96.0% (95%CI: 95.1-97.1); and NPV of 0.94 (95%CI: 0.93-
0.95). No validation cohort included

Gottlieb 
et al[58], 2021

Neural network vs 
human central reader

UC Prospective cohort, 
249 UC patients

Colonoscopy images Endoscopy severity The model's agreement metric was excellent, with a quadratic weighted kappa of 0.844 (95%CI: 
0.787-0.901) for endoscopic Mayo Score and 0.855 (95%CI: 0.80-0.91) for UCEIS. No validation 
cohort included

AI: Artificial intelligence; IBD: Inflammatory bowel disease; CD: Crohn’s disease; UC: Ulcerative colitis; AUC: Area under the curve; NPV: Negative predictive value; PPV: Positive predictive value; qPCR: Quantitative real-time polymerase 
chain reaction; HR: Hazard ratio.

Table 3 summarizes studies included which applied AI in the prediction of therapy 
response and clinical outcomes in IBD. There were 9 studies that predicted therapy 
response, 2 studies that predicted presence of extraintestinal manifestations of IBD, 1 
study predicting colonic neoplasia, and 1 study predicting post-surgical complications 
after colectomy. Data modalities included electronic health records (n = 11), molecular 
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Table 3 Artificial intelligence in prediction of therapy response and clinical outcomes in inflammatory bowel disease

Ref. AI classifier vs 
comparator

IBD 
type

Study design and 
sample size Modality Outcomes Study results/validation cohort

Waljee 
et al[59], 2018

Random forest (RF). No 
comparator

CD/UC Post-hoc analysis of 
prospective clinical 
trial, 594 CD patients

Veteran’s Health 
Administration 
Electronic Health 
Record (EHR)

Outpatient corticosteroids 
prescribed for IBD and 
inpatient hospitalizations 
associated with a diagnosis of 
IBD

AUC for the RF longitudinal model was 0.85 [95% confidence interval (CI): 0.84–0.85]. AUC for the 
RF longitudinal model using previous hospitalization or steroid use was 0.87 (95%CI: 0.87-0.88). 
Validation cohort included

Uttam 
et al[60], 2019

Support vector machines 
(SVM) vs nanoscale 
nuclear architecture 
mapping (NanoNAM)

CD/UC Prospective cohort, 
103 IBD patients

3-dimensional 
NanoNAM of normal-
appearing rectal 
biopsies

Colonic neoplasia NanoNAM detects colonic neoplasia with an AUC of 0.87 ± 0.04, sensitivity of 0.81 ± 0.09, and 
specificity of 0.82 ± 0.07 in the independent validation set. Validation cohort included

Waljee 
et al[61], 2017

RF. No comparator CD/UC Retrospective cohort, 
1080 IBD patients

EHR, lab values Remission and clinical 
outcomes with thiopurines

AUC for algorithm-predicted remission in the validation set was 0.79 vs 0.49 for 6-TGN. The mean 
number of clinical events per year in patients with sustained algorithm-predicted remission (APR) 
was 1.08 vs 3.95 in those that did not have sustained APR (P < 1 × 10-5). Validation cohort included

Popa et al[62], 
2020

Neural network model. 
No comparator

UC Prospective cohort, 
55 UC patients

Clinical and biological 
parameters and the 
endoscopic Mayo score

Disease activity after one year 
of anti-TNF treatment

The classifier achieved an excellent performance predicting the disease activity at one year with an 
accuracy of 90% and AUC 0.92 on the test set and an accuracy of 100% and an AUC of 1 on the 
validation set. Validation cohort included

Douglas 
et al[45], 2018

RF. No comparator Peds 
CD

Cross-sectional, 20 
CD patients, 20 
healthy controls

Shotgun metagenomics 
(MGS), 16S rRNA gene 
sequencing

Response to induction therapy 16S genera were again the top dataset (accuracy = 77.8%; P = 0.008) for predicting response to 
therapy. MGS strain (P = 0.029), genus (P = 0.013), and KEGG pathway (P = 0.018) datasets could 
also classify patients according to therapy response with accuracy = 72.2% for all three. Validation 
cohort included

Waljee 
et al[63], 2010

RF vs boosted trees, 
RuleFit

CD/UC Cross-sectional, 774 
IBD patients

EHR, lab values 
(thiopurine metabolites)

Response to thiopurine 
therapy

A RF algorithm using laboratory values and patient age differentiated clinical response from 
nonresponse in the model validation data set with an AUC of 0.856 (95%CI: 0.793-0.919). Validation 
cohort included

Menti 
et al[64], 2016

Naïve bayes vs Bayesian 
additive regression trees 
vs Bayesian networks

CD/UC Retrospective cohort, 
152 CD patients

Genomic DNA, genetic 
polymorphism

Presence of extra-intestinal 
manifestations in IBD patients

Bayesian networks achieved accuracy of 82% when considering only clinical factors and 89% when 
considering also genetic information, outperforming the other techniques. Validation cohort 
included

