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ABSTRACT
New York City quickly became an epicentre of the 
COVID-19 pandemic. An ability to triage patients was 
needed due to a sudden and massive increase in patients 
during the COVID-19 pandemic as healthcare providers 
incurred an exponential increase in workload,which 
created a strain on the staff and limited resources. Further, 
methods to better understand and characterise the 
predictors of morbidity and mortality was needed.
Methods We developed a prediction model to predict 
patients at risk for mortality using only laboratory, vital and 
demographic information readily available in the electronic 
health record on more than 3395 hospital admissions 
with COVID-19. Multiple methods were applied, and final 
model was selected based on performance. A variable 
importance algorithm was used for interpretability, and 
understanding of performance and predictors was applied 
to the best model. We built a model with an area under the 
receiver operating characteristic curve of 83–97 to identify 
predictors and patients with high risk of mortality due to 
COVID-19. Oximetry, respirations, blood urea nitrogen, 
lymphocyte per cent, calcium, troponin and neutrophil 
percentage were important features, and key ranges were 
identified that contributed to a 50% increase in patients’ 
mortality prediction score. With an increasing negative 
predictive value starting 0.90 after the second day of 
admission suggests we might be able to more confidently 
identify likely survivors
Discussion This study serves as a use case of a machine 
learning methods with visualisations to aide clinicians 
with a better understanding of the model and predictors of 
mortality.
Conclusion As we continue to understand COVID-19, 
computer assisted algorithms might be able to improve the 
care of patients.

BACKGROUND
New York City quickly became an epicentre 
of the COVID-19 pandemic in the USA.1 As 
of 28 April, we identified 7352 cases across 
our three major medical campuses, of 
which 3995 were admitted. Due to a sudden 
and massive increase in patients during 
COVID-19 pandemic, healthcare providers 

incurred an exponential increase in work-
load that created a strain on the staff and 
limited resources. While mortality predic-
tion models have been developed in patients 
with septic shock, heart failure and in the 
intensive care unit, literature does not show 
a model tailored for patients with COVID-19 
in the USA.2–4 As COVID-19 is not well char-
acterised, we developed a prediction model 
using machine learning techniques to iden-
tify predictors and patients with high risk of 
mortality. A prediction model can be used to 
risk adjust hospitals and unit care, incorpo-
rated into an AI notification tool and used in 
additional studies where a mortality risk score 
is needed.5–7 Hospitals can develop straight-
forward models with high accuracy to identify 
predictors that characterise a disease in their 
patient population.

This study adds another prediction model 
methodology to the literature using primarily 
objective data readily available electronic 
health record (EHR) information to classify 
COVID-19 patient’s risk of mortality. This 
study aims to: (1) develop models to predict 
daily risk of mortality in hospitalised patients 
by applying modern machine learning tech-
niques using discrete information found 
in the EHR and (2) understand and visu-
alise predictors associated with mortality in 
patients with COVID-19 using variable impor-
tance techniques. This study also provides 
an example how hospitals can leverage their 
own EHR data to build customised prediction 
models.

METHODS
Design
Adhering to ‘Transparent reporting of a 
multivariable prediction model for individual 
prognosis or diagnosis’ (TRIPOD) model 
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evaluation, this retrospective cohort study mined struc-
tured patient data from the EHR at NYU Langone Health 
and applied machine learning methods to predict the 
risk of mortality in patients admitted to the hospital with 
COVID-19.8 NYU Langone Health is an academic medical 
centre located in New York City with over 2000 licenced 
beds during COVID-19. This study includes patients from 
three of the medical/surgical campuses comprising of 
approximately 1700 beds. Data for this study are derived 
from our Enterprise Data Warehouse—data aggregated 
from clinical and EPIC clarity tables. The outcome was 
death during admission in inpatients with COVID-19 
confirmed by PCR within prior 60 days of visit. Three 
datasets with different samplings of the patient popula-
tion were used to develop three separate models, and a 
final performance evaluation of the three models was 
conducted on daily patient mortality predictions to deter-
mine the most versatile model (table 1). All three final 
‘models included patient demographic information at 
admission in addition to the following information: (1) 
laboratory and vital results on the first calendar day of 
admission—‘admission’; (2) last available laboratory and 
vital results during the admission—‘last- value’ and (3) 
laboratory and vital results selected on a random day 
during the admission—‘time- vary’.

