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Abstract

Gaucher disease (GD) is the most common lysosomal storage disease caused by deficiency of 

beta-glucocerebrosidase (GCase) resulting in lysosomal accumulation of its glycolipid substrate 

glucosylceramide. The activity of GCase depends on many factors such as proper folding and 

lysosomal localization, which are influenced by mutations in GCase encoding gene, and regulated 

by various GCase-binding partners including Saposin C, progranulin and heat shock proteins. In 

addition, proinflammatory molecules also contribute to pathogenicity of GD. In this review, we 

summarize the molecules that are known to be important for the pathogenesis of GD, particularly 

those modulating GCase lysosomal appearance and activity. In addition, small molecules that 

inhibit inflammatory mediators, calcium ion channels and other factors associated with GD are 

also described. Discovery and characterization of novel molecules that impact GD is not only 

important for deciphering the pathogenic mechanisms of the disease, but it also provides new 

targets for drug development to treat the disease.
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1. INTRODUCTION

Gaucher Disease (GD) is the most prevalent autosomal recessive lysosome storage disease 

(LSD). GD is caused by the loss-of-function of lysosomal hydrolase enzyme, beta-

glucocerebrosidase (GCase). The protein sequence and domain structure of GCase are 

displayed in Figure 1. Across populations, approximately 70–98% of GD cases are 
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accounted for by five relatively common mutations in GBA1, the gene encoding GCase1: 

p.N370S, p.L444P, c.84GGIns, IVS2+1G>A and RecNcil [1–4]. GD is classified into three 

subtypes according to clinical manifestations (Table 1). In Type I, pathology is confined to 

the reticuloendothelial and skeletal systems with no neuropathic symptoms and the clinical 

manifestations include hepatosplenomegaly, splenomegaly, and bone disease [5, 6]. The 

incidence of non-neuronopathic GD is about 1 in 60,000 globally, and the highest incidence 

occurs in Ashkenazi Jewish community, ranging from 1 in 800 to 1 in 950[7–9]. Types II 

and III are neuoronopathic GD (nGD) and involve accumulation of GlcCer in brain resulting 

in neurological damage. Type II GD, also known as acute neuronopathic Gaucher disease, 

accounts for 5–20% of cases and develops during infancy, usually by 3 to 6 months of age; 

symptoms include increased tone, seizures, rigidity of the neck and trunk, swallowing 

disorders and oculomotor paralysis [10]. Type III GD, or chronic neuronopathic GD, 

accounts for less than 10% cases and involves organomegaly, bone disease and neurological 

malfunctions [6]. The severity of GD is reported to correlate with the extent of endoplasmic 

reticulum (ER) retention and proteasomal degradation of GCase, which are affected by its 

mutations [11].

Residual activity of GCase in GD patients has been characterized; in Type I GD patients 

with the genotypes c.1226 A ﹥ G (p.N370S)/c.1226 A ﹥ G (p.N370S), c.1226 A ﹥ G 

(p.N370S)/c.508 C ﹥ T (p.R131C), c.259 C ﹥ T (p.R48W)/c.1448 T ﹥ C (p.L444P), 

c.259 C ﹥ T (p.R48W)/c.1448 T ﹥ C (p.L444P), the residual activity of GCase in 

macrophages was around 15% of control. In Type II patients, the genotypes c.508 C ﹥ T 

(p.R131C)/c.508 C ﹥ T (p.R131C) were associated with extremely low residual activity at 

1.75% of control. Finally, the residual activity of GCase in immortalized lymphocytes was 

nearly absent in GD3 patients with genotypes c.1342G ﹥ C (p.D409H)/c.971G ﹥ C 

(p.R285P), c.882T ＞ G;c.1342G ﹥ C (p.H255Q;D409H)/ c.754T ﹥ A (p.F213I), c.1448 T

﹥ C (p.L444P)/c.1448 T ﹥ C (p.L444P) [12].

There are several methods that can be used to treat peripheral symptomology of GD. 

Historically, standard care has been largely limited to enzyme replacement therapies (ERT), 

like alglucerase and imiglucerase, and substrate reduction therapies (SRT), including 

miglustat and eliglustat. Treatment using hematopoietic stem cell transplantation is not 

routinely used owing to the problems of graft rejection and the shortage of available donors. 

However, emergent treatments using small molecules including pharmacological chaperones 

(i.e., ambroxo and isofagomine), proteasome inhibitors like MG-132, proteostasis regulators 

(i.e., celastrol and MG-132) and endoplasmic reticulum (ER)-associated degradation 

(ERAD) inhibitors (i.e., kifunensine and eeyarestatin I), possess enormous therapeutic 

potential [6, 13–20], and have potential benefit against neuronopathic forms of the disease. 

Synergistic effects may be obtainable using both a proteostasis regulator and a 

pharmacologic chaperone to restore the function of misfolded protein [14].

Despite the development of multiple strategies for non-neuronopathic GD, there is no 

effective treatment available for the neurological manifestations of Types II and III disease. 

The continued study of the molecular mechanisms underlying nGD is essential for improved 

application of existing therapies and identification of new therapies. During the past decade, 

the roles of numerous molecules involved in the pathogenesis of GD and regulating GCase 
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activity have been uncovered (summarized in Table 2 and Table 3). Membrane proteins, 

including LIMP-2 and saposins, are involved in the disease and their expressions are 

important for GCase activity [21]. Additional molecules, such as progranulin (PGRN), 

HSP70, phosphatidylinositol 4-kinases, and Saposin-C are required for lysosomal trafficking 

of GCase. Inflammatory molecules such as TNFα, IL-1β, RipK3, type I IFN response 

proteins, macrophage colony-stimulating factor (MCSF), and complement cascade proteins 

trigger inflammation in GD and thus enhance the pathogenicity of GD. TMEM106B and 

gpNMB cause lysosomal dysfunction associated with GD. Proteins such as heat shock 

proteins, PGRN, FKBP10, calnexin also act as molecular chaperones and mediate mutant 

enzyme degradation. Ca2+ channel RyaR mediates calcium release and modulate GD. 

