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Abstract

A long-standing question in nutrition and obesity research involves quantifying the relationship 

between body fat and anthropometry. To date, the mathematical formulation of these relationships 

has relied on pairing easily obtained anthropometric measurements such as the body mass index 

(BMI), waist circumference or hip circumference to body fat. Recent advances in 3D body shape 

imaging technology provides a new opportunity for quickly and accurately obtaining hundreds of 

anthropometric measurements within seconds, however, there does not yet exist a large diverse 

database that pairs these measurements to body fat. Herein, we leverage 3D scanned 

anthropometry obtained from a population of United States Army basic training recruits to derive 

four sub-populations of homogenous body shape archetypes using a combined principle 

components and cluster analysis. While the Army database was large and diverse, it did not have 

body composition measurements. Therefore, these body shape archetypes were paired to an 

alternate smaller sample of participants from the Pennington Biomedical Research Center in Baton 

Rouge, LA that were not only similarly imaged by the same 3D scanning machine, but also had 

concomitant measures of body composition by dual energy X-ray absorptiometry body 

composition . With this enhanced ability to obtain anthropometry through 3D scanning quickly of 

large populations, our machine learning approach for pairing body shapes from large datasets to 

smaller datasets that also contain state of the art body composition measurements can be extended 

to pair other health outcomes to 3D body shape anthropometry.
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INTRODUCTION

Anthropometric measures in adult humans have been used for centuries to quantify and 

categorize body types and shapes (1). In more recent history, indices formulated by algebraic 
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combinations of anthropometric measurements such as the body mass index (BMI), have 

been experimentally correlated to percent body fat and other components of body 

composition (2–5). These indices (6–8) rely on manual measurements that are relatively 

simple to obtain in large scale epidemiology studies or through national health surveys (5, 

9). However, manual measurements are prone to inter-rater reliability error, are labor 

intensive, and are restrictive in scope, i.e., e limited to what is feasible to quickly measure 

(10, 11).

The advent of 3D body image scanning technology has increased our capacity to obtain an 

extraordinary number of accurate body measures within seconds (12–15). These 3D scanned 

anthropometry measurements have been validated against carefully collected manual 

measurements (12, 13). However, pairing data obtained from 3D body imaging scanning 

technology to adiposity and other body composition outcomes remains challenging. Such a 

study requires a research facility with access to a 3D body image scanner and an accurate 

body composition measurement technology such as the dual energy X-ray absorptiometry 

(DXA) or magnetic resonance imaging (MRI). Even with access to such equipment, research 

facilities still will likely recruit participants from the regional location of the facility.

The Leipzig Research Center for Civilization Diseases in Leipzig, Germany has been 

developing a database that consists of 3D body human body image scans in local residents 

acquired through the Human Solutions technology since 2011 (16). From this data, Löffler-

Wirth et al. (16) applied machine learning to identify 13 different body shape archetypes 

from this data. Löffler-Wirth et al. (16) apply a neural network approach called self-

organizing maps (SOM) to transform this high dimensional 3D data to low dimensional 

representations in the form of body shape archetypes that can be visualized.

Here we add to the work in (16) three-fold. Our Human Solutions database, which was 

acquired from Human Solutions 3D body image scans employed by the United States Army 

for the purpose of automatic and accurate uniform sizing in basic training recruit, is racially 

and geographically diverse. The United States Army represents the largest branch of the 

United States military and employs Soldiers from all 50 states (17). Forty three percent of 

active duty personnel are non-white race/ethnicities and seventeen percent are female (18).

Second, we combine a principle components analysis (PCA) and cluster analysis (CA) to 

develop four homogenized populations that represent distinct body shape archetypes. As 

pointed out in (16), PCA alone or CA alone does not outperform self-organized maps, 

however, the application of these techniques in sequence can reduce the number of archetype 

sub-populations. Identification of these archetypes then allows us to pair body composition 

measurements from a separate and smaller database to them.