Waljee 
et al[65], 2017

RF vs baseline regression 
model

CD/UC Retrospective cohort, 
20368 IBD patients

EHR, lab values Corticosteroid-free biologic 
remission with vedolizumab

The AUC for corticosteroid-free biologic remission at week 52 using baseline data was only 0.65 
(95%CI: 0.53-0.77), but was 0.75 (95%CI: 0.64-0.86) with data through week 6 of vedolizumab. 
Validation cohort included

Morilla 
et al[66], 2019

Deep neural networks. 
No comparator

UC Retrospective cohort, 
47 UC patients

Colonic microrna 
profiles

Responses to therapy A deep neural network-based classifier identified 9 microRNAs plus 5 clinical factors, routinely 
recorded at time of hospital admission, that were associated with responses of patients to treatment. 
This panel discriminated responders to steroids from non-responders with 93% accuracy (AUC, 
0.91). Three algorithms, based on microRNA levels, identified responders to infliximab vs non-
responders (84% accuracy, AUC 0.82) and responders to cyclosporine vs non-responders (80% 
accuracy, AUC 0.79). Validation cohort included

Wang 
et al[67], 2020

Back-propagation neural 
network (BPNN), SVM 
vs logistic regression

CD Cross-sectional, 446 
CD patients

EHR Medication nonadherence to 
maintenance therapy

The average classification accuracy and AUC of the three models were 85.9% and 0.912 for BPNN, 
and 87.7% and 0.930 for SVM, respectively. Validation cohort included

Bottigliengo Bayesian machine Retrospective cohort, EHR, genetic Presence of extra-intestinal BMLTs had an AUC of 0.50 for classifying the presence of extra-intestinal manifestations. Validation CD/UC
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et al[68], 2019 learning techniques 
(BMLTs) vs logistic 
regression

142 IBD patients polymorphisms manifestations in IBD patients cohort included

Ghoshal 
et al[69], 2020

Nonlinear artificial 
neural network (ANN) 
vs multivariate linear 
PCA

UC Prospective cohort, 
263 UC patients

EHR Responses to therapy The multilayer perceptron neural network was trained by back-propagation algorithm (10 networks 
retained out of 16 tested). The classification accuracy rate was 73% in correctly classifying response 
to medical treatment in UC patients. No validation cohort included

Sofo et al[70], 
2020

SVM leave-one-out 
cross-validation. No 
comparator

UC Retrospective cohort, 
32 UC patients

EHR Post-surgical complications 
after colectomy

Evaluating only preoperative features, machine learning algorithms were able to predict minor 
postoperative complications with a high strike rate (84.3%), high sensitivity (87.5%) and high 
specificity (83.3%) during the testing phase. Validation cohort included

Kang 
et al[71], 2017

ANN vs logistic 
regression

UC Cross-sectional, 24 
UC patients

Gene expression profiles Response to anti-TNF Balanced accuracy in cross validation test for predicting response to anti-TNF therapy in ulcerative 
colitis patient was 82%. Validation cohort included

Babic 
et al[72], 1997

CART vs back 
propagation neural 
network (BPNN)

CD/UC Cross-sectional, 200 
IBD patients

EHR Quality of life Best reached classification accuracy did not exceed 80% in any case. Other classifiers namely, K-
nearest-neighbor, learning vector quantization and BPNN confirmed that outcome. Validation 
cohort included

Dong 
et al[73], 2019

RF, SVM, ANN vs 
logistic regression

CD Retrospective cohort, 
239 CD patients

EHR, laboratory tests Crohn's related surgery The results revealed that RF predictive model performed better than LR model in terms of accuracy 
(93.11% vs 91.15%), precision (53.42% vs 44.81%), F1 score (0.6016 vs 0.5763), TN rate (95.08% vs 
92.00%), and the AUC (0.8926 vs 0.8809). The AUCs were excellent at 0.9864 in RF,0.9538 in LR, 
0.8809 in DT, 0.9497 in SVM, and 0.9059 in ANN, respectively. Validation cohort included

Lerrigo 
et al[74], 2019

Latent Dirichlet 
allocation, unsupervised 
machine learning 
algorithm. No 
comparator

CD/UC Retrospective cohort, 
28623 IBD patients

Online posts from the 
Crohn’s and colitis 
foundation community 
forum

Impact of online community 
forums on well-being and 
their emotional content

10702 (20.8%) posts were identified expressing: gratitude (40%), anxiety/fear (20.8%), empathy 
(18.2%), anger/frustration (13.4%), hope (13.2%), happiness (10.0%), sadness/depression (5.8%), 
shame/guilt (2.5%), and/or loneliness (2.5%). A common subtheme was the importance of fostering 
social support. No validation cohort included

AI: Artificial intelligence; IBD: Inflammatory bowel disease; CD: Crohn’s disease; UC: Ulcerative colitis; AUC: Area under the curve; TNF: Tumor necrosis factor.