Herein, we give an overview about the roles of these molecules crucial in the GD 

pathogenesis, which are also briefly summarized in Table 2 and Figure 2.

2. LIMP-2 and Gaucher Disease

Lysosomal integral membrane protein type-2 (LIMP-2), also known as SCARB2, is a 

binding partner of GCase, which is mainly expressed on the lysosomal membrane and plays 

a crucial role in regulating the transport of GCase to lysosome by a mannose 6-phosphate-

independent trafficking [22, 23]. Binding between GCase and LIMP-2 is acutely influenced 

by key amino acids in the highly conserved region of GCase; alterations to aspartic acid 399 

or the di-isoleucines, isoleucine 402 or isoleucine 403, diminish the binding of GCase to 

LIMP2, disrupt the pH-dependent binding, decrease the delivery of GCase to lysosome and 

dramatically elevated GCase secretion [24]. LIMP-2 is recognized as an important 

component of the GCase proteostasis involved in ER-to-Golgi-to-lysosome GCase 

trafficking. Knocking down the expression of LIMP-2 by siRNA results in reduced GCase 

activity, with GCase activity diminished by 3.3-fold in wild-type (WT) fibroblasts, by 2.2-

fold in N370S fibroblasts and by 2.2-fold in L444P fibroblasts [25]. By contrast, 

overexpression of LIMP-2 in L444P GCase fibroblasts enhanced the endoglycosidase H 

resistant post-ER GCase glycoform and lysosomal delivery of GCase [25].

The lysosomal localization of GCase is also influenced by Phosphatidylinositol 4-kinases 

(PI4Ks), which regulate intracellular trafficking of its receptor, LIMP-2 [26]. During its 

trafficking to lysosomes, GCase interacts with LIMP-2 in the ER, which augments its 

trafficking to Golgi and finally to lysosomes. Inhibition of PI4KIIIβ using PIK93 promotes 

LIMP-2 accumulation in Golgi, indicating that the exit of LIMP-2 from Golgi is facilitated 

by PI4KIIIβ. Reduction in PI4KIIα levels inhibits post-Golgi trafficking of LIMP-2, leading 

to build up of LIMP-2 in enlarged endosomal vesicles. Overall, these findings implicate that 

PI4Ks might play critical role in GD owing to its ability to control LIMP-2 dependent 

GCase localization to lysosomes.

3. Prosaposins and Gaucher Disease

Prosaposin (PSAP) is a glycoprotein encoded by PSAP gene and acts as precursor of the 

sphingolipid activator proteins, known as Saposins (SAP) A, B, C, and D, which are 8–11 

kDa amphipathic glycoproteins involved in sphingolipid degradation [27, 28]. Of these, 

SAP-C activates GCase hydrolysis of GlcCer in a dose-dependent manner. In addition, the 
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degradation of GlcCer triggered by SAP-C is pH dependent and is optimum in the presence 

of both SAP-C and bis-(monoacylglycero)-phosphate [29]. However, the lack of either 

PSAP or SAP-C can be compensated for by the presence of the other in proper proportions. 

Patients with PSAP deficiency display manifestations of Type II GD and deficiency of SAP-

C is related to Type I or Type Ⅲ GD phenotypes [27, 28, 30, 31]. Importantly, SAP-C is an 

essential activator in the GCase-catalyzed hydrolysis of GlcCer. The three spatially closed 

regions (TIM barrel-helix 6 and helix 7, and the Ig-like domain) of the GCase surface are 

involved in the binding to SAP-C[32]. Defects in SAP-C lead to a lethal GlcCer storage and 

exposure to functional SAP-C can elevate the lysosomal GCase activity in a dose-dependent 

manner.

SAP-C level determined by its stability and degradation affects the GCase sub-location. 

SAP-C’s disulfide bridges provide resistance to degradation and alteration of the protein’s 

structure resultant of mutation contributes to reduced stability [33]. Additionally, a GD-

associated mutation in a cysteine residue of SAP-C disrupts the protein structure resulting in 

reduced half-life and accelerated autophagy mediated degradation of the mutant SAP-C [33, 

34]. The absence of SAP-C results in lower levels of GCase in acidic structures such as 

mature lysosomes but higher levels in LysoTracker negative vesicles in SAP-C deficient 

fibroblasts, indicating that SAP-C impacts the GCase intracellular localization[35].

SAP-C level is regulated by CTSB (cathepsin B) and CTSD (cathepsin D) activity which 

involves in the regulation of autolysosome. The accumulated autophagosomes caused by 

SAP-C insufficiency in SAP-C deficient fibroblasts is due to suspended autolysosome 

breakdown, which to some extent, is an outcome of decreased levels and enzymatic activity 

of CTSB and CTSD [36]. In SAP-C deficient fibroblasts, the expressions of autophagy 

associated proteins such as Beclin 1, Atg5 and Atg7 are not affected, and increasing the 

expression of CTSB and CTSD effectively rescues autolysosome degradation [36]. Two 

compounds, BCM-95 and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), boost lysosome 

function by stimulating autophagy, lysosomal cholesterol and ceramide clearance, and 

enhancing expression and activity of CTSB and CTSD in SAP-C deficient fibroblasts[37].

