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Abstract

Convolutional Neural Networks (CNNs) have been utilized for to distinguish between benign lung 

nodules and those that will become malignant. The objective of this study was to use an ensemble 

of CNNs to predict which baseline nodules would be diagnosed as lung cancer in a second follow 

up screening after more than one year. Low-dose helical computed tomography images and data 

were utilized from the National Lung Screening Trial (NLST). The malignant nodules and nodule 

positive controls were divided into training and test cohorts. T0 nodules were used to predict lung 

cancer incidence at T1 or T2. To increase the sample size, image augmentation was performed 

using rotations, flipping, and elastic deformation. Three CNN architectures were designed for 

malignancy prediction, and each architecture was trained using seven different seeds to create the 

initial weights. This enabled variability in the CNN models which were combined to generate a 

robust, more accurate ensemble model. Augmenting images using only rotation and flipping and 

training with images from T0 yielded the best accuracy to predict lung cancer incidence at T2 

from a separate test cohort (Accuracy = 90.29%; AUC = 0.96) based on an ensemble 21 models. 

Images augmented by rotation and flipping enabled effective learning by increasing the relatively 

small sample size. Ensemble learning with deep neural networks is a compelling approach that 

accurately predicted lung cancer incidence at the second screening after the baseline screen mostly 

2 years later.
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1. Introduction

Lung cancer is often diagnosed at a late stage of the disease where the survival rates are 

dismal; the five-year relative survival rate for all lung cancers is 19% [1, 2]. Early diagnosis 

of lung cancer is a foremost priority for improving patient survival and outcomes. The 

National Lung Screening Trial (NLST) [3] compared low-dose helical computed 

tomography (LDCT) and standard chest radiography (CXR) for three annual screens and 

reported a 20% relative reduction in lung cancer mortality for LDCT compared to CXR. As 

such, lung cancer screening by LDCT is an effective modality for mitigating lung-cancer 

mortality and currently is the only option for those who are at high-risk. Lung cancer 

screening for high-risk individuals typically detects a large number of indeterminate 

pulmonary nodules, of which only a fraction will ever be diagnosed as cancer. As such, 

accurate and reproducible biomarkers to predict which indeterminate pulmonary nodules 

will be diagnosed as cancer would have direct translational implications as a tool for clinical 

purposes to improve the lung cancer screening for nodule detection.

Conventional quantitative radiomics features (size, shape, and texture) and image-based 

features (deep features, blobs, and, curves) can be generated and then analyzed using 

machine learning algorithms for classification analyses including risk prediction, diagnostic 

discrimination, and prognosis [4]. Deep learning is an emerging machine learning approach, 

which has been applied to classification of lung nodules and tumors [5, 6]. To generate 

generic features (blobs, edges, etc.) from an image, different convolutional kernels are 

applied over the input image and then those generic feature-based images are passed through 

some fully connected neural layers. This category of neural network is called a convolutional 

neural network (CNN) which has achieved high accuracy on image data [7]. Hu et al. [8] 

surveyed four deep neural network architectures (CNN, autoencoders, deep belief network 

and fully connected network) for detection and diagnosis of various cancers. Many machine 

learning approaches have been proposed for lung cancer classification. Cao et al. [9] 

proposed a multi-kernel based feature selection approach along with imbalanced learning. 

The feature selection approach was based on pairwise feature similarities. Data 

oversampling was conducted to mitigate the effect of imbalance problem. The proposed 

approach was evaluated using different classifiers and compared with other feature selection 

algorithms. Causey [10] proposed a non-invasive method using CT data to predict 

malignancy of lung nodules by CNN. They divided the patients in the LIDC dataset into 5 

levels (1- less likely to be malignant, 2 and 3- intermediate malignant, 4- moderately 

malignant, 5- highly likely to be malignant) and combined both image and quantitative 

radiomics features to predict malignancy. They achieved 0.993 AUC with 95.2% accuracy 

when differentiating level 1 tumors from the remaining ones. Whereas, differentiating level 1 

and 2 from the other levels yielded 0.984 AUC and 94.6% accuracy. Nishio et al. [11] 

developed an approach to classify benign, primary, and metastatic lung cancer. They 

evaluated the effectiveness of a deep CNN for lung cancer classification and compared the 

performance of a CNN with the machine learning models built on quantitative radiomics 

features. Liu et al. [12] proposed a multi-view and multi-scale CNN for lung nodule 

classification. There were 12 different views and 3 different scales utilized to generate 

different images as input to the CNN. This approach yielded 92.1% and 90.3% accuracy on 
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the LIDC and ELCAP [13] dataset respectively. Carvalo et al. [14] utilized index basic and 

standardized taxic weights to show the different patterns between malignant and bengin 

tumors and then finally used a CNN for classification. Zuo et al. [15] proposed a multi-

resolution CNN to classify lung nodules. The multi-resolution CNN was used to generate 

features of various resolutions from network layers of different depth for nodule 

classification. Most of the studies [9, 10, 12, 14] in lung cancer analysis have used the 

LIDC-IDRI dataset [16] for classification which has mostly contrast enhanced CT scans as 

opposed to NLST scans used in this study which are non-contrast and low dose.