The training cohorts for all the three datasets included 
adult inpatients with admitted and subsequently 
discharged either alive or dead during 3 March 2020–28 
April 2020 (n=3395). Patients not admitted or under 18 
years of age were excluded. We used the time- holdout 
method and split hospital admissions into a training 
dataset (3 March–12 April: n=2054) and an internal vali-
dation dataset (13–16 April:, n=477) for internal valida-
tion including model tuning and model selection. For 
the external test set (17–28 April:, n=864), we used future 
subsequent discharges to test (estimating accuracy of the 
selected, fully- specified models) and monitor the perfor-
mance of the models over time. Dividing the data tempo-
rally (rather than randomly via cross- validation) for 
external validation better simulates more realistic results 
as models trained from historical data will perform simi-
larly in the risk stratification of future patients.

Feature engineering
A full cohort dataset comprising of 971 patient- level and 
admission- level features were derived from 83 variables 
from the EHR (table 1). Features that rely on human deci-
sions such as treatment, or interpretation and documen-
tation such as symptoms and image reviews were excluded 
to limit the introduction of bias in the model. The cumu-
lative mean, median, min and max of all patients results 
were calculated along with iterations of the absolute 
differences among these results at the end of each day 
until discharge. This engineering allows for laboratory 
and vital results to be put in the context of the patient 
rather than the population. For example, low blood pres-
sure might be normal for one patient but unusual for 

another, and the change in these results during a hospital 
admission might be indicative of disease progression.

Continuous variables were categorised/binned into five 
groups based on median cutoffs (<first quintile, second 
quintile, third quintile, fourth quintile and ≥fifth quin-
tile). Variables with missing information were grouped 
into a sixth bin.

Binning was performed in the training dataset, and 
those thresholds were applied in the validation and test 
datasets. The number of features was reduced to decrease 
computational memory and avoid overfitting of the 
training model. Features that appeared in less than 20% 
in the training dataset were excluded.

Machine learning algorithms and tuning parameters
We applied machine learning algorithms to predict 
mortality on the constructed features. The following 
commonly used algorithms in healthcare research were 
used to create prediction models and assessed for perfor-
mance: logistic regression (LR), decision tree (DT), 
gradient boosting decision trees (GB), support vector 
machine (SVM) and neural network (NN).9 To deal with 
overfitting in model selection, algorithms were tuned 
with the internal validation set using default and associ-
ated hyperparameters listed in supplementary material 
(online supplemental table 1).

Missing data
For LR, SVM and NN, missing values were imputed on 
datasets using median values from observations found in 
the training set in order to avoid dropping incomplete 
cases and improve model training. For binary or cate-
gorical variables, the median was rounded to the nearest 
integer. For DT and GB, missing values were treated as 
separate values and used in the calculation of the worth 
of a splitting rule. This consequently produces a splitting 
rule that assigns the missing values to the branch that 
maximises the worth of the split. This can be a desirable 
option as existence of a missing values such as lab test can 
be predictive of mortality.

Model performance
We used the area under the receiver operating charac-
teristic curve (AUC), as well as accuracy, sensitivity, spec-
ificity, positive predictive value and negative predictive 
value using a prediction estimate threshold of 50% to 
evaluate the ability to discriminate survivors from non- 
survivors. Each algorithm on the three sampled datasets 
(admission, last- value, time- vary) and their associated vali-
dation and test sets were applied. We visually evaluated the 
calibration by examining the models’ calibration curves 
aligned with the diagonal line that represented perfect 
calibration.10 11 Similarly, we created graphs grouping 
prediction by deciles on the x- axis and the proportion of 
observed mortality on the y- axis to assess calibration at 
select time points during a patient stay.12 These graphs 
of prediction estimates stratified by deciles are more 
intuitive for clinicians compared with the traditional 

https://dx.doi.org/10.1136/bmjhci-2020-100235


3Stachel A, et al. BMJ Health Care Inform 2021;28:e100235. doi:10.1136/bmjhci-2020-100235

Open access

calibration plots used by data science engineers. All 
model performance measures were reported on external 
future holdout test set to evaluate most conservatively. We 

selected the algorithms and hyperparameters based on 
the best discrimination using AUC on the associated test 
sets for each of the three dataset types. The calibration of 

Table 1 Features extracted for three training datasets: features on first calendar day of admission, last available value and 
selected 1 day at random from patient’s stay

Dataset sample Feature engineering Variable

Data from admission Quintile binning on training set for 
continuous variables

Demographic and hospital characteristics: previous 
positive COVID-19 PCR test during an outpatient or 
inpatient visit within 60 days, race, age, sex, body 
mass index (BMI) and days in hospital (current day 
minus admission date).