SAP-C also plays an important role in the central nervous system (CNS) and maintenance of 

axonal integrity. The role of SAP-C in the CNS and the relevance of this functionality to GD 

is demonstrated by several murine models. In SAP-C knockout (KO) mice, the GlcCer, 

lactosylceramide and their deacylated analogues are accumulated, and neuromotor activity is 

decreased, hippocampal long-term potentiation is impaired, and weak hind limbs and 

progressive ataxia are presented [38]. Further, the GD mouse models, 4L/PS-NA and 9H/PS-

NA, were derived from the backcross of prosaposin and saposin deficient mice (PS-NA) to 

the mice with point genetic mutants, V394L/V394L or D409H/D409H, of GCase. These 

mice display GlcCer accumulation in the liver, lung and spleen and CNS [39]. The mouse 

model 4L;C*, which displays a type III GD phenotype, was created by the cross of SAP-C 

knockout mice (C−/−) to the mice with point mutated GCase (V394L/V394L) [40]. 4L;C* 

mice exhibit decreased activity and expression of GCase and accumulation of GlcCer with 

onset of central nervous system symptoms at 30 days followed by death at 48 days resultant 

of neurological abnormalities. Overall, this model is considered appropriate to study the 

neuronal form of GD [40].
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Importantly, some lines of evidence suggest that SAP-C may have potential as a therapeutic 

target in particular cases of GD. The activity of mutant GCase can be increased 2–3 folds at 

pH 4.05 in GD patient spleen homogenates by following addition combination and 

stimulation with healthy controls; an effect partially dependent on the SAP-C from healthy 

control tissues [41]. Further, application of chemically synthesized SAP-C at 1 μM can 

improve the GCase activity by 14 to 22 times and can also shield GCase from the 

degradation by proteases[42, 43].

Cumulatively, these findings highlight the role of SAP-C as an optimizer of GCase activity 

with important functionality in glycosphingolipid degradation and particular importance to 

maintenance of cellular metabolism and protection against axonal dysfunction and 

retrograde degeneration in the CNS.

4. Progranulin and Gaucher Disease

Progranulin (PGRN) is a highly conserved cysteine rich glycoprotein which regulates wide 

array of biological functions including cell growth, cell survival, tumorigenesis, wound 

repair, immunomodulation and inflammation [44–50]. PGRN is highly expressed in many 

cell types including neurons, astrocytes, chondrocytes, microglia, epithelial, myeloid and 

immune cells [51–53]. The important roles of PGRN in the lysosome are attested through 

multiple lines of evidence. PGRN is reported to be associated with the master regulator of 

lysosome biogenesis, TFEB factor, under the abnormal lysosomal storage conditions [54, 

55]. GRN, encoding PGRN, is the target of TFEB and overexpression of TFEB results in 

increased PGRN expression [56]. In PGRN KO mice, increased lysosome biogenesis occurs 

in brain concomitant with increases in immunoreactivity of LAMP1 and gene expressions of 

lysosomal enzyme CTSD, protein ATP6V0D2, and the master regulator TFEB [57]. 

Homozygous mutations in GRN are known to cause neuronal ceroid lipofuscinosis (NCL), a 

rare lysosomal storage disease, which is characterized by aggregation of lipopigments in 

lysosomes and neurodegenerative impact on cognition and sensorimotor ability [58, 59].

Strikingly, ovabumin (OVA)-challenged and aged PGRN KO mice also develop a GD 

phenotype, including typical Gaucher cells, β-glucocerebroside accumulation, and classical 

tubular like-structural transformation of lysosomes [60]. In accordance with the findings 

from mouse models, GD patients displayed reduced serum levels of PGRN in association 

with two GRN gene variants (rs4792937 and rs5848) exhibiting increased rates of 

occurrence in GD patients [60].

PGRN is required for the trafficking of GCase to lysosome and is involved in GD by 

affecting the intracellular localization of GCase rather than influencing the enzymatic 

activity or expression. PGRN deficiency causes the aggregation of GCase in cytoplasm [60, 

61]. Recombinant PGRN (rPGRN) has positive treatment effects on GD both in vitro and in 
vivo [60]. rPGRN ameliorates accumulation of GlcCer in fibroblasts originated from Type I 

and Type II GD patients and in the PGRN KO bone marrow derived macrophages (BMDM). 

In the PGRN KO OVA-induced GD mouse model, rPGRN inhibits the formation of 

Gaucher-like cells. Similarly, in the well-established D409V/− GD mice model, the use of 

rPGRN alleviates the severity of disease phenotype, decreases GlcCer storage and also 
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decreases number and size of Gaucher cells [60]. A PGRN-derived protein, termed Pcgin, 

composed of C-terminal 96 amino acids of PGRN, is also therapeutic for GD as it functions 

by decreasing size and number of Gaucher - like cells in lungs and reduces accumulation of 

GlcCer in GD mouse models [61]. Pcgin also enhances lysosomal localization of mutant 

GCase and reduces GlcCer accumulation in GD fibroblasts [61]. In contrast to PGRN, Pcgin 

does not have the oncogenic activity of PGRN and is a potentially safe therapeutic molecule.

Chitinase-3-like protein 1 (CHI3L1), also known as YKL-40, is a glycoprotein secreted by 

several cell types including monocytes/macrophages, chondrocytes and is associated with 

inflammation, extracellular tissue remodeling in many diseases such as rheumatoid arthritis, 

fibrosis, type II diabetes and cancers [62]. CHI3L1 levels are higher in PGRN KO mice GD 

model and also in GD patients compared to healthy controls. Treatment with Pcgin or 

imiglucerase significantly decreases its levels in both PGRN KO mice and the fibroblasts 

from GD patients [63]. CHI3L1 is a downstream mediator of PGRN and a potential 

diagnostic biomarker of GD [63].

5. Heat shock proteins and Gaucher Disease

Under physiological conditions, nascent GCase undergoes cleavage and glycosylation and 

translocates from ER to Golgi for further modifications and finally traffics to lysosomes 

[64]. The folding and maturation of GCase inside cells is assisted by many chaperones, co-

chaperones, and folding enzymes which constitute the proteostasis network. Mutated and 

improperly folded GCase is degraded by the ubiquitin–proteasome pathway. Heat shock 

proteins (HSP) are molecular chaperones which bind GCase and regulate its degradation. 