Finally, a smaller sample of Human Solutions scanned participants from the Pennington 

Biomedical Research Center (PBRC) in Louisiana were assigned to their respective body 

shape archetypes. These PBRC participants also had DXA measured body composition 

which then could be analyzed within each body shape archetype. Our method of using 

descriptive data algorithms like PCA and CA to homogenize sub-populations and then pair 

to health outcomes can be utilized in the nutrition field to relate conclusions from “big data” 
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to smaller datasets that contain measurements that are much more challenging or expensive 

to collect.

METHODS

Study Design

There were three main questions this study was designed to address. 1) Are there natural 

quantifications of collinearities within the 3D imaged body shape measures? For example, it 

is known that limb length and height are strongly correlated (19, 20). We seek the pairwise 

strength of the correlations between all of the body measures. 2) Do body shapes aggregate 

into distinct sub-populations; that is, are there archetype body shapes that can be 

algorithmically identified? 3) How does body composition differ between the archetypes?

Resolution of questions 1 and 2 using machine learning requires a large and diverse 

population sample. To address questions 1 and 2, we used Human Solutions body scan data 

from over 10,000 basic training recruits assessed at Fort Jackson, South Carolina. Study 

design question 1 was evaluated by conducting PCA (21) on the data. After completing 

PCA, study design question 2 was assessed from data using a k-means cluster analysis (22) 

on the principle components previously identified in results to question one.

Question 3 requires rigorously and carefully collected body composition data on subjects 

that had been simultaneously scanned using the 3D body image scanner. For this purpose, 

we used 3D body image scan measurements in 148 subjects obtained by the Human 

Solutions machine at the Pennington Biomedical Research Center (PBRC) that also had 

DXA measured body composition. The principal component loadings from the Fort Jackson 

data were then applied to the Human Solutions measurements of the PBRC participants. 

After the loading, the participants from the PBRC study were assigned to clusters developed 

from the Fort Jackson data. The distributions of body composition within each cluster was 

then compared against the remaining clusters.

Subjects

Fort Jackson Basic Training Recruits—Data from Fort Jackson, South Carolina was 

used to answer the first two questions in our study design. Fort Jackson currently trains 50% 

of the US Army’s basic combat training load including 60% of the female population 

entering the Army each year (23). US Army basic training recruits (N=20,896 soldiers, 28% 

female) were scanned for uniform fitting using the 3D body imaging scanner, Human 

Solutions of North America (Mooresville, NC) Vitus Smart XXL 3D body scanner at Fort 

Jackson, SC from February 1, 2017 to October 27, 2017. Recruits were instructed on 

scanning posture; however, the scanning was not supervised. A database consisting of 161 

anthropometric measurements per soldier, obtained from Human Solutions, was retained in 

spreadsheet form. Human Solutions anthropometric measurements are consistent with and 

have been successfully validated against research protocol manual anthropometry 

measurements (12, 13). Age was not available in the database; however, basic training 

recruits are generally between the ages of 17 to 21 years. Individual race/ethnicity 

information was also not available, however, a 2010 report on overall basic training recruit 
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demographics published total recruit percentages of 18.9% black, 4.8% Asian, 0.8% Native 

American, and 11.9% Hispanic (24).

Pennington Biomedical Research Center (PBRC)—Subjects between the ages of 5 

and 79 years were recruited that were good health with an absence of major chronic 

diseases. Subjects were excluded if they were underweight (BMI < 18.5 kg/m2, over 136 kg, 

pregnant, had edema or dehydration. Subjects would report to PBRC to be scanned by the 

Human Solutions of North America (Mooresville, NC) Vitus Smart XXL 3D body scanner. 

Subjects also underwent a DXA scan during the same visit. Imaged measurements, DXA 

body composition data, and demographic variables were retained from adults over the age of 

18. The study was approved by the Institutional Review Board of Pennington Biomedical 

Research Center (PBRC-12021), and all subjects signed an informed consent and Health 

Insurance Portability Act authorization form before participation. The study is registered on 

Clinicaltrials.gov (NCT02118675).