Data from first calendar day 
at admission, last available 
value, and 1 day selected at 
random from patient’s stay

Quintile binning on training set variables: 
current value, first value, minimum value, 
maximum value, mean value, median 
value, difference in current value from 
mean, difference in current value from 
median, difference in first value from 
mean, difference in first value from median, 
difference in max value from mean, 
difference in max value from median, 
difference in minimum value from mean and 
difference in minimum value from median

Laboratory values: albumin, alkaline phosphatase 
(ALKPHOS), alanine aminotransferase (ALT), anion 
gap (ANIONGAP), activated partial thromboplastin 
time (APTT), aspartate aminotransferase (AST), 
atypical lymphocytes per cent (ATYLYMREL), 
bands per cent (BANDSPCT), conjugated 
bilirubin (BILIDB), bilirubin direct (BILIDIRECT), 
bilirubin total, natriuretic peptide B (BNPEPTIDE), 
blood urea nitrogen (BUN), calcium, CKTOTAL, 
chloride, carbon dioxide (CO2), creatinine, C 
reactive protein (CRP), d- dimer, glomerular 
filtration rate – African American (EGGRAA), 
glomerular filtration rate – non- African American 
(EGFRNONAA), erythrocyte sedimentation rate 
(ESR), ferritin, fibrinogen, fraction of inspired 
oxygen arterial blood gas (FIO2ABG), glucose, 
HCT, haemoglobin, haemoglobin (HA1C), 
immunoglobulin A (IGA), immunoglobulin G (IGG), 
glomerular basement membrane (IGBM), absolute 
immature granulocytes (IMMGRANABS), per 
cent immature granulocytes (IMMGRANPCT), 
interleukin-1 beta (INTERL1B), interleukin 6 
INTRLKN6, potassium (K), potassium plasma 
(KPLA), lactate arterial blood gas (LACTATEABG), 
lactate venous blood gas (LACTATEVBG), lactate 
dehydrogenase (LDH), lipase, lymphocyte absolute 
calculated (LYMPABSCAL), lymphocyte per cent 
(LYMPHPCT), lymphocyte absolute (LYMPHSABS), 
magnesium (MG), sodium (NA), NEUTABSCAL, 
neutrophil absolute (NEUTSABS), neutrophils 
per cent (NEUTSPCT), carbon dioxide in arterial 
blood (PCO2ART), carbon dioxide in venous 
blood (PCO2VEN), pH of arterial blood (PHART), 
phosphorous, pH of venous blood (PHVBG), 
platelet, P02ABG, P02VB, procalcitonin (PROCAL), 
total protein (PROTTOTAL), prothrombin time (PT), 
platelet poor plasma (PTT), red blood cell (RBC), 
troponin (TROPONINI), troponin point of care 
(TRPNONPOC) and white blood cell count (WBC).

Data from first calendar day 
at admission, last available 
value, and 1 day selected at 
random from patient’s stay

Quintile binning on training set: current 
value, first value, minimum value, maximum 
value, mean value, median value, difference 
in current value from mean, difference in 
current value from median, difference in first 
value from mean, difference in first value 
from median, difference in max value from 
mean, difference in max value from median, 
difference in minimum value from mean and 
difference in minimum value from median

Vitals: systolic blood pressure, diastolic blood 
pressure, pulse pressure, oximetry, respiratory rate, 
pulse and temperature.
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the model with the best discrimination was reviewed to 
ensure it was generally well calibrated. Based on the afore-
mentioned performance metrics, three models derived 
from each dataset (admission, last- value and time- vary) 
were selected.

The performance of these final three models were 
further assessed on ability to discriminate during the 
duration of patient’s entire stay. The AUCs from each day 
of the patient’s stay were plotted to evaluate the models’ 
ability to discriminate over time: 7 days after admission 
and 7 days prior to discharge. Using estimates from 
admission and to discharge allows for clearer under-
standing of accuracy as sample sizes inevitably vary due 
to early discharge and differences in length of stay. For 
example, all patients in the test set were in the hospital for 
1 day (n=864); however, on day 2, some were discharged 
(n=859). Similarly, all patients were discharged on their 
last day of the stay (n=864); however, less patients were 
in the hospital 2 days prior to their discharge cohort 
(n=859) as some patients only had a 1- day stay. The model 
with the highest and largest proportion of AUCs during 
the time period was selected as the final model. This was 
determined using the test dataset (17–28 April 2020) of 
daily values of a patient’s stay.