Ensemble learning [17, 18, 19] is an approach for creating multiple different learned models 

and then integrating the outcomes into a single classification model. The final ensemble 

model typically generates improved classification compared to a single model by reducing 

the variance obtained from individual models. In a previous study [20], the authors utilized 

ensemble learning for predicting lung nodule malignancy, which improved the classification 

accuracy from 76.79% [21] to 86% and AUC from 0.81 to 0.9.

In this study, we generated additional CNN models by using different random weight 

initializations for training and then utilized the ensemble of CNN classifiers to predict lung 

cancer incidence from LDCT screening images. Classification performance between 

different image augmentation approaches was also compared. The maximum accuracy from 

this work was 90.29% with 0.96 AUC, a marked increase from past results [20, 21].

2. Methodology

2.1. Dataset

We obtained deidentified data from the National Cancer Institute Cancer Data Access 

System. The data included patient demographics, clinical covariates, and LDCT images. The 

NLST was a multi-center trial with subjects randomly assigned to be imaged by LDCT or x-

ray (CXR). The study compared LDCT versus x-ray (CXR) for early detection of lung 

cancer [22, 3] among high-risk individuals who were current or former smokers with a 

minimum of 30-pack years of smoking and an age range of 55-74 years. Former smokers 

had to have quit within 15 years [22, 3, 23]. Our overall study was a nested case-control 

approach which included nodule positive controls and screen-detected incident lung cancers 

with matched demographics from the NLSTs LDCT arm. The original description of lung 

cancer and nodule-positive cohorts was described in Schabath, et. al. [24, 25]. At T1, 85 

screen-detected incident lung cancers (SDLC) were diagnosed and at T2, a separate group of 

85 SDLC cases were diagnosed. Both lung cancer case groups had nodules at T0 that were 

followed across time. Then 328 nodule-positive controls had nodules (never diagnosed as 

cancer) that were followed from T0 to T2 and had similar matched demographics as the 

cases diagnosed as lung cancer. We didn’t include any ground glass nodules in our study.

The incident lung cancer patient and nodule positive controls for this study were divided into 

two cohorts: Cohort 1 (training cohort. which consisted of 85 incident lung cancers 

diagnosed at T1 and 176 nodules positive control for a total of 261 cases) and Cohort 2 (test 

cohort, which consisted of 85 incident lung cancers diagnosed at T2 and 152 nodules of 85 

incident lung cancers diagnosed at T2 and 152 nodules positive control for a total of 237 
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cases). Selection of the two cohorts is shown in Figure 1. Table 1 shows nodule size by 

category. There was no significant difference statistically between the incident lung cancers 

diagnosed and positive controls with respect to smoking history, age, sex, race, and ethnicity. 

As previously described in [21] the T0 nodules were identified and segmented using 

Definiens Software [26] by a radiologist with more than 9 years of experience

2.2. Convolutional Neural Network

A CNN [27] is a multi-layer neural network architecture with convolutional, and typically 

max pooling, plus fully connected layers. With more than 1 hidden layer, they are deep 

networks trained via “deep learning”. The convolutional layers enable the deep neural 

network to learn appropriate features. In our previous study [28], a tuned pre-trained VGG-S 

model (> 10 million parameters) was analyzed, but the results obtained were not as good as 

using only quantitative features [21]. The VGGS model had many weights with respect to 

the number of images in our dataset. To avoid overfitting the data, smaller CNN 

architectures were generated and analyzed. For this study, three smaller CNN architectures 

(less weights) were designed. They were built using Keras [29] with a Tensorflow [30] 

backend. Each model had less weights than larger CNN models (VGG, ResNet, etc). Each 

model had a significantly smaller number of weights compared to most models available for 

transfer learning. The goal was a diverse set of classifiers that did not overfit. More weights 

in a CNN network can provide a robust and complex classifier, but also requires more data 

to train, otherwise overfitting is likely to occur.