Mathematical Methods

A workflow outlining mathematical procedures appears in Figure 1. Human Solutions Fort 

Jackson data was first prepared for analysis and after pre-processing, a combined PCA and 

CA were performed. The literature does not currently provide formal justification methods 

for extending a CA developed on one population to an alternate population. As a result, 

before extending the CA to PBRC data, we triangulated several methods that justify this 

extension here. Finally, we analyze body composition in the PBRC dataset on the Fort 

Jackson identified clusters.

All data preparation, analysis, and modeling was performed using the statistical package R 

(R Core Team (2013)). Descriptive statistics were determined using the RStudio package, 

“psych”, and the “describe” command.

Data Preparation—Missing measurements in Human Solutions data typically occur when 

subjects are incorrectly postured within the scanner. Because the Fort Jackson recruits were 

not supervised during the body scans, some recruits are missing measurements. Any recruit 

that was missing a measurement was removed from the database. There did not exist any 

missing 3D body scan body site measurements in the PBRC database, however, some 

subjects did not have paired DXA measurements. Only subjects that had both body scans 

and DXA measurements were retained.

Only one of any symmetric body measurement pairs such as left and equivalent right arm 

measurements were retained. This analysis was systematically performed by eliminating one 

of the pair of variables that had a covariance between −0.001 and 0.001. The analysis 

reduced the original set of anthropometric measurements from 161 to 137 measures. This 

removal was performed because highly correlated variables interfere with the theoretical 

basis, specifically matrix formation, of the cluster analysis.

Clustering (CA) and Principle Component Analysis (PCA) are sensitive to variable measures 

with differing units. To account for this, some preprocessing of the Fort Jackson data was 

done using the R package “caret” using the “preProcess″ command to scale and center each 
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of the 137 measurements (21). The “scale” command divides each measurement value by 

the standard deviation of that variable. The “center” command re-centers the measurement 

by subtracting the variable mean from each measurement. These same preprocessing 

measures were then applied to the PBRC subject measurements.

Principle Components Analysis (PCA)—Some body shape measurements are 

collinear. For example, height and leg length are strongly correlated. To account for these 

collinearities, a PCA of the Fort Jackson dataset was performed using the R package “stats”. 

A scree plot was formed to identify how many principle components explain an acceptable 

amount of variance. The first PCA did not consider gender, however a second PCA was 

performed that included gender as a variable. A gender-specific PCA was not performed 

since this would double the number of components and clusters. Separating the small sample 

in PBRC into these clusters would result in substantially smaller samples invalidating any 

potential conclusion that could be made. Moreover, performing a gender specific PCA 

would eliminate the possibility of males and females belonging to the same cluster, an 

outcome that carries some interesting discussion with it as to the other defining 

characteristics within these clusters. We preferred our analysis to allow for this possibility.

Cluster Analysis (CA) on the Fort Jackson study—Three different k-means cluster 

analyses were performed (22). Each k-means cluster analysis was conducted using the 

“kmeans” package in R.

First, a k-means CA was performed on the first five principle components retained in the 

PCA (see above section). A k-means CA was also performed directly on the 137 different 

measurements obtained from Human Solutions. A final k-means CA was performed using 

only the top weighted variables in the five principle components retained in the PCA. The 

best CA method is the one that provides the most homogeneous clustering, which is 

determined by the minimal average distance over clusters from the cluster centroid to each 

observation within the cluster. Because many of the body shape variables are correlated, 

comparison of these three clustering methods used the Mahalanobis metric (25) which 

accounts for correlated data within the clustering algorithms.

A scree plot on the optimal cluster was formed to identify the number of clusters to retain. 

Four clusters were retained from the CA performed on the principle components on the Fort 

Jackson population sample.

Cluster assignment of the PBRC study subjects—The loading of the five principle 

components described above were first retained in order to assign PBRC subjects the same 

principle components as the ones formed by the Fort Jackson population sample. The same 

CA was then done on the PBRC subjects using the principle component loadings from the 

Fort Jackson dataset.