HSP 27, known to bind to polyubiquitin chains and the 26S proteasome and mediate 

degradation of the ubiquitinated proteins by the 26S proteasome under stressful conditions, 

interacts with mutant GCase [65]. During degradation of mutant GCase, HSP90/HOP/Cdc37 

chaperone complex first identifies the mutant GCase and then recruits HSP27, which leads 

to degradation of GCase mutants by valosin-containing protein (VCP) and 26S proteasome. 

Suppression of HSP27 elevates both the amount and enzyme activity of GCase, and may 

represent a potential treatment strategy for GD [66].

HSP70 is a highly conserved chaperone which regulates the proper folding and unlocks 

disaggregation of many proteins and HSP70 deficiency leads to the GCase accumulation 

[67]. In GD, HSP70 is recruited by PGRN to the GCase/LIMP2 complex and HSP70 

deficiency lead to reduced GCase detection [61]. Specifically, PGRN functions as a co-

chaperone molecule of HSP70 and recruits HSP70 to form a ternary complex required for 

lysosomal appearance of GCase [61]. The C-terminal granulin E domain of PGRN is 

necessary for the association between PGRN and GCase as revealed by a series of C-

terminal and N-terminal deletion mutants [61]. The finding that PGRN acts as a lysosomal 

enzyme chaperone [60, 61] was also extended by a recent article in which PGRN was 

demonstrated to act as a chaperone molecule of another lysosomal enzyme, cathepsin D 

(CSTD); an interaction also mediated through the granulin E domain [68]. It is conceivable 

that PGRN could have a more general function, beyond its associations with GCase and 

CSTD, as a lysosomal protein chaperone. Demonstration of associations of PGRN with 

additional lysosome enzymes forthcoming, application of this chaperone molecule or its 
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derivatives may lead to innovative therapeutics for a host of lysosome storage diseases and 

neurodegenerative disorders.

HSP90, an important molecular chaperone involved in protein folding, is also reported to be 

crucial to target the mutant GCase for proteasomal degradation [69, 70]. The misfolded 

GCase is recognized and bound by HSP90, which leads to the degradation of GCase through 

endoplasmic reticulum associated degradation (ERAD) and VCP/protein 97 (p97)/

proteasome degradation pathway[70, 71]. The deacetylation (K286R) of HSP90 mediates 

recognition and degradation of mutant GCase and acetylation (K286Q and K286A) of 

HSP90 decreases the ubiquitination of GCase mutants and therefore limits degradation, 

which may form the basis of a possible GD treatment strategy. Indeed, histone deacetylase 

(HDAC) inhibitors, like LB205 and SAHA, can elevate the quantity and increase the activity 

of misfolded GCase protein by increasing the acetylated HSP90 [69, 70]. Recognition of the 

critical role of HSPs in modulating GCase activity has generated interest in HSP90 inhibitor-

based therapeutics have gained importance. Celastrol, derived from the root of Tripterygium 

Wilfordii (Thunder of God Vine) and Celastrus Regelii, have been implicated in some 

lysosomal storage diseases because it can modulate chaperone functions [72]. Celastrol 

interferes with HSP90 chaperone function by hindering the assembly of chaperone complex 

required for proteasomal degradation of mutant GCase in GD, thereby increasing the amount 

and catalytic activity of mutant GCase. It also induces expression of BAG family molecular 

chaperone regulator 3 (BAG3) which stabilizes mutant GCase and increases catalytic 

activity of BAG3. The possibility of “off-target” effects suggests that further studies are 

required prior to its clinical trials in GD. Overall, despite the possibility of having side 

effects, HDAC inhibitors and celastrol may possess the potential to serve as a substitute for 

enzyme replacement therapy for nGD.

ERdj3, the DnaJ homolog subfamily B member 11 (DNAJB11), is an ER associated HSP40 

which can interact with both WT and mutant GCase. A decrease in the concentration of 

ERdj3 reduces the rate of mutant GCase degradation and favors the folding and trafficking 

of mutant enzyme via pro-folding ER calnexin pathway in patient-derived fibroblasts [73]. 

The reduced binding between mutant GCase and TCP1, a subunit of the TCP1 ring complex 

(TRiC) chaperonin complex and enhanced interaction with c-Cbl, a member of the family of 

E3 ubiquitin ligases, propels the mutant GCase towards the proteasomal degradation 

pathway [64]. Inhibition of c-Cbl results in increased GCase activity in GD and normal 

fibroblasts.

6. Inflammatory mediators and Gaucher Disease

In a GD mouse model with a L444P point mutation in the GBA gene, multisystem 

inflammation is demonstrated, where the macrophages, lymphocytes, and neutrophils are 

clustered, and liver TNF-α mRNA is about threefold higher than in controls [74]. It is 

believed that inflammation in the brain also plays a role in neuronal cell death in the nGD. 

The accumulation of GlcCer in neurons can activate the microglia, which promotes the 

release of inflammatory cytokines, reactive oxygen and nitrogen species to amplify the 

inflammatory response. In grey matter, the mRNA levels of proinflammatory cytokines such 

as IL-1β, TNFα, and M-CSF increase alongside disease severity [75]. In the mouse model 
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of nGD, neuroinflammation including microglial activation and astrogliosis are associated 

with selective neuron loss [76].