CNN architecture 1 had two convolution layers followed by two max-pooling layers and 

finally two fully connected layers before a final classification layer. Leaky ReLU 

(alpha=0.01) was added after the convolution layer output to add non-linearity. The total 

number of parameters was 841,681. CNN architecture 2 had the same initial layers 

(convolution and max-pooling layers) as in CNN architecture 1; however, after the first fully 

connected (fc) layer, a Long-Short-Term Memory (LSTM) layer [31] was used in place of 

the second fc layer followed by a final classification layer. LSTM is a recurrent neural 

network architecture that can store useful information for future calculation and has different 

gate types to allow for memory. In CNN architecture 2, we took advantage of the unique 

architecture of LSTMs and assessed whether a stateless LSTM could provide improved 

classification performance. The total number of parameters in CNN architecture 2 was 

845,033. CNN architecture 3 was a cascaded CNN architecture that was modified from the 

CNN architecture utilized by Li et al. [32] . Initially, there were two branches in the network 

and the same input image was sent through both branches. The left branch has only a max-

pooling layer, whereas the right branch has 2 convolution layers and each convolution layer 

is followed by one max-pooling layer. The output of both the right and left branches were 

merged together and then fed to another convolution and max-pooling layer, followed by the 

final classification layer. Combining the resized image directly with a set of convolved 

images provides more image specific raw information. Before the final classification layer, 

the convolution layer preserved generic information (e.g. size, shape) for malignant and 

control positive cases and could provide more information for better classification 

performance. CNN3 had 40k parameters, whereas CNN1 and CNN2 had 845k parameters. 

The reduction of parameters in CNN3 from CNN1 and CNN2 was 96%. [28]. Table 2 and 3 
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show the parameters and layers for each CNN architecture. Although our CNN architectures 

were small and shallow, to further reduce overfitting L2 regularization along with dropout 

[33] was utilized before the final classification layer for all three CNN architectures. The 

CNN architectures along with pre-trained weights can be accessed from (https://github.com/

hellorp1990/CNN-architectures).

2.3. Data Augmentation

Cohort 1 was used as the training set, which included 85 incident lung cancers and 176 

nodule positive controls. Data augmentation was applied to increase the sample size of the 

training set before training a CNN. The dataset was augmented first by rotating between 

0-360 degrees with a gap of 12-degrees and flipping (vertically) as one approach (72 

augmented images were generated from each original image). Elastic deformation [34, 35, 

36], was also utilized for image augmentation. In [37], the authors showed improvement 

with elastic augmentation for automated cell counting inspiring us to try it. Strength of the 

displacement, height and width of grid was chosen empirically as 3 for elastic deformation 

using software from [38], to keep the similarity (Structural Similarity Index) between 

original and augmented images less than 85%. After elastic deformation augmentation, we 

utilized 12-degree rotations and flipping and added the original images (261 cases from 

Cohort 1) for training the CNN (72 augmented images were generated from each original 

image). In this case, we utilized both original (261 cases) as well as elastic augmented image 

for training and validation. This was a second augmentation approach. Three original nodule 

images along with elastic augmented images are shown in Figure 2.

2.4. Ensemble Learning

The machine learning procedure that integrates diverse classifier models to create a single 

(better performing) learned model is called ensemble learning [17]. Ensembles have been 

used for image understanding [39], as well as brain signal (EEG, BCI) analysis [40, 18]. The 

ensemble model is often more stable, robust and accurate than the base learners. Ensembles 

reduce variance among base learners to produce improved classification. In this study, we 

trained each CNN using seven different initializations to obtain different starting random 

weights. For combination, we used an averaging approach (obtain pseudo probabilities from 

each base learner which are then averaged to generate a final probability) to produce a final 

prediction from our ensemble. We compared the ensemble approach result against training 

individual models using one of the previously discussed image augmentation strategies.

To reduce the training complexity, we explored snapshot ensembles [41, 42]. We trained a 

CNN once and took models from intermediate epochs to create an ensemble. The triangular 

cyclic learning rate (step size 20) with base and max learning rate of 0.00001 and 0.0001 

was used for snapshot learning [43]. While training a CNN we chose 7 epochs (epoch 40 to 

100 with a gap of 10) for an ensemble. Seven such epochs were taken for the 3 CNNs, and 

the performance of the ensemble of 21 classifiers was calculated over the test set with the 

outputs averaged to produce a final ensemble prediction.
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3. Experiments and Results

For each imaging study, the slice which contained the most area of the nodule was chosen, 

and a rectangular region that mostly covered the nodule was extracted. In Figure 3 there is 

an interpolated nodule as well as the lung slice containing the largest nodule outlined in red. 