Extension of Models from Fort Jackson to PBRC population samples—Similar 

to the caution required for extending a regression model beyond the population sample it 

was developed on, extending our analysis on the Fort Jackson population to the PBRC study 

needs to be justified. Unlike regression, we do not require both populations to be similar, 
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since a CA does not rely on governing assumptions like regression does (26). Instead we 

need to verify that cluster homogeneity is preserved in the second population. To preserve 

homogeneity across population samples, we first need to justify applying the same loading 

from the PCA and then we need to confirm that homogeneity of the clusters is retained.

In order to confirm that the principle component loading structure developed on the Fort 

Jackson is extended to the PBRC population we need to demonstrate that the variables in 

both populations are similarly correlated. This was tested by evaluating the correlation of 

variables that yield the first principle component. Only the first principle component requires 

this comparison as all other principle components are orthogonal to the first.

Homogeneity of the clusters in the PBRC sample was evaluated by comparing the average 

Euclidean distance of each observation to its cluster center over all clusters in the Fort 

Jackson and PBRC datasets to determine whether the PBRC clusters were within the 

measured range of the Fort Jackson clusters. Specifically, the average Euclidean distance 

from the cluster centroid to cluster elements were computed in the Fort Jackson clusters and 

then compared to the analog average distances in the PBRC sample. Euclidean distance was 

used instead of Mahalanobis distance because the small sample in the PBRC dataset creates 

a singularity in its respective covariance matrix, eliminating the ability to perform 

Mahalanobis measurements.

Finally, similar distributions and range of body shape variables within clusters of one 

population sample to the other provide additional confirmation of the extension from the 

Fort Jackson population to the PBRC study. For example, if average and full range of BMI 

in the first cluster was normal for the Fort Jackson population, the average and full range of 

BMI should also be normal for the first cluster in the PBRC population. To this end, we 

calculated BMI group means and standard deviations within each cluster for both samples. 

We then compared the cluster specific mean and variance for each population.

Comparison of BMI across clusters

Mean BMI values were computed for each cluster in both the Fort Jackson and PBRC 

datasets. Pairwise 2-tailed t-tests of BMI were performed between each of the four clusters 

retained from the CA. The significance threshold was set to P<0.05. Adjustments for the 

number of cluster comparisons were made using the Bonferroni correction (P<0.05/6).

Comparison of body composition measures between clusters in the PBRC study

Percent fat mass, fat free mass, lean mass, and bone mass were computed from the DXA 

measurements. Mean values were calculated and then compared between clusters using 2-

tailed t-tests. Similar to the BMI comparison, the significance threshold was set to P<0.05 

with application of the Bonferroni correction adjustments for the number of cluster 

comparisons.

Pleuss et al. Page 6

Eur J Clin Nutr. Author manuscript; available in PMC 2021 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Subject Characteristics

After data preparation, the Fort Jackson sample contained N=10,986 subjects and PBRC 

consisted of N=88 subjects. Descriptive statistics for the Fort Jackson and PBRC population 

samples appear in Table 1.

Principle Components Analysis (PCA)

After evaluation of the PCA scree plot (Figure 2 A), we opted to retain five principle 

components. The highest weighted variables in each of the five principle components were 

Human Solutions code 9800, body weight (kg), Human Solutions code 0691, distance from 

the iliac crest to the floor (m), Human Solutions code 6030, distance from the narrowest part 

of the waist to the top of the buttocks (m), Human Solutions code 5080, distance from the 

narrowest part of the waist to the highest point in the buttocks (m), Human Solutions code 

0630, deviation from the narrowest part of the waist to the wall (m) (Supplemental Online 

Materials Figure 1). The PCA results involving number of components and which variables 

held the highest weight did not alter after including gender (Supplemental Online Materials 

Figure 2).

Cluster Analysis (CA)

The average squared Mahalanobis distance for clustering on the five principle components 

was 137.99. The average squared Mahalanobis distance for clustering using only the highest 

weighted variables on the five principle components was 139.90. The average squared 

Mahalanobis distance for clustering using all 137 body measurement variables was 138.01. 