TNFα level is increased in GD, may induce clinical signs, like bone manifestations, and 

displays a positive correlation to disease severity that the highest level is detected in the most 

advanced nGD type [77–79]. Moreover, a polymorphism in the TNFα promoter has been 

demonstrated to correlate with serum levels of TNFα and disease severity. Higher TNFα 
levels and incidence of nGD were observed in patients heterozygous for the 

polymorphism[78]. TNFα is suggested to disrupt myelin by altering the ionic channel 

expression and membrane potential of oligodendrocytes, and causes damage of 

oligodendrocytes [80, 81]. Inhibition of inflammation via targeting TNFα, the top cytokine 

in the inflammatory cascade, is believed to hold potential benefits for GD patients. PGRN 

and its derivatives are particularly promising, because extracellular PGRN and its derivatives 

exerts potent anti-inflammatory actions via directly binding to TNF receptors and 

antagonizing TNFα inflammatory activity [82–94], whereas intracellular PGRN and its 

derivatives functions as the chaperons of GCase and enhances the lysosomal appearance of 

GCase [60, 61, 95].

Serum level of interleukin-1 beta (IL-1β) was also increased and related to disease severity 

in GD patients[79]. In type I GD patients, those with more obvious clinical manifestations 

had higher IL-1β level than the patients having milder manifestation. In the GD mouse 

established by double GBA gene KO (C57BL/6J-Gbatm1Nsb), the level of IL-1β in fetal 

brain was significantly higher than in the WT mouse[96].

In Type I GD patients, increased levels of several cytokines including M-CSF (2–8 fold), 

sCD14 (2–5 fold) and IL-8 (2–20 fold) have been detected and a positive correlation 

between disease severity and the cytokine levels has been observed [97]. In both GD patients 

and murine disease models, elevated serum level of IL-6 and increased activation of p38 are 

observed [98, 99]. Knockdown of GCase in human breast cancer MCF-7 cells results in 

increased p38 activation and subsequently increased production of IL-6 upon exposure to 

phorbol 12-myristate 13-acetate (PMA). In the presence of normal GCase, GlcCer is cleaved 

to ceramide which is reported to have anti-inflammatory effect by inhibiting p38 via 

activation of ceramide-activated protein phosphatases. The decreased ceramide formation 

caused by GCase mutation may therefore enhance p38 activation and drive inflammatory 

response in GD [100].

The type I IFN response, usually activated in response to viral and bacterial infection [101], 

also contributes to the pathology of initial stages of nGD [102]. A recent report of 

microarray data from the Gbaflox/flox; nestin-Cre mouse model, with GBA1 deficiency 

confined to cells of neuronal lineage, i.e., neuron and macroglia, illustrates activation of the 

type I IFN response during neuroinflammation made evident by massive induction of type I 

IFN-stimulated genes (ISGs), including pathogen recognition receptors (PRRs) such as Toll-

like receptors (TLR), C-type lectin receptors, CLEC7A (Dectin-1), CLEC5A (MDL-1) [24], 

the scavenger receptors CD36, and MSR1 (SR-A1), interferon regulatory factor (IRF) such 

as IRF7, IRF8, IRF9, IRF1, IFNα and IFNβ, and antiviral genes. The proposed mechanism 

of activation of IFN in nGD suggests that accumulated GlcCer activate PRR, which triggers 
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activation of the antiviral response and production of IFNα and IFNβ in neurons. The IFN 

then activates the surrounding microglia by binding to their IFNAR, thus triggering the IFN 

signaling pathways. Deficiency of IFN-I receptor results in inhibition of neuroinflammation 

in nGD [102]. However, the exact role of IFN response in nGD is not yet clear and further 

studies are required to clarify whether it is useful or harmful for the disease.

Recently the protein serine-threonine kinase, receptor-interacting protein kinase-3 (Ripk3) 

has been implicated in necroptosis and neuroinflammation in nGD brains. Ripk1 and Ripk3 

levels are increased in mouse nGD brain. Modulating Ripk3 has been shown to be beneficial 

for GD [103]. In this study, injection of conduritol B-epoxide (CBE) resulted in GD 

manifestation in Ripk3+/− mice whereas Rip3−/− mice displayed inhibition of the disease in 

liver and brain, had enhanced survival and motor coordination, suggesting the potential of 

RIPK3 as therapeutic target for nGD and type I GD. However, the inhibitors of RIPK3 are 

yet to be identified.

7. Complement and Gaucher Disease

Proteomics analysis aiming to identify the diagnostic serum markers and protein signatures 

for GD patients who were ongoing ERT has shown that the complement cascade proteins 

(i.e., C3, C4d region, C5, C8 gamma chain and alpha chain) have been shown to change 

more than 30% before and after therapy, which indicates that complement may play a role in 

the pathology of GD[104]. The expression of complement protein, C1q, which is a part of 

the C1 complex of the complement system, is induced in striatum, substantia nigra and 

motor cortex by suppression of lysosomal GCase using a selective GCase irreversible 

inhibitor CBE for 28 days (100mg/kg/day through intraperitoneal injection) and this causes 

extensive neuroinflammatory reaction [105]. Accumulation of GlcCer resulting from 

deficiency or inhibition of GCase triggers production of complement-activating GC-specific 

IgG autoantibodies, which stimulate C5a production and C5aR1 activation, that 

subsequently increase the expression of UDP-glucose ceramide glucosyltransferase, an 

enzyme that synthesizes GlcCer [106]. Overall, a series of events, consisting of GlcCer 

accumulation, recruitment of immune cells, inflammatory cascade activation, are 

precipitated by complement activation and favor GD progression. Deficiency of C5aR1 

protects mice from CBE induced GD. However, daily administration of CBE over a 29–35 

day course results in serious signs of GD and even fatality in WT and C5aR2-deficient mice. 

The application of C5aR1 antagonist A8(Δ 71− 73) to block the receptor decreases the 

GlcCer accumulation and inflammation in mice, and thus may serve as a potential treatment 

strategy for GD patients. In summary, C5a-C5aR1 axis plays a crucial role in GD pathology 

and is an attractive therapeutic target for GD [106, 107].