The input size for our CNN architectures was 100×100 and the largest nodule size was 

104×104. A bi-cubic algorithm was used for resizing the nodule images. Our designed CNN 

architectures were trained for 100 epochs. Cohort 1 was used for a training set, and Cohort 2 

was used as a separate test set. Cohort 1 data was randomly divided into 70% for training 

and 30% validation. As previously discussed, for training the CNN two different image 

augmentations were applied to generate more training images from Cohort 1: flip and rotate 

and elastic deformation was applied to both the 70% of data used for training and 30% of 

data used for validation. Each of the three CNN architectures were trained using different 

initializations with the same training and validation set. The learning rate was 0.0001, and a 

batch size of 16 was chosen for training and validation. As we have only 2 classes (SDLC 

and positive control cases), a sigmoid function for activation was utilized in the final 

classification layer. For performance evaluation, accuracy and area under the re-ceiver 

operator characteristic curve (AUROC) [44] were calculated from predictions on the unseen 

and separate Cohort 2 data.

Each of the three CNN architectures was trained using seven different initializations, 

yielding 21 models. Figure 4 and 5 show the variations in accuracy for each CNN type in the 

ensemble while training using different initializations with two image augmentation 

approaches and without image augmentation. We also utilized the Grad-Cam [45] algorithm 

to display the areas in the input image which are relevant for prediction analysis. The Grad-

cam algorithm was applied on the CNNs trained on images generated by flipping and 

rotation. We found that for every CNN architecture trained using seven different 

initializations activated different regions of the input image. Figure 6 presents the input 

image and the Grad-Cam algorithm output from three CNN architectures.

With the original images only (no augmentations) the ensemble of these models achieved 

74.68% accuracy with 0.78 AUC as shown in Table 4. Augmentation was performed by 

training each CNN architecture with the images generated by flipping and rotation and seven 

different initializations for random initial weights. For each of the initializations, the model 

with the best performance on the validation data was used for prediction on Cohort 2. An 

ensemble result from the seven models was created using averaging for every CNN 

architecture. We found that the ensemble enhanced classification performance. We also 

made an ensemble of 21 models (3 CNN architectures with seven different initializations) 

and observed a further improvement in classification performance. The ensemble of 21 

models with images augmented with flipping and rotation achieved the best results of 

90.29% accuracy with 0.96 AUC (95% confidence interval, 0.93-0.98; True positive rate 

(TPR)=0.73, False negative rate (FNR)= 0.27, False positive rate (FPR)= 0). The results are 

shown in Table 4. We also examined how similar the predictions obtained by these models 

were. The pearson correlation coefficient was calculated along with the standard deviation 

across all the 7 models. We analyzed only the models trained on images generated by 

flipping and rotation image augmentation. The 7 models from the CNN1 architecture had a 

Paul et al. Page 6

Comput Biol Med. Author manuscript; available in PMC 2021 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maximum and minimum correlation of 0.96 and −0.03 respectively with a standard deviation 

of 0.19. Similarly, the 7 models from the CNN2 architecture had a maximum and minimum 

correlation of 0.95 and −0.12 respectively with a standard deviation of 0.21. Whereas, 7 

models from the CNN3 architecture had a maximum and minimum correlation of 0.9 and 

−0.1 respectively with a standard deviation of 0.3. From the 21 models from CNN1, CNN2 

and CNN3 had a maximum and minimum correlation of 0.96 and −0.1522 with 0.24 

standard deviation.

Our smaller CNN architectures were also compared with tuned VGG16 and ResNet50 

architectures from [46]. We used the ImageNet trained weights in the lower layers for both 

architectures, and only modified the parameters of the upper layers. The tuned VGG16 and 

ResNet50 CNN architectures are presented in Table 5. The tuned CNN architectures were 

trained on images generated by flipping and rotation. Each of the CNN architectures were 

trained using seven different initializations. Figure 7 presents the variations in accuracy. 

From the ResNet50 architecture, we achieved 73.41% maximum and 69.62% minimum 

accuracy. Similarly, from the tuned VGG16 architecture, 73% maximum and 69.19% 

minimum accuracy was obtained. The maximum and minimum accuracy of the tuned 

VGG16 and ResNet architecture was found to be lower than our smaller CNN architectures. 

Then an ensemble of CNNs were generated. From the 7 ResNet50 models, 82.27% accuracy 

(0.89 AUC, TPR= 0.66, FNR= 0.34, FPR= 0.08) was achieved. Whereas, 81.43% accuracy 

(0.88 AUC, TPR= 0.66, FNR = 0.34, FPR= 0.1) was obtained from 7 ensemble VGG16 

architectures. Seven models from the tuned ResNet50 architecture had a maximum and 

minimum correlation of 0.96 and −0.05 respectively with a standard deviation of 0.3. 