Variable importance
There are algorithms available to facilitate the under-
standing and trust in machine learning prediction 
models.13 We used the variable importance measure to 
explore and understand the ‘black box’ model of the 
final selected model. Variable importance displays the 
importance of each variable as measured by its contribu-
tion to the change in the residual sum of squared errors 
value. The scores reflect the contribution each feature 
makes in classifying or predicting the target outcome, 
with the contribution stemming from both the feature’s 
role as a primary splitter and its role as a surrogate to 
any of the primary splitters. The feature with the highest 
sum of improvements is scored at 100, and subsequent 
features will have decreasing lower scores. A feature with 
an importance score of zero indicates it was not used as 
either a primary or a surrogate splitter, therefore not 
needed for predictions. Finally, to better understand 
how each feature impacted the overall prediction and 
facilitate better visualisation for clinicians, a heat map 
was created. This was done by creating dummy variables, 
a mean prediction score calculated for each level of the 
important features and plotted via a heat map.

All extraction, analysis and visualisation were conducted 
using SAS base V.9.4 and SAS enterprise miner V.14.3 
(SAS Institute, Cary, North Carolina, USA) and Python 
V.3.8.2 (Seaborn 0.10.0, Pandas 1.0.3, Matplotlib).

RESULTS
Model selection and performance
Of the 3395 discharged patients, 452 (22%), 116 (24%) 
and 208 (24%) died in the training, validation and test 

sets, respectively. The distribution of these features were 
similar across all three datasets. We used discrimination 
to assess the model with the best ability to rank patients 
by risk of morality. To determine the model with the best 
discrimination, we used the model with the highest AUC 
value in their respective test set (table 2). The gradient 
boosting algorithm had the highest of AUC of 0.83 (95% 
CI 0.80 to 0.86), 0.93 (95% CI 0.91 to 0.95) and 0.93 (95% 
CI 0.91 to 0.95) for the admission, last- value and time- vary 
model, respectively. Table 3 and figure 1 demonstrate as 
all models approach the time of discharge their ability 
to discriminate mortality increases. For example, table 2 
shows the models’ AUC was higher for 7 days after admis-
sion (AD 7) versus on admission (AD 1). Similarly, the 
models’ AUC was the higher the day before discharge 
(DD 2) versus 7 daysbefore discharge (DD 7). All models 
showed the more data provided to the algorithm, the 
better the model predicted. However, the model based 
on admission data had the least improvement in discrim-
ination over time (table 3 and figure 1). Also, of note, all 
models performed better with the imputed dataset as the 
imputed data provided inferred missing lab/vital results 
with the assumption results from the day prior would be 
similar. After review of the three models on the daily and 
daily- imputed set, we determined the GB time- vary model 
with the imputed dataset performed best for our needs 
as it sustained a higher AUC over time and had better 
calibration. The hyperparameters for this model in addi-
tion to the default included: 150 iterations, 0.1 shrinkage, 
70% train proportion, maximum branch 2, maximum 
depth 5, minimum categorical size 5, missing values use 
in search, leaf fraction 0.01, number of surrogate rules 
0 and subtree assessment using average square error. To 
assess overfitting, the test was compared with the valida-
tion set, and a 0.018 difference in the AUC on admission 
was found showing the model continued to predict well 
on external data. The final model’s algorithm with an 
example dataset is available at Zenodo.14