8. TMEM106B and Gaucher Disease

Transmembrane protein 106B (TMEM106B) is a cytoplasmic/lysosomal protein that is 

expressed on the membranes of endosomes and lysosomes in neurons, glial and endothelial 

cells [108, 109]. TMEM106B was first identified as one of the genetic risk factors for 

frontotemporal lobar degeneration (FTLD) [110]. TMEM106B overexpression results in the 

enlargement of LAMP1- and TMEM106B-positive organelles, improper lysosome 
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acidification, decrease in lysosome number, and enhances lysosomal stress, which causes 

endosomal-lysosome dysfunction [109, 111, 112]. Overexpression of TMEM106B 

stimulates the translocation of the mTOR-sensitive transcription factor, TFEB, which is also 

a marker of lysosomal stress, to neuronal nuclei from cytoplasm and thus regulates 

lysosomal stress [112].

Intriguingly, GRN and TMEM106b genes exert opposite effects on lysosome function by 

regulating lysosomal enzyme expression in an opposite manner. TMEM106b deficient 5-

month old mice display a significant reduction in dipeptidyl-peptidase 2 (DPPII) and CTSB 

levels whereas GRN deficient brains exhibit a significant increase in levels of these proteins 

[113]. Knocking out both GRN and TMEM106b normalizes the levels of these proteins to 

that of WT. At 5-months age, LAMP1 is not significantly altered in GRN deficient mice, but 

is decreased in TMEM106b deficient samples and in the double KO brain, and LAMP1 

levels are normalized to WT levels, demonstrating that interaction between TMEM106B and 

PGRN regulates LAMP1 levels. Although TMEM106B deficiency normalizes the higher 

CTSB and DPPII enzyme activities in 7-month-old GRN KO brain lysate, it does not 

significantly change Hex A/B/S activity, indicating that some lysosomal enzyme activities 

can be selectively rescued by TMEM106B deficiency. TMEM106b deficiency significantly 

downregulates vacuolar-ATPase (V-ATPase) V0 domain subunits V0a1, V0c, and V0d1 and 

accessary protein 1 (AP1) and thus hampers lysosomal acidification, which then reduces 

lysosomal enzyme activity and proteolysis and thus normalizes lysosomal protein levels in 

GRN deficient neurons [113].

9. FKBP10 and Gaucher Disease

The ER localized molecular chaperone FK506 binding protein 10 (FKBP10) belongs to the 

FKBP-type peptidyl-prolyl cis/trans isomerase family and was identified as a crucial GCase 

proteostasis network component by comparative proteomic analysis of patient-derived LSD 

fibroblasts treated with proteostasis regulators (MG-132 or diltiazem) [25]. In ER, elevated 

levels of FKBP10 promotes the degradation of mutant GCase whereas reduced concentration 

of FKBP10 increase the folding and activity of GCase, which alleviates LSD [25]. FKBP10 

influences enzyme degradation and folding decision in ER of LSD. The fate of the newly 

synthesized unfolded mutant lysosomal enzyme to undergo either degradation or folding 

depends on whether it binds with either FKBP10 or calnexin in the ER, respectively. After 

treating with diltiazem or MG-132, FKBP10 levels in L444P GCase fibroblasts decreased 2-

fold. By knocking down the expression of FKBP10, the GCase activity is enhanced by 1.4-

fold in L444P GCase fibroblasts (that is about 18% of WT GCase activity) and by 2.0-fold 

in Gaucher’s G202R mutant fibroblasts. In contrast, overexpression of FKBP10 in L444P 

GCase fibroblasts reduces roughly 20% of GCase activity [25]. In brief, silencing FKBP10 

can potentially increase lysosomal mutant enzyme function and mitigate LSD.

10. Parkinson’s disease and Gaucher Disease

GD is also associated with Parkinson’s disease (PD), a neurodegenerative disorder portrayed 

by aggregation of soluble synaptic protein α-synuclein (α-syn) into insoluble amyloid fibrils 

in Lewy body inclusions [114]. GD patients often present symptoms of PD and α-synuclein-
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positive Lewy bodies, suggesting co-occurrence of PD; in fact, PD is highly prevalent in GD 

subjects carrying mutations in the GBA gene [115, 116], indicating that GBA mutations 

increase susceptibility to PD. Several studies demonstrate that accumulation of α-syn is 

linked with reduction in GCase activity [105, 117]. Attenuation of lysosomal degradation 

pathway by accumulation of GlcCer in neurons results in occurrence of high α-syn protein 

levels, which is associated with neurotoxicity caused by the inherent ability of α-syn to 

produce amyloid fibrils [118]. High levels of toxic α-syn impede the intracellular trafficking 

of GCase, which inhibits lysosomal function of GCase, thus causing further accumulation of 

GlcCer. This type of positive feedback loop favors piling up of oligomeric forms of α-syn, 

which ultimately leads to neurodegenerative disease. A non-inhibitory small molecule 

modulator of GCase, NCGC00188758 (N-(4-Ethynylphenyl)-5,7-dimethylpyrazolo[1,5-

a]pyrimidine-3-carboxamide), can increase GCase activity, decrease pathological α-syn 

aggregates and repair lysosomal function in human midbrain synucleinopathy models and is 

thus advantageous for PD[119]. Overexpression of GBA1 via AAV-GBA1 intra-cerebral 

gene delivery attenuated accumulation of α-syn and shielded the midbrain dopamine 

neurons from toxic effects of α-syn in rodent models by modulating autophagy [120]. 

Promoting differentiation of iPSCs to dopaminergic neurons and macrophages in GD 

patients is in favor of the a noninhibitory small molecule treatment, NCGC607 (2-[2-(4-

Iodoanilino)-2-oxoethoxy]-N-[2-(N-methylanilino)-2-oxoethyl]benzamide) to repair the 

GCase activity and diminish substrate storage [121]. This molecule also lowered expression 

of α-syn in Type I GD – PD and Type II GD dopaminergic neurons. These findings indicate 

that therapies aimed at increasing GCase function to treat GD also reduce the accumulation 

of α-syn associated with PD [118, 122].