Wheras, 7 models from tuned VGG16 architecture had a maximum and minimum 

correlation of 0.98 and −0.11 respectively with a standard deviation of 0.38. The VGG16 

and ResNet50 model had many weights with respect to the number of images in our dataset, 

which resulted in lower performance.

The previously described elastic transformation approach was also applied for data 

augmentation, and each of the CNN architectures was trained using seven different 

initializations. An ensemble was created for each CNN architecture separately, and an 

ensemble of 21 models was also generated. Using an ensemble of 21 models, the best results 

achieved were 86.91% accuracy with 0.95 AUC (TPR= 0.68,FNR= 0.32, FPR= 0.03) by 

augmenting images using elastic deformation followed by rotation and flipping.

A Snapshot ensemble was also created for all three CNN architectures after data 

augmentation. For every CNN, 7 epochs (epoch 40 to 100 with a gap of 10) were chosen for 

an ensemble. Afterwards, 21 models (7 models from 3 CNN architectures) were used for an 

ensemble and the best results achieved were 85.65% accuracy with 0.91 AUC (TPR= 0.65, 

FNR= 0.35, FPR= 0.03) by augmenting images using flipping and rotation.

We compared the improvement in accuracy and AUCROC of our best result with previous 

studies using only conventional radiomics approaches [21], ensembles of classifiers [20], 

and an ensemble of CNNs without any image augmentation with the results are shown in 

Table 6. In [20], the authors achieved 86.91% accuracy with 0.94 AUC (TPR= 0.7, FNR = 

0.3, FPR= 0.04) using averaging after combining three CNNs. The accuracy improvement 
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here is over 3% from previous results and a 0.02 AUC increase was obtained. Using only 

quantitative features [21] we achieved just 76.79% accuracy with 0.81 AUC (TPR=0.67, 

FNR= 0.33, FPR= 0.18). The McNemar Test was applied for accuracy improvement 

analysis, where the AUROC significance test was calculated by the standard error (SE). The 

statistical analysis outcomes are shown in Table 6. The best ensemble performance was 

often statistically significantly better than other approaches.

4. Discussion and Conclusions

In this study we utilized an ensemble of CNNs and two different image augmentation 

approaches to predict which baseline nodules detected in lung cancer screening would be 

diagnosed as lung cancer in a follow-up screening interval. Though lung nodules can be 

classified and predicted by a CNN effectively, [10, 11, 15, 20], the classification 

performance can be further enhanced by ensemble learning. Our analyses revealed that using 

an ensemble of 21 models and augmenting images using only rotation and flipping yielded 

the best accuracy of 90.29% (AUC = 0.96 AUC) to predict which baseline nodules would be 

diagnosed as lung cancer at the second screen beyond the baseline, mostly 2 years later. The 

next best approach used elastic deformation-based image augmentation with an ensemble of 

21 CNNs (Accuracy = 86.91% with AUC = 0.95). An ensemble of 21 CNNs without any 

image augmentation yielded an accuracy of 74.68% accuracy (AUC = 0.78) Thus, image 

augmentation enabled significant improvement in accuracy and AUC. We also compared our 

approach using two tuned CNN architectures (VGG16 and ResNEt50). Using the 7 ResNet 

models, 82.27% accuracy (0.89 AUC, TPR= 0.66, FNR= 0.34, FPR= 0.08) was achieved. 

Whereas, 81.43% accuracy (0.88 AUC, TPR= 0.66, FNR = 0.34, FPR= 0.1) was obtained 

from 7 ensemble VGG16 architectures.

In [20], the authors utilized pseudo-probabilities from three CNNs to form an ensemble and 

obtained enhanced performance. Motivated by this observation, more CNN models were 

generated for the ensemble. Training each of the three CNN architectures with seven 

different initializations was our approach to generate more dissimilar base learner models. 

This created an ensemble of twenty-one models. A larger ensemble enabled further 

enhancement of the classification performance. Training a CNN with different seeds gives 

different weights and then convolution operations generate different feature maps and the 

final calculations for classification change as well. This approach generates different CNN 

models with variations in performance (Fig. 4 and 5), which helped in generating further 

improved classification performance when combined as an ensemble. Training multiple 

CNNs with different initializations is time-consuming even with a GPU. To counter this 

problem, a snapshot ensemble was chosen for analysis.

Image augmentation by flipping and rotation keeps the original shape and size of the nodule, 

whereas the elastic augmentation displaces each pixel which generates a deformed nodule 

image. We speculate that after elastic deformation, some nodules would no longer be clearly 

like those that became malignant nor the control nodules. We found that with the flip and 

rotation image augmentation 85.65% accuracy (0.91 AUC) was achieved using the snapshot 

ensemble whereas, 83.96% accuracy (0.86 AUC) was obtained from elastic augmentation. 