datasets (n = 4), and histologic data (n = 1). Waljee et al[59,65] and Popa et al[62] have 
previously applied RF classifiers to clinical data from electronic health records and 
laboratory values to predict response to various IBD therapies. In one study using data 
from a prospective clinical trial consisting of 594 CD patients[59], the AUC for a RF 
longitudinal model for predicting inpatient hospitalizations in IBD patients prescribed 
outpatient corticosteroids was 0.85 (95%CI: 0.84-0.85). Using a similar RF approach for 
predicting remission with thiopurine therapy in a prospective cohort of 55 UC patients 
yielded an AUC of 0.79[62]. Applying RF to data from a retrospective cohort of 20368 
IBD patients with vedolizumab use yielded an AUC of 0.65 (95%CI: 0.53-0.77) for 
corticosteroid-free vedolizumab remission at week 52 using baseline data and an AUC 
of 0.75 (95%CI: 0.64-0.86) with data through week 6 of vedolizumab[65]. Molecular 
datasets have also been used to differentiate between responders and non-responders 
to various IBD therapies. For example, Morilla et al[66] used a deep neural network 
classifier to construct a predictive panel of colonic microRNAs for IBD therapies in a 
retrospective cohort of 47 UC patients. Their panel discriminated responders to 
steroids from non-responders with 93% accuracy (AUC, 0.91). In addition, three 
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algorithms, based on microRNA levels, identified responders to infliximab vs non-
responders (84% accuracy, AUC 0.82) and responders to cyclosporine vs non-
responders (80% accuracy, AUC 0.79). A more recent prospective cohort study of 55 
UC patients by Popa et al[62] integrated clinical, laboratory, and endoscopic (Mayo 
scores) datasets using a neural network classifier to predict disease activity after one 
year of anti-tumor necrosis factor therapy in patients with UC. This classifier achieved 
an AUC of 0.92 for predicting the disease activity at one year on the test set and an 
AUC of 1.00 on the validation set. These studies suggest that AI classifiers may play a 
role in predicting clinical outcomes and response to specific therapies in patients with 
IBD. However, future clinical trials are needed to compare the efficacy of AI applica-
tions in IBD clinical management vs standard of care before incorporation into real life 
clinical practice.

Finally, AI algorithms have been previously applied to enhance the detection of 
colonic polyps[87] and distinguish among subtypes of neoplastic colorectal lesions[88] 
in the general population. Although patients with IBD who have extensive colitis have 
a significantly greater risk of colorectal cancer compared to the general population 
[89,90], there have been limited studies applying AI technologies to improve colorectal 
cancer surveillance or develop prediction risk models in patients with IBD. Most 
studies evaluating polyp detection have excluded IBD patients[91-93]. Our literature 
search yielded only one study applying AI for the detection of colonic neoplasia in 
IBD. Uttam et al[60] employed support SVM to analyze 3-dimensional nanoscale 
nuclear architecture mapping (NanoNAM) of normal-appearing rectal biopsies in a 
prospective cohort of 103 IBD patients. In their study, NanoNAM detected colonic 
neoplasia with an AUC of 0.87 ± 0.04, sensitivity of 0.81 ± 0.09, and specificity of 0.82 ± 
0.07 in the independent validation set. Further studies should focus on determining 
the clinical utility of incorporating AI methods to enhance standard of cancer 
surveillance in patients with IBD such as chromoendoscopy[94] and to develop 
predictive models for risks of colorectal malignancy in IBD patient populations.

CONCLUSION
In conclusion, our literature review has revealed that the applications of AI in IBD 
have significantly increased in recent years. Our review also highlighted that various 
AI classifiers may be applied to analyze and integrate large datasets ranging from 
clinical data from electronic health records, molecular data including gene expression 
and protein-based studies to a wide array of datasets consisting of endoscopic and 
histologic images. The application of AI has the potential to improve the accuracy and 
precision of predicting risk and diagnosis of IBD, assessing disease severity, and 
predicting outcomes with various IBD therapies. Currently, the application of AI 
methods in IBD has been limited to the research setting and has not yet been adopted 
in real life clinical practice. Furthermore, studies applying AI in the context of 
colorectal cancer surveillance or prediction in IBD are much needed. Given the current 
status of the field of AI in IBD, future directions should include: (1) Prospective 
validation of AI applications in IBD in independent cohorts as there is a risk of bias 
from internal training cohorts and potential limitations with generalizability; (2) 
Standardization of AI methods and comparative studies evaluating effect of 
heterogeneity from using different types of datasets on outcomes of interest; (3) 
Randomized controlled trials to determine whether application of AI in the clinical 
management of IBD improves clinical outcomes and could be translated into clinical 
practice; and (4) Randomized controlled trials to determine whether application of AI 
leads to greater clinical efficacy and cost-effectiveness compared to standard of care in 
IBD.
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