11. Summary and Perspectives

GD pathogenicity is a complex phenomenon and can be influenced by molecules that 

regulate GCase trafficking (LIMP-2, PGRN, HSPs), inflammatory mediators (IL-1β, TNFα, 

RipK3, PGRN), lysosomal stress mediators such as TMEM106B and PGRN, molecular 

chaperones such as FKBP10, and heat shock proteins such as HSP90, HSP70. Moreover, 

additional molecules are also reported to contribute to GD. Calcium ions play an important 

role in the protein folding in the ER and malfunction of calcium homeostasis acts as an 

important mediator of neuropathophysiology in typeⅡGD [123, 124]. The major Ca2+ 

channel ryanodine receptor (RyaR), which regulates calcium efflux from ER to cytoplasm, 

has been implicated in pathophysiology of nGD. RyaRs have recently gained importance as 

therapeutic target in nGD. Antagonization of RyaRs using dantrolene abrogates intracellular 

calcium release via RyaRs and results in neuroprotective effects and impedes disease 

progression in nGD [125]. Lacidipine is a selective L-type Ca2+ channel inhibitor which 

increases the L444P GCase mutant enzyme activity by enhancing its folding in ER via 

altering calcium homeostasis and enhancing expression of ER chaperone binding 

immunoglobulin protein (BiP) [126].

Osteopontin (OPN), also called secreted phosphoprotein 1 (SPP 1), is found in cancer, bone 

cells and many types of immune cells, including T-cells and macrophages [127]. High levels 

of OPN in the plasma of type I GD patients suggest its potential as biomarker of GD. 

Glycoprotein, non-Metastatic Melanoma B (gpNMB), which is involved in 
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osteoblastogenesis and osteoclast mediated bone resorption, lysosomal stress, an anti-

inflammatory role in macrophage, is upregulated in serum of GD patients and its levels 

correlate with accumulation of glucosylsphingosine and well known GD biomarkers, 

including chitotriosidase and CCL18, which suggests its potential as marker of GD 

progression or response to therapy [128]. Neopterin, a pteridine catabolic product of GTP, is 

synthesized by activated macrophages and dendritic cells in response to interferon-γ and 

TNF-α, has recently been accepted as reliable marker of activation of immune system. 

Elevated serum levels of neopterin were observed in Type I GD patients [129]. Plasma 

concentration of neopterin mirrors the overall activation and accumulation of Gaucher cells 

and correlates with the degree of immune activation in GD. Another study demonstrated the 

significance of neopterin as a biomarker particularly in chitotriosidase-deficient patients 

[130].

In brief, identification and characterization of molecules associated with GD is of utmost 

importance for unraveling the molecular mechanisms underlying disease pathogenesis. 

Therapies based on molecules which impact GD by regulating GCase folding, trafficking, or 

stability, inflammatory pathways or other processes linked with GD can be designed, in 

order to overcome the drawbacks of currently available therapeutic options for GD. 

Moreover, because of link between GD and PD, treatment options for GD may also prove to 

be beneficial for PD.
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Fig. 1. Sequence and structure of human acid-β-glucosidase.
A. The sequence of human acid-β-glucosidase has a total of 497 amino acid residues in 

which there are eight α helices displayed with cylinders and eight β-strands indicated by 

stubs. The sequences and stubs in discrepant colors are correspondently presented in X-ray 

structure in panel B. The upper upper-case letters are the nonstandard residues with 

coordinates and the upper lower-case letters are the nonstandard residues missing 

coordinates. The lower upper-case letters indicate the standard residues and the numbers are 

for amino acid sequence location. B. X-ray structure of α helices and β-strands of human 

acid-β-glucosidase (from NCBI structure database PDB ID 10GS viewed by iCn3D, https://

www.ncbi.nlm.nih.gov/Structure/icn3d/full.html?showseq=1&mmdbid=23543&buidx=1). 

Acid-β-glucosidase has one N-acetyl-d-glucosamine (top left corner in red color), ten sulfate 

ions (four limbs in red color), and three domains: domain Ⅰ(aa1-aa29 and aa384–414), 

domain Ⅱ (an immunoglobulin-like domain consists of aa30-aa76 and aa429-aa497) and 

domain Ⅲ (a catalytic domain, which is a TIM barrel and contains aa77-aa383 and aa415-

aa428).
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Fig. 2. Summary and illustration of the molecules known to be involved in the regulation of 
Gaucher Disease.
The overexpression of TMEM106 leads to the translocation of TFEB from cytoplasm to 

nucleus. GRN encoding PGRN is the target of TFEB and overexpression of TFEB results in 

upregulation of PGRN. GCase binds to LIMP2 at neutral pH in endoplasmic reticulum and 

then traffics to lysosome where GCase is separated from LIMP2 at acid condition. When 

LIMP2 is deficient, delivery of GCase to lysosome is reduced and GCase secretion is 

increased. Inhibition of PI4KIIIβ promotes LIMP-2 accumulation in Golgi. PGRN 

deficiency causes the aggregation of GCase in cytoplasm. HSP70 is recruited by PGRN to 

the GCase/LIMP2 complex. During degradation of mutant GCase, HSP90/HOP/Cdc37 

chaperone complex first identifies the mutant GCase and then recruits HSP27, which leads 

to degradation of GCase mutants by VCP and 26S proteasome. Celastrol interferes with 

HSP90 chaperone function by hindering the assembly of chaperone complex required for 

proteasomal degradation of mutant GCase, thereby increasing the amount and catalytic 

activity of mutant GCase. The absence of SAP-C results in lower levels of GCase in acidic 

structures such as mature lysosomes, whereas application of SAP-C protects GCase from the 

degradation by proteases. A decrease in the concentration of ERdj3 reduces the rate of 

mutant GCase degradation. Elevated levels of FKBP10 promotes the degradation of mutant 