These results showed improvement over no image augmentation and over a quantitative 
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approach [21]. However, training multiple CNNs with different initializations showed better 

classification performance than a snapshot ensemble. The snapshot ensemble did have an 

advantage of 7 times reduction in wall clock time over training multiple CNNs. To our 

knowledge this is the first work to report on a snapshot ensemble for radiomics analysis.

In a recent study [47] that utilized a large number of lung cancer screening subjects (N = 

42,290) with an end-to-end approach they found 0.944 and 0.874 AUC on the NLST dataset 

for predicting cancer after one follow-up and two follow-ups (typically at 1 year and 2 

years), respectively. From our study, we obtained 0.960 AUC for predicting cancer that will 

be discovered on the second follow-up (typically 2 years later), which was an improvement 

over the 0.874 AUC in [47]. By comparison, the best models obtained from our study were 

compared with the radiomics model, and CNN models and the results shown in Table 6. 

Traditional radiomics features and CNNs were used previously successfully for classifying 

future lung cancer incidence from nodules non-invasively. The best result from our current 

work was 90.29% accuracy with 0.96 AUC (95% confidence interval, 0.93-0.98; True 

positive rate (TPR)=0.73, False negative rate (FNR)= 0.27, False positive rate (FPR)= 0), 

which was significantly better than our radiomics approach of 76.79% accuracy with 0.81 

AUC [21] and a single CNN model of 76% accuracy with 0.87 AUC from [48] and 86.9% 

accuracy (0.94 AUC,TPR= 0.7, FNR = 0.3, FPR= 0.04) from three CNN ensemble [20]. Our 

accuracy and AUC were solid improvements over those in [20], though not statistically 

significantly.

Size is an effective factor for the prediction of malignancy in the lung nodule. The positive-

screened nodule should be > 6 mm in diameter according to both the National 

Comprehensive Cancer Network (NCCN) and the American College of Radiology (ACR) 

[49]. We divided the Cohort2 into three subsets based on the longest diameter: < 6mm (small 

nodules), 2: 6mm, and < 16mm (intermediate nodules) and 2: 16mm (large nodules) as 

mentioned in [25]. Table 7 shows the number of cases in each subset after spitting using 

size. Here we broke down our best performing model (90.29% accuracy and 0.96 AUC) with 

respect to size categories. Large nodules (2: 16mm) had TPR: 0.94, true negative rate 

(TNR): 1. Whereas, from the intermediate nodules ( 2: 6mm, and < 16mm) and small 

nodules (< 6mm) had a TPR of 1 and 0.48 respectively ; and TNR of 1 and 1. There are less 

small nodules and they are more difficult to predict. For real screening patient population, 

we can divide the nodules with respect to size information and then apply our model as 

mentioned in [50].

In the NLST study [3], in T2, only 5.2% cases (211 out of 4054) had confirmed lung cancer. 

This makes it a highly imbalanced problem. That’s why we chose an ensemble model. The 

ensemble model is often more stable, robust and accurate than the base learners. Individual 

models may have more FPR or FNR, but the ensemble model will reduce that. From this 

study, our model achieved FNR of 0.27 and FPR of 0. Even other models in our paper had 

very low FPR <0.1.

We do acknowledge some limitations of this study. For this study, we used 2-D slices instead 

of 3-D volumes our 2-D approach loses some information compared to 3-D; however, our 

results are significantly better than those using a 3-D approach shown in Table 6. With the 
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small data available, a 3-D approach will re’quire more parameters and we believe the 

tradeoff from having more parameters will not let us improve performance until more data is 

available. Our training and test data sets were fairly small. Given the modest limitations to 

this work, we applied a rigorous training and testing analysis to identify an ensemble that is 

highly predictive of lung nodules becoming cancer in the future for the lung cancer 

screening setting. Our study utilized a semi-automatic segmentation approach which was a 

limitation for our study

In conclusion, we found that image augmentation by rotation and flipping was very powerful 

for augmentation. Ensemble learning is a compelling approach with deep neural networks 

for lung nodule malignancy prediction to significantly enhance the classification results by 

utilizing diverse models.
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Figure 1: 
(top row)NLST study schematic, (bottom row)Flowchart of selection of cohort 1 and 

cohort2 from NLST study
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Figure 2: 
Examples of lung nodule images: Top row: original, Bottom row: elastic deformed images.
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Figure 3: 
(top) the lung nodule inside the lung image was outlined by red and (bottom) generated 

nodule region
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Figure 4: 
Box plots variations for each CNN while training using different initializations
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Figure 5: 
Box plots variations for each CNN while training using snapshot ensemble
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Figure 6: 
Examples of lung nodule images after Grad-Cam: First column: CNN1; Second Column: 

