Table 2.
Model | N | Admission | Last-value | Time-vary | |||||||||||||||
AUC | Acc | Sens | Spec | PPV | NPV | AUC | Acc | Sens | Spec | PPV | NPV | AUC | Acc | Sens | Spec | PPV | NPV | ||
LR | 864 | 0.79 | 0.80 | 0.34 | 0.94 | 0.66 | 0.82 | 0.98 | 0.95 | 0.23 | 0.97 | 0.90 | 0.97 | 0.88 | 0.83 | 0.66 | 0.89 | 0.65 | 0.89 |
DT | 864 | 0.69 | 0.76 | 0.47 | 0.85 | 0.49 | 0.83 | 0.93 | 0.92 | 0.21 | 0.96 | 0.85 | 0.94 | 0.81 | 0.78 | 0.61 | 0.83 | 0.53 | 0.87 |
GB | 864 | 0.83 | 0.82 | 0.53 | 0.91 | 0.64 | 0.86 | 0.99 | 0.96 | 0.24 | 0.97 | 0.90 | 0.98 | 0.93 | 0.88 | 0.81 | 0.90 | 0.72 | 0.94 |
SVM | 864 | 0.77 | 0.74 | 0.56 | 0.80 | 0.47 | 0.85 | 0.99 | 0.93 | 0.23 | 0.94 | 0.83 | 0.97 | 0.85 | 0.80 | 0.68 | 0.84 | 0.57 | 0.89 |
NN | 864 | 0.82 | 0.81 | 0.49 | 0.92 | 0.65 | 0.85 | 0.97 | 0.95 | 0.24 | 0.95 | 0.87 | 0.87 | 0.90 | 0.84 | 0.77 | 0.86 | 0.63 | 0.92 |
AUC, area under the receiver operating characteristic curve; DT, decision tree; GB, gradient boosting decision trees; LR, logistic regression; NN, neural network; NPV, negative predictive value; PPV, positive predictive value; SVM, support vector machine.