Skip to main content
. 2021 May 7;28(1):e100235. doi: 10.1136/bmjhci-2020-100235

Table 2.

AUC, accuracy (acc), sensitivity (sens), specificity (spec), NPV and PPV of LR, DT, GB, SVM and NN models on admission benchmark, last-value and time-varying models in test sets

Model N Admission Last-value Time-vary
AUC Acc Sens Spec PPV NPV AUC Acc Sens Spec PPV NPV AUC Acc Sens Spec PPV NPV
LR 864 0.79 0.80 0.34 0.94 0.66 0.82 0.98 0.95 0.23 0.97 0.90 0.97 0.88 0.83 0.66 0.89 0.65 0.89
DT 864 0.69 0.76 0.47 0.85 0.49 0.83 0.93 0.92 0.21 0.96 0.85 0.94 0.81 0.78 0.61 0.83 0.53 0.87
GB 864 0.83 0.82 0.53 0.91 0.64 0.86 0.99 0.96 0.24 0.97 0.90 0.98 0.93 0.88 0.81 0.90 0.72 0.94
SVM 864 0.77 0.74 0.56 0.80 0.47 0.85 0.99 0.93 0.23 0.94 0.83 0.97 0.85 0.80 0.68 0.84 0.57 0.89
NN 864 0.82 0.81 0.49 0.92 0.65 0.85 0.97 0.95 0.24 0.95 0.87 0.87 0.90 0.84 0.77 0.86 0.63 0.92

AUC, area under the receiver operating characteristic curve; DT, decision tree; GB, gradient boosting decision trees; LR, logistic regression; NN, neural network; NPV, negative predictive value; PPV, positive predictive value; SVM, support vector machine.