CNN2; Third Column: CNN3; Bottom Row: Original nodule image and the colormap.
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Figure 7: 
Box plot variations for tuned VGG16 and ResNet50
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Table 1

Number of cases after splitting using various Clinical criteria

Measurements Cohorts Min Max Ave

Cohort 1 SDLC 3.32 28.64 12.1

DiamLoetnegre (tmm) Cohort 1 PC 2.24 27.45 8.1

Cohort 2 SDLC 2.04 48.62 12.1

Cohort 2 PC 3.52 30.54 8.6

Cohort 1 SDLC 0.02 10.76 0.81

Volume (cm3) Cohort 1 PC
Cohort 2 SDLC

0.02
0.01

4.94
23.64

0.3
1.63

Cohort 2 PC 0.02 6.55 0.32

Abbreviations: PC = positive control; Min= Minimum; Max= Maximum; Ave = Average
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Table 2

Parameters for CNN architectures 1 and 2

CNN architecture 1 CNN architecture 2

Layers Parameters Layers Parameters

Input 100×100 Input 100×100

Conv1 64×5×5,pad 0,stride 1 Conv1 64×5×5,pad 0,stride 1

Leaky ReLU alpha=0.01 Leaky ReLU alpha=0.01

Max Pool 1 3×3, stride 3, pad 0 Max Pool 1 3×3, stride 3, pad 0

Conv2 64×2×2,pad 0,stride 1 Conv2 64×2×2,pad 0,stride 1

Leaky ReLU alpha=0.01 Leaky ReLU alpha=0.01

Max Pool 2 3×3, stride 3, pad 0 Max Pool 2 3×3, stride 3, pad 0

Dropout 0.1 Dropout 0.1

FC 1+ReLU 128 FC 1+ReLU 128

FC 2+ReLU 8 LSTM 1 + ReLU 8

L2 regularizer 0.01 L2 regularizer 0.01

Dropout 0.25 Dropout 0.25

FC 3+Sigmoid 1 FC 3 + Sigmoid 1

Total parameters 841,681 Total parameters 845,033
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Table 3

Parameters of CNN architecture 3

Layers Parameters

Left BRANCH

Input 100×100

Max Pool 1 10×10

Dropout 0.1

Right BRANCH

Conv1 64×5×5,pad 0,stride 1

Leaky ReLU alpha=0.01

Max Pool 2 3×3, stride 3, pad 0

Conv2 64×2×2,pad 0,stride 1

Leaky ReLU alpha=0.01

Max Pool 3 3×3, stride 3, pad 0

Concatenate Left and Right Branch

Conv 3 64×2×2, pad 0, stride 1

Max Pool 4 2×2, stride 2, pad 0

L2 regularizer 0.01

Dropout 0.1

FC 1+Sigmoid 1

Total parameters 39,553
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Table 4

VGG16 and ResNet50 Tuned Architecture

VGG16 ResNet50

Output from the final Convolution layer Output from base model

Fully Connected 1: 512, ReLU, Dropout=0.5 Global Average Pooling

Fully Connected 2: 512, ReLU, Dropout=0.5 Dropout =0.5

Fully Connected 3: 1, Sigmoid Fully Connected 1: 1, Sigmoid
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Table 5

Results from various ensemble approaches

Different Image Augmentation CNN Architecture 1 
Ensemble of 7 
models Accuracy 
(AUC)

CNN Architecture 2 
Ensemble of 7 
models Accuracy 
(AUC)

CNN Architecture 3 
Ensemble of 7 models 
Accuracy (AUC)

Ensemble of 21 models 
Accuracy (AUC)

No Augmentation 70.46% (0.74) 
TPR=0.4, FNR=0.6, 
FPR=0.125

70.04% (0.74) 
TPR=0.38, 
FNR=0.62, 
FPR=0.125

69.62% (0.72) 
TPR=0.33, FNR=0.67, 
FPR=0.1

74.68% (0.78) TPR=0.44, 
FNR=0.56, FPR=0.0.08

Rotation and Flipping 
Augmentation

84.80% (0.89) 
TPR=0.63, 
FNR=0.37, 
FPR=0.03

87.34% (0.89) 
TPR=0.66, 
FNR=0.34, 
FPR=0.01

87.34% (0.95) 
TPR=0.67, FNR=0.33, 
FPR=0.02

90.29% (0.96) TPR=0.73, 
FNR=0.27, FPR= 0

Elastic Deformation 82.30% (0.9) 
TPR=0.66, 
FNR=0.34, 
FPR=0.086

83.50% (0.92) 
TPR=0.67, 
FNR=0.33, 
FPR=0.072

79.32% (0.86) 
TPR=0.59, FNR=0.41, 
FPR=0.092

86.91% TPR=0.68, 
FNR=0.32, 
FPR=0.03

(0.95)