Since clustering on the five principle components yielded the smallest average squared 

Mahalanobis distance, all further analysis was performed using the results of the CA on 

principle components.

Based on the scree plot cluster results (Figure 2 B), we selected to retain four clusters for 

analysis. Subject characteristics in each cluster for both the Fort Jackson and PBRC datasets 

appear in Table 2. Cluster specific weight (kg), BMI (kg/m2) and height (cm) are similar 

across the two datasets. Cluster 3 in the PBRC dataset has a higher percentage of females in 

comparison to the Fort Jackson dataset. Similar CA scree plots and cluster assignments were 

derived using the gender included PCA components (Supplemental Online Materials Figure 

3).

Evaluation of Fort Jackson derived principal component loadings and cluster assignments 
to PBRC study

Figure 3 Panel A represents a three-dimensional plot with each cluster color coded (Cluster 

1= blue, Cluster 2 = green, Cluster 3 = yellow, and Cluster 4 = pink) describing the 

relationship between the highest weighted variables in the first three principle components 

(Supplemental Materials Figure 2) in the Fort Jackson dataset. The plot depicts the distinct 

separation of the cluster regions. Figure 3 Panel B is the analog plot for the same three 

variables in the PBRC data. The range and cluster delineation in Figure 3 Panel B is similar 

to the range and cluster delineation in Figure 3 Panel A. Additionally, the points in both 
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plots follow the same general plane indicating that the variables are correlated in the same 

way even though they come from two different datasets.

Average cluster specific Euclidean distance for the Fort Jackson and PBRC datasets appear 

in Table 2. The PBRC dataset yielded smaller average Euclidean distance from the cluster 

centroid than the Fort Jackson counterpart for three of the four clusters.

Comparison of BMI across clusters

The Bonferroni correction adjustment yielded a significance threshold of P=0.008. For both, 

the Fort Jackson and PBRC datasets, the two-sided t-test revealed that mean BMI (kg/m2) in 

Cluster 1 was significantly different than the mean BMI (kg/m2) in Clusters 2 and 3 

(P<0.008). Similarly mean BMI (kg/m2) was significantly different in Cluster 4 when 

compared with Clusters 2 and 3. Cluster 1 BMI (kg/m2) was significantly different than 

Cluster 3 BMI (kg/m2) in the Fort Jackson sample before Bonferroni corrections (P=0.009), 

however, did not hold after correction. Summary statistics of the pairwise t-test comparisons 

appear in the Supplemental Materials.

Comparison of body composition across clusters

The Bonferroni correction adjustment yielded a significance threshold of P=0.008. The two-

sided t-test revealed that mean percent body fat in Cluster 4 was significantly different than 

the mean percent body fat in Clusters 1-3 (P<0.008). Mean percent body fat in Cluster 1 and 

3 differed when the significance threshold was set as 0.05, however this was not retained 

after Bonferroni correction. Summary statistics of the t-test comparisons appear in the 

Supplemental Materials.

DISCUSSION

Human Solutions 3D body imaging and similar technology (12, 13), can automatically and 

accurately provide hundreds of anthropometry measurements within seconds, which presents 

an opportunity to predict body composition using state-of-the-art machine learning and 

statistical techniques. Direct prediction using standard approaches like regression depends 

upon research facilities to grow a database containing 3D scans and measured body 

composition in the same subjects. Conducting a study in this manner will take time, be 

expensive, and be restricted to subject samples recruited from the local vicinity of the 

research facility. The purpose of this study was to circumvent these challenges by 

identifying homogenous sub-populations of 3D imaged body shapes in a large diverse 

dataset and pairing these findings to a smaller independent sample that contained 3D imaged 

body shapes with simultaneously measured body composition.

