Skip to main content
. 2021 Apr 19;32(9):823–829. doi: 10.1091/mbc.E20-10-0660

TABLE 1:

Overview of deep-learning software for bioimage segmentation.

Tool Website Available tasks Bioimage types For testing or training? Software format Usage instructions Citation
CDeep3M2 Cloud-based image segmentation tasks with pretrained models available for electron micrographs https://cdeep3m.crbs.ucsd.edu/cdeep3m Semantic segmentation
  • Light

  • x-ray

  • Electron microscopy

  • Web app: testing for electron micrograph segmentation

  • Other options: both

  • Web app

  • Google Colab

  • Docker container app

  • Singularity container app

  • AWS cloud

  • FAQ

  • GitHub README and Wiki

Haberl et al., 2018 Haberl et al., 2020
CellPose Nuclear and cytoplasmic segmentation in a web app or local installation with integrated annotation tools for training http://www.cellpose.org/ Instance segmentation of nuclei and/or cytoplasm
  • Fluorescence

  • Brightfield

  • Web app: testing

  • Local installation: testing and training

  • Annotation integrated into GUI

  • Web app

  • Local installation with GUI or command line interface

  • Jupyter Notebook

  • Google Colab

  • Documentation website

  • GitHub README

Stringer et al., 2020
CSBDeep Toolbox of multiple models in ImageJ plug-ins and Jupyter notebooks https://csbdeep.bioimagecomputing.com/
  • Instance segmentation

  • Restoration

  • Combined denoising and instance segmentation

  • Fluorescence

  • Brightfield (H&E)

  • Electron micrographs

Testing and training
  • ImageJ plugins

  • Jupyter Notebook

  • Overview website

  • Jupyter Notebook text cells

  • Exercise sheets

  • Video tutorials

Broaddus et al., 2020 Buchholz et al., 2020 Krull et al., 2019 Schmidt et al., 2018 Weigert et al., 2018
DeepCell Web application for applying already-trained segmentation and tracking models on new images https://deepcell.org/
  • Semantic segmentation

  • Tracking

  • Fluorescence

  • Phase

Testing Web app FAQ Bannon et al., 2018
DeepImageJ Collection of models within one ImageJ plug-in interface https://deepimagej.github.io/deepimagej/
  • Semantic and instance segmentation

  • Denoising

  • Reconstruction

  • Superresolution

  • Virtual labeling

  • Single molecule localization

  • Fluorescence

  • DIC

  • Phase contrast

  • Light transmission microscopy

Testing ImageJ plug-in
  • User guide

  • Video tutorials

Gómez-de-Mariscal et al., 2019
DeepMIB MATLAB-based tool for segmentation in two or three dimensions http://mib.helsinki.fi/tutorials_segmentation.html Semantic segmentation
  • Electron microscopy

  • Brightfield

  • Fluorescence

Testing and training
  • Matlab app

  • Standalone version (no Matlab needed)

  • User guide

  • Video tutorials

Belevich and Jokitalo, 2021
HistomicsML2 Interactive segmentation for WSIs with integrated active learning https://github.com/CancerDataScience/HistomicsML2 Semantic segmentation
  • WSIs

  • Histological images

  • Brightfield

Testing and training Docker container app
  • Documentation website

  • Video tutorial

Lee et al., 2020
InstantDL Python-based pipeline for classification and segmentation https://github.com/marrlab/InstantDL
  • Semantic segmentation

  • Instance segmentation

  • Pixel-wise regression

  • Two-dimensional classification

  • Fluorescence

  • Brightfield

  • Medical imaging (CT scan)

Testing and training
  • Local installation with command line and config file interface

  • Docker container app

GitHub README Waibel et al., 2020
NucleAlzer Nuclear segmentation in a wide variety of image types in a web app or local app containing command line scripts https://www.nucleaizer.org/ Instance segmentation of nuclei
  • Fluorescence

  • Immunohistochemistry

  • Hematoxylin & eosin

  • Web app: testing

  • Local installation: testing and training

  • Web app

  • Local installation with command line interface

Explanatory text on web app Hollandi et al., 2020
ZeroCostDL4Mic Collection of ready-to-use Google Colab notebooks for various image analysis tasks https://github.com/HenriquesLab/ZeroCostDL4Mic
  • Semantic segmentation

  • Instance segmentation

  • Denoising

  • Image-to-image translation

  • Object detection

  • Fluorescence

  • Electron microscopy

Testing and training
  • Google Colab

  • GPU available through Google

  • GitHub Wiki

  • Colab notebook text cells

  • Video tutorials

Von Chamier et al., 2020

The described tools are designed for scientists without formal computational training. Definitions: DIC, differential interference contrast; GUI, graphical user interface, a visual method for interacting with software; GPU, graphics processing unit, a specialized type of processor that improves performance, especially for three-dimensional data sets and training models; Jupyter Notebook, interactive notebook to run code interspersed with explanatory text; Google Colab, interactive notebooks hosted in the cloud by Google; WSI, whole slide image.