Rotation and Flipping 
Augmentation (Snapshot)

83.54% (0.89) 
TPR=0.635, 
FNR=0.365, 
FPR=0.066

81.85% (0.87) 
TPR=0.612, 
FNR=0.383, 
FPR=0.066

82.7% (0.88) 
TPR=0.6235, 
FNR=0.3765, 
FPR=0.06

85.65% TPR=0.65, 
FNR=0.35, 
FPR=0.03

(0.91)

Elastic Deformation (Snapshot) 80.16% (0.82) 
TPR=0.624, 
FNR=0.376, 
FPR=0.1

79.32% (0.82) 
TPR=0.56, 
FNR=0.44, 
FPR=0.08

79.32% (0.83) 
TPR=0.61, FNR=0.39, 
FPR=0.1

83.96% TPR=0.64, 
FNR=0.36, 
FPR=0.05

(0.86)
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Table 6

Statistical significance test among various approaches

Significance Test AUC comparison (Using Standard Error) Accuracy comparison (Using 
McNemar test)

Quantitative features [18] vs ensemble of 21 CNN (rotation and 
flipping augmentation)

0.81 (SE: 0.0273) vs 0.96 (SE: 0.0119) * 76.79% vs 90.29% *

Quantitative features [18] vs ensemble of 21 CNN (elastic 
augmentation)

0.81 (SE: 0.0273) vs 0.95 (SE: 0.0134) * 76.79% vs 86.91% *

Quantitative features [18] vs ensemble of 21 CNN (snapshot 
ensemble-rotation and flipping)

0.81 (SE: 0.0273) vs 0.91 (SE: 0.0184) * 76.79% vs 85.65% *

Quantitative features [18] vs ensemble of 21 CNN (snapshot 
ensemble elastic deformation) 0.81 (SE: 0.0273) vs 0.86 (SE: 0.0233) 

†
76.79% vs 83.96% 

†

Ensemble of 21 CNN (without augmentation) vs ensemble of 21 
CNN (rotation and flipping augmentation)

0.78 (SE: 0.0294) vs 0.96 (SE: 0.0119) * 74.68% vs 90.29% *

Ensemble of 21 CNN (without augmentation) vs ensemble of 21 
CNN (elastic deformation)

0.78 (SE: 0.0294) vs 0.95(SE: 0.0134) * 74.68% vs 86.91% *

Ensemble of 21 CNN (without augmentation) vs ensemble of 21 
CNN (snapshot ensemble-rotation and flipping)

0.78 (SE: 0.0294) vs 0.91 (SE: 0.0184) * 74.68% vs 85.65% *

Ensemble of 21 CNN (without augmentation) vs ensemble of 21 
CNN (snapshot ensemble-elastic deformation)

0.78 (SE: 0.0294) vs 0.86 (SE: 0.0233) * 74.68% vs 83.96% *

Ensemble of different models [17] vs ensemble of 21 CNN 
(rotation and flipping augmentation) 0.94 (SE: 0.0148) vs 0.96 (SE: 0.0119) 

†
86.91% vs 90.29% 

†

Ensemble of different models [17] vs ensemble of 21 CNN 
(elastic deformation) 0.94 (SE: 0.0148) vs 0.95 (SE: 0.0134) 

†
86.91% vs 86.91% 

†

Ensemble of different models [17] vs ensemble of 21 CNN 
(snapshot ensemble rotation and flipping augmentation) 0.94 (SE: 0.0148) vs 0.91 (SE: 0.0184) 

†
86.91% vs 85.65% 

†

Ensemble of different models [17] vs ensemble of 21 CNN 
(snapshot ensemble elastic deformation) 0.94 (SE: 0.0148) vs 0.86 (SE: 0.0233) 

†
86.91% vs 83.96% 

†

SE = Standard Error;

Statistical significance was analyzed at p= 0.05; Statistically significant and Not significant at p=0.05 is represented respectively by *and†
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Table 7.

Number of cases of Cohort1 and Cohort2 after splitting using size criteria

Nodule type <6 mm 2: 6 and <16 mm 2: 16mm

Cancer 23 43 19

Non-cancer 21 123 8
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