Our study reduced Human Solutions 3D body scans into four distinct subpopulations (Figure 

3) using a combined PCA and CA. The combined PCA and CA was found to be superior to 

using CA alone by comparison of Mahalanobis distance across each cluster. Specifically, the 

PCA-CA combination algorithm yielded to most homogenous clusters. Once homogenous 

clusters were identified, we were able to characterize these sub-populations by their body 

composition using data obtained at PBRC.
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There were four distinct clusters that were characterized. The first can be loosely described 

as normal weight females, the second represents males classified with obesity with higher 

percent body fat, the third represents males and females classified as overweight with higher 

percent body fat, and the fourth as males with low percentage body fat. Interestingly, while 

Cluster 1 and 4 did not have statistically different BMI, the two clusters did differ in percent 

body fat.

Our study adds to the self-organized map analysis performed on Human Solutions 3D scans 

by Löffler-Wirth et al. (16), which identified 13 body shape archetypes. Because the PBRC 

dataset was smaller, sample sizes assigned to the 13 body shape archetypes would have 

resulted in even smaller sample sizes which would have made body composition 

characterization prohibitive. With a larger health outcome database, a similar pairing to 

health outcomes could be performed as we have done here using the Löffler-Wirth body 

shape archetypes.

Study strengths

Nationally represented and racially diverse 3D body scan dataset—A major 

strength of our study was the application of Human Solutions 3D body image scans from the 

United States Army basic training recruits at Fort Jackson resulted in representation from 

every one of the 50 states of the US. The dataset also was racially and ethnically diverse. 

Our dataset differs from traditional measurements collected at research sites which is 

restricted to subjects recruited locally.

Extension of PCA and CA to a second dataset—Special analysis had to be 

performed to justify the PCA-CA from Fort Jackson to the PBRC study. This is because the 

United States Army adheres to BMI standards that basic training recruits must satisfy in 

order to enlist (27). Thus, outside a small minority of exceptions, recruits have a normal 

weight BMI. Moreover, basic training recruits are between the ages 17 to 21 years old. In 

order to extend our CA to the PBRC dataset which contained older subjects from Baton 

Rouge, LA that were not held to the United States Army Body Composition standards we 

note several important points and justifications. First, age was not used to determine the 

cluster assignments in the Fort Jackson dataset. Second, the majority of the Human 

Solutions measurements are length measurements such as forearm length or leg length. By 

adulthood, these lengths are static.

However, the Human Solutions scans also contain body circumference measurements which 

are highly correlated to adiposity which are a function of age (5, 28). The justification for 

extending the conclusions was supported by similar BMI distributions within clusters 

between the two datasets. By computing ranges and distances, we also found that cluster 

homogeneity was preserved across the two datasets. Future studies that choose to employ the 

pairing application we have performed here can apply the same process to justify such an 

extension.
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Study Limitations

Our study has several limitations. First, the PBRC population sample is small. This limited 

our ability to separate the population by gender in the PCA and to consider more clusters. As 

more data is acquired at different sites that are using the Human Solutions technology, we 

anticipate a more robust analysis within clusters.

Second, any analysis that is dependent on one type of machine, for example, Human 

Solutions, is restricted to the specific machine. There are many new and advancing 3D body 

image scanning technologies that are rapidly becoming available. Some of the technologies 

are cheaper and available for individual consumers using smart phones (29–31) while others 

are more sophisticated and focus on accuracy and rapid image acquisition. It is unlikely that 

the measurements or image quality will ever be standardized. Therefore, either individual 

technology specific studies analyzing data would need to be performed as we and others 

have done (16) or a partial automatic analysis software analysis could be made available.

Because the analysis presented here is not readily tractable, delivering the final predictions 

for direct clinical applications also represents a challenge. We advocate for programming 

predictions directly in the Human Solutions device so that outcomes can be provided 

directly upon scan.

CONCLUSIONS

Three-dimensional body scan image data offers a wealth of human anthropometric data that 

can be quickly and accurately obtained in large populations. A cluster analysis can pair these 

large datasets to health outcomes that are difficult to collect from smaller sized datasets. The 

results of these analyses can be clinically deployed in either software or directly within the 

3D scanning device.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding:

This work was partially supported by two National Institutes of Health NORC Center Grants P30DK072476, Pennington/

Louisiana; and P30DK040561, Harvard; and R01DK109008, Shape UP! Adults.