GCase. The aggregated α-synuclein reduces GCase activity and impedes the intracellular 

trafficking of GCase.
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Table 1

Clinical characteristics of Gaucher Disease

Gaucher Disease Type I Type II Type III

Alternative name nonneuronopathic acute neuronopathic chronic neuronopathic

Disease onset childhood or adulthood 3–6 months old infants childhood or adolescence

Life expectancy childhood or adulthood dies in infancy (median 9 months) childhood or early adulthood

Occupying of all GD 90%, the most common type 5–20% less than 10%

Prevalence 1 in 100,000 in general population less than 1 in 100,000 live births less than 1 in 100,000 live births

Special ethnicity the highest incidence in Ashkenazi 
Jewish community, ranging from 1 in 
800 to 1 in 950

no ethnic difference Norrbottnian region of Sweden 
(Norrbottnian Gaucher disease), 1 
in 50,000 prevalence

GCase mutant N370S Various L444P

Residual GCase 
activity

around 15% of control 1.75% of control nearly absent

Disease course progressive rapidly progressive progressive

Involvement confined to the reticuloendothelial and 
skeletal systems with no neuropathic 
symptoms

accumulation of glucosylceramide in 
brain, without bone involvement

organomegaly, bone disease and 
neurological malfunctions

Clinical 
manifestations

hepatosplenomegaly, anemia, 
thrombocytopenia and bone disease

early nervous system signs, 
increased tone, seizures, rigidity of 
the neck and trunk, swallowing 
disorders and oculomotor paralysis, 
cerebellar signs

late onset nervous problems, 
abnormal horizontal saccades, 
oculomotor apraxia, myoclonus, 
seizures, dementia (late stage), 
cerebellar signs, extrapyramidal 
finding

Treatment enzyme replacement therapy, substrate 
reduction therapy

hematopoietic stem cell 
transplantation, pharmacological 
chaperones, gene therapy

hematopoietic stem cell 
transplantation, pharmacological 
chaperones, gene therapy
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Table 2

Molecules known to play roles in Gaucher Disease

Molecules 
regulating GD

Functions

LIMP-2 LIMP-2 is a binding receptor for GCase and targets it to the lysosome [22]

Prosaposins Prosaposin is a precursor protein which is cleaved into glycoproteins saposin (Sap) A-D, of which, Saposin C functions 
as activator of GCase [27]

HSP27 HSP27 participates in the proteosomal degradation of mutant GCase[66]

HSP70 HSP70 is involved in the lysosomal localization of GCase and is recruited by PGRN to GCase/ LIMP2 upon stress[61]

HSP90 HSP90 binds mutated GCase and directs its towards endoplasmic reticulum associated degradation (ERAD) and 
proteasome degradation pathway[70]

ERdj3 ERdj3 is an ER localized Hsp40 which interacts with GCase and promotes mutant GCase degradation[73]

PGRN PGRN is required for lysosomal appearance of GCase and a cochaperone of HSP70, and affects intracellular 
sublocation of GCase[60, 61]

CHI3L1 The expression of CHI3L1, a downstream mediator of PGRN, correlates with GD phenotype[63].

TNFα TNFα induces bone manifestations, neuroinflammation and perturbs myelin and its levels are increased in GD [79, 80, 
96]

IL-1β IL-1β levels are elevated in serum of Gaucher patients and was detected in the fetal brains of Gaucher mice [79, 96]

M-CSF M-CSF is elevated in serum of Type1 GD[97]. Its mRNA is increased in neuronopathic GD mouse model and 
contributes to neuroinflammation[75]

p38 p38 is a proinflammatory kinase and is activated in Gaucher disease due to absence of ceramide mediated suppression 
of p38[100]

TCP1 Interaction between TCP1 and mutant GCase mediates the degradation of mutant GCase[64]

c-Cbl The interaction of c-Cbl with GCase is increased in GD, which results in increased proteasome mediated degradation of 
GCase [64]

Type I IFN response 
associated 
molecules

Accumulated GlcCer triggers activation of IFN response in nGD and is associated with neuroinflammation[102]

Ripk3 Ripk3 plays a key role in necroptosis and neuroinflammation in nGD and its expression is elevated in nGD brains[103].

C1q The complement protein C1q is upregulated following GCase inhibition and is associated with neuroinflammation 
[105].

C5a and C5aR1 GCase deficiency stimulates C5a generation and activates C5aR1. C5a/C5aR1 worsens GD by upregulating 
glucosylceramide synthase [106, 107].

TMEM106B TMEM106B regulates lysosomal function by controlling lysosome size, number, and trafficking [112]

FKBP10 FKBP10 is a component of GCase proteostasis network and binds mutant GCase and causes proteasome mediated 
degradation of the enzyme[25]

RyaR Ca2+ release from ER via the ryanodine receptor RyaR is linked with GlcCer accumulation and correlates with severity 
of GD[123, 124]

OPN OPN modulates gene expression of cytokines, macrophage differentiation and migration and its levels are elevated in 
plasma in Type I GD[127]

gpNMB gpNMB is involved in lysosomal stress, has anti-inflammatory actions in macrophages and its expression is upregulated 
in serum of GD patients[128]

Neopterin Neopterin is derived from GTP, produced by immune cells such as macrophages, and shown to act as potential 
biomarker for GD[129, 130]

α-Synuclein GD patients are vulnerable to develop Parkinson disease and exhibit features of PD such as α-synuclein accumulation 
[118, 121]
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Table 3

Approaches/molecules that enhance the GCase activity

Increase GCase activity Overexpression of LIMP2 [25]

Functional SAP-C [41–43]

Increasing acetylated HSP90 [69, 70]

Suppression of HSP27 [66]

PGRN and its derived Pcgin [61]

Knock down of FKBP10 expression [25]

Celastrol [72]

Inhibition of c-Cb1 [64]

GCase chemical chaperones [119], [121]
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