Figure 2 shows the calibration plots during GB time- 
vary model in the test set from different time periods of 
patients stay: on admission, 7 days after admission and 3 
days prior to discharge. The model is generally well cali-
brated although with a slight propensity to overpredict 
at these various points in time during a patient’s stay. 
Figure 3 depicts a more intuitive presentation of the 
calibration of the model, via the proportion of observed 
mortality stratified by prediction risk deciles from the 
GB time- vary model in the test sets. It also shows the 
calibration of the model during different time periods: 
on admission, 7 days after admission and 3 days prior to 
discharge. The model performed better as the prediction 
approached discharge. Predictions after 7 days of admis-
sion and 3 days before discharge show 98% and 100% 
of patients in the highest decile of predicted risk died, 
respectively, and 0% of patients in the lowest decile died 
for all the time periods. These calibrations by decile offer 
a more intuitive illustration of the performance of the 
model for clinicians.
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Variable importance
The prediction scores of the model ranged from 0% 
to 100% with 142 features important to the model. We 
explored the important feature results using variable 
importance.15 Figure 4 shows a heat map of the 30 features 
most associated with the mortality and the overall per 
cent association on patient’s information on discharge 
day from the validation and test set combined. It lists the 
important features along with a calculation of the average 
change in prediction score of patients for each of level of 
the feature. Briefly, variable importance varies between 
zero and one, with higher values indicating features asso-
ciated more strongly with predictions. Some important 
features identified by the model included the difference 
between two values which is results in weight the changes 
in a patient’s value rather than population. The features 
of pulse oximetry, respirations, systolic blood pressure, 
blood urea nitrogen, white blood cell, age, length of stay 
and lymphocyte per cent had a relative importance of at 
least 2%. On average, patients had at least a 50% increase 
in their prediction score if they had any of the following 
characteristics compared with not having it: respira-
tions ranging 22–44, blood urea nitrogen >31, oximetry 
value <91%, lymphocyte per cent ranging <7, tempera-
ture >99.6, calcium ranging 4.1–8.1, mean respirations 
ranging 23.4–37.2, troponin value 0.09–69.4 and neutro-
phil percentage ranging 84–99. Conversely, patients with 
a median- min difference in oximetry value of 0–0.5, respi-
ratory mean- min difference of 0–0.97 or lymphocyte per 
cent of 24–93 had at least a 20% decrease in their predic-
tion for mortality.

DISCUSSION
This study describes the development of a machine 
learning model to predict mortality of patients who 
present and are admitted to the hospital with a confirmed 
COVID-19 by PCR and provide an accurate daily risk esti-
mate during the patient’s stay. The aim of this study was 
to explore and compare three methods to build a model 
that could accurately predict risk of death on admission 
and at each day during the stay of the patient.

A strength of the current study was the use over 3000 
discharges in a US population. We plan to apply this model 
to data exported out of clarity each day and provide clini-
cian with daily prediction estimates. The model can be 
found at Zenodo, along with a sample table that is created 
prior to applying the model. Unlike other models, it does 
not require manual calculation of a score, a welcome 
improvement for the busy clinician. Because the model 
has high accuracy and is well calibrated, it can be used in 
other studies as an objective estimation of disease severity. 
The objective nature of the model is important as it limits 
biases from documentation issues of overwhelmed clini-
cians and differences in treatments and provides trans-
parent objective data to characterise severity of a novel 
disease. Additionally, novel feature engineering method-
ologies were included such as changes in laboratory/vital Ta
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results within the context of an individual patient, rather 
than in the population only, which helped to improve the 
model’s predictions over the course of a patient’s stay.

Prior studies suggest AI has been slowly gaining trac-
tion in healthcare due to the perception that machine 
learning models are ‘black boxes’ or not interpretable by 
the user.16 The methods demonstrated in this study are 
more approachable and easily understood by the clini-
cian. This study presented calibration via deciles that is 
more intuitive for the non- data scientist. Also, a heat map 
was created to present results from the variable impor-
tance algorithm—the distribution of prediction estimates 
across the binned variables. Users might hesitate to rely 
on AI for decisions without knowing the risk factors 
driving the model, despite the computer making accurate 
recommendations. By providing user’s information about 
the model such as variable importance, the association of 
each feature level with the outcome provides additional 
insights serve to facilitate trust that is needed to increase 
the adoption of AI in the healthcare industry.

This model highlights individualised current and prior 
laboratory and vital results to determine patient- specific 
mortality risk. Important determinants of risk are further 
evaluated to illustrate the changes in prediction among 
patient populations. The interpretability of the model 
in this study serves to provide insights to intensivists, 
researchers and administrators of predictors for surviv-
ability from a disease with unpredictable or little known 
outcomes.