This work was partially supported by two National Institutes of Health NORC Center Grants P30DK072476, 
Pennington/Louisiana; and P30DK040561, Harvard; and R01DK109008, Shape UP! Adults.

Abbreviations:

BMI body mass index

DXA dual energy X-ray absorptiometry

MRI magnetic resonance imaging

PCA principle components analysis

Pleuss et al. Page 10

Eur J Clin Nutr. Author manuscript; available in PMC 2021 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CA cluster analysis
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FIGURE 1: 
Study design workflow
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FIGURE 2: 
Scree plots for the PCA and cluster analysis. Panel A depicts the percent of total variance 

explained in the Fort Jackson dataset by each principle component. The vertical axis 

represents the percent of the variance and the horizontal axis is the principle component 

number. Panel B is the percent of total variance in the Fort Jackson dataset that is explained 

with the addition of each cluster. The vertical axis represents the cumulative percent of the 

variance explained and the horizontal axis is the cluster number.
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FIGURE 3: 
Three dimensional scatterplots of top weighted variables in the first three principle 

components in the Fort Jackson dataset (Panel A) and the PBRC dataset (Panel B). The 

cluster delineation and the range of data is similar in both plots. The axis label descriptions 

relying on Human Solutions measurements (neck height and neck height front) appear in 

Supplemental Materials Figure 2.
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Table 1:

Subject Characteristics. Data is reported as mean ± SD.

Males Females Combined

Fort Jackson

Age 17-21 17-21 17-21

BMI 25.60 ± 3.99 23.73 ± 2.93 25.08 ± 3.82

N 8717 2269 10,986

PBRC

Age 34.5 ± 20.2 33.6 ± 17.1 34.0 ± 18.7

BMI 27.21 ± 6.44 27.96 ± 6.22 27.58 ± 6.33

N 45 43 88
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Table 2:

Cluster specific subject characteristics for the Fort Jackson and PBRC studies. Summary of body composition 

measures within each cluster for the PBRC cohort is provided. The high fat-low fat free mass group is 

associated with Cluster Number 3 while the low fat-high fat free mass group is associated with Cluster 

Number 4. Cluster Number 2 represents individuals with a higher BMI and lower % fat mass than Cluster 

Number 3. Cluster Number 1 is largely populated in both Fort Jackson and PBRC by females.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Fort Jackson

Age (years) 17-21 17-21 17-21 17-21

Height (cm) 163.02±5.28 181.39±5.34 171.38±4.59 177.67±5.01

Weight (kg) 59.61±6.82 93.28±9.38 76.92±8.09 70.04±7.03

BMI (kg/m2) 22.95±2.62 29.07±3.14 26.81±2.94 22.72 ±2.28

N (% male) 2642 (29) 2404 (99) 2757 (97) 3183 (91)

Average Euclidean Distance 13.01 ± 3.89 9.77 ± 2.68 9.21 ± 2.40 13.21 ± 3.28

PBRC

Age (years) 28.73±16.0 43.4± 16.9 39.9± 19.5 27.4±15.4

Height (cm) 159.85±7.20 178.87±8.92 166.68 ±6.31 176.28±2.81

Weight (kg) 59.74±8.84 100.33±13.08 82.10±6.23 72.33±5.34

BMI (kg/m2) 23.52±3.10 31.64±4.58 29.78±3.86 23.28±1.65

N (% male) 26 (8) 27 (81) 23 (48) 12 (92)

Average Euclidean Distance 13.23 ± 3.98 9.10± 2.07 8.55 ± 1.46 11.93 ± 3.11

% Fat Mass 31.49±7.06 33.11±10.46 36.46±9.08 19.32±7.28

% Fat Free Mass 69.18±7.28 67.30±10.99 64.03±9.41 81.79±7.46

% Lean Mass 65.41±6.98 63.80±10.52 60.61±9.04 77.67±7.04

% Bone Mass 3.76±0.46 3.51±0.59 3.42±0.47 4.12±0.47
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