This retrospective study applied machine learning algo-
rithms to structured patient data from the EHR of a large 
urban academic health system to create a risk prediction 
model to predict mortality during admission in patients 
with confirmed COVID-19. With an AUC of 0.83 at admis-
sion, and 0.97 3 days prior to discharge on imputed data, 
the model discriminates well and is well calibrated. Addi-
tionally, the final model’s AUC was consistent on both the 
time held out internal validation and external test sets, 
which gives more confidence the model will continue 
to perform well on future data. Because we continue to 
have large amounts of discharges daily, potential changes 

in populations and modification of treatment protocols, 
we plan to continue to monitor performance and retrain 
model when discrimination falls below 0.8. Ideally, the 

Figure 1 Daily AUCs from the three final models (admission, 
last- value and time- vary) and their performance over time (7 
days after admission and prior to discharge) on the test set 
and ‘imputed’ test set (N=864). (A) Compares the AUCs each 
day from admission of patients’ stay. (B) Compares the AUCs 
each day to discharge ofpatients’ stay. AUC, area under the 
receiver operating characteristic curve.

Figure 2 Calibration plots using time- vary model on test 
set (A) on admission, (B) 7 days after admission and (C) 
3 days before discharge (N=864). The plots show a slight 
propensity for the model to over predict during various points 
of patients’ stays.
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monitoring of the AUC score should be automated 
and alert the data scientist when the value falls below a 
predefined threshold. Hospitals should consider devel-
oping their own mortality prediction models based on 
their specific cohorts, as patient populations may differ 
across facilities therefore affecting validation results.17

Finally, and perhaps most importantly, implementa-
tion plays a critical role in supporting in the adoption of 
AI as healthcare systems face increasingly dynamic and 
resource- constrained conditions.18 19 While a plethora 
of literature exists addressing data acquisition, develop-
ment and validation of models, the application of AI in 
a real- world healthcare setting has not been substantially 
addressed.20 21 22 Often, prediction model results are used 
to risk adjust and benchmark rates of an outcome.23–25 In 
addition to using prediction estimates as part of a tool, we 
suggest models be used as tool in the process of under-
standing and studying a disease.

Limitations/next steps
The usual limitations associated with an EHR might affect 
our model. While this model relies on mostly objective 
data, some inherent bias might be introduced in terms 
of demographic and laboratory/vital collection and 
documentation. For example, certain laboratory tests 
might be ordered on sicker patients or certain types of 
clinicians might use similar ordering practices that would 
bias the model. Therefore, the model might be relying 
on the subjective nature of a clinician rather than purely 
objective data. On a similar note, patients that might have 
died after discharge would bias the model. As suggested 
earlier, results from the model may not be generalisable 
to other institutions or patient populations; therefore, 
hospitals should develop tailored models for their own 
patient population, especially for a disease that is not yet 
well understood. Because of this, the ‘external validation’ 
dataset in this study does not meet the TRIPOD definition 
as it is using a sample from the same patient population 
although future population. Furthermore, models need 
to be continually monitored and retrained when perfor-
mance degrades. Lastly, this model intends to allocate 
resources, ensure basic and routine care is completed 
and quantify the health of a patient.

The prediction estimates can be used to create reports 
adjusting mortality rates by physician, ward or hospital 
facility. The estimates can also be used to identify high 
performers to gain insights on potential successful aspects 
of their care and treatment. The model can be further 
enhanced by predicting patients who are most likely to 
unexpectedly expire to gain more insights on how predic-
tors compare with current model. The estimates can also 
be used for other studies where an objective metric for 
disease severity is needed. Finally, prediction estimates 
can be incorporated into an AI tool that can allow clini-
cians facing a new illness with an uncertain course to 
identify and prioritise patients who might benefit from 
targeted, experimental therapy.

Figure 3 Proportion of actual mortality by predicted 
mortality score decile ranking in imputed test set. (A) On 
admission, (B) 7 days after admission and (C) 3 days 
before discharge (N=864). The model shows an increase in 
actual mortality among decile groups with higher predicted 
mortality.
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CONCLUSION
Hospitals can develop customised prediction models as 
the amount of EHR data increases, computing power 
and speeds are faster and machine learning algorithms 
are broadly accessible. During times of high demand and 
large uncertainty around a disease, prediction models 
can help to identify underlying patterns of predictors of 
disease and be deployed. This study shows how to build 
a prediction model whereby the predictions improve 
during the patient’s course of stay. Results from a highly 
accurate model can serve as an objective measure of 
disease severity where manual review of every cases is not 
feasible. Similar to other industries, machine learning 
should be integrated into research and healthcare work-
flows to better understand and study a disease as well as be 

incorporated into tools to assist in care, allocate resources 
and aid in discharge decisions to hopefully save lives.
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