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Abstract

Objective—This study investigated the latent factor structure of the NIH Toolbox Cognition 

Battery (NIHTB-CB) and its measurement invariance across clinical diagnosis and key 

demographic variables including sex, race/ethnicity, age, and education for a typical Alzheimer’s 

disease (AD) research sample.

Method—The NIHTB-CB iPad English version, consisting of seven tests, was administered to 

411 participants aged 45 to 94 with clinical diagnosis of cognitively unimpaired, dementia, mild 

cognitive impairment (MCI), or impaired not MCI. The factor structure of the whole sample was 

first examined with exploratory factor analysis (EFA) and further refined using confirmatory factor 

analysis (CFA). Two groups were classified for each variable (diagnosis or demographic factors). 

The confirmed factor model was next tested for each group with CFA. If the factor structure was 

the same between the groups, measurement invariance was then tested using a hierarchical series 

of nested two-group CFA models.

Results—A two-factor model capturing fluid cognition (executive function, processing speed, 

and memory) versus crystalized cognition (language) fit well for the whole sample and each group 

except for those with age < 65. This model generally had measurement invariance across sex, race/

ethnicity, and education, and partial invariance across diagnosis. For individuals with age < 65, the 

language factor remained intact while the fluid cognition was separated into two factors (1) 

executive function / processing speed and (2) memory.
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Conclusions—The findings mostly supported the utility of the battery in AD research, yet 

revealed challenges in measuring memory for AD participants and longitudinal change in fluid 

cognition.

Keywords

exploratory factor analysis; confirmatory factor analysis; measurement invariance; NIH Toolbox; 
cognition battery; Alzheimer’s disease

Introduction

Solid and convenient cognition measures are beneficial for research on Alzheimer’s disease 

(AD) to help characterize the associated longitudinal trajectory of cognitive decline and 

identify mild cognition change at the pre-clinical stage. The NIH Toolbox Cognition Battery 

(NIHTB-CB) provides a standardized set of measures to assess multiple domains of 

cognitive function and serves as a common currency for cross-study comparisons (Gershon 

et al., 2013). As shown in Table 1, the adult version (age ≥ 18) of the battery includes seven 

tests and measures multiple cognitive domains (Weintraub et al., 2013). The NIHTB-CB has 

many advantages as it is: (1) applicable across the lifespan; (2) brief; (3) non-proprietary; (4) 

based on state-of-the-art test theories and technology; and (5) available in both English and 

Spanish versions (Mungas et al., 2014). The validity and utility of the battery has been 

shown in cognitively unimpaired adults (Heaton et al., 2014; Mungas et al., 2014; Weintraub 

et al., 2013), and clinical samples with spinal cord injury (Carlozzi, Goodnight, et al., 2017; 

Cohen et al., 2017), traumatic brain injury (TBI; Carlozzi, Goodnight, et al., 2017; Nitsch et 

al., 2017; Tulsky, Carlozzi, et al., 2017; Tulsky, Holdnack, et al., 2017), stroke (Carlozzi, 

Goodnight, et al., 2017; Carlozzi, Tulsky, et al., 2017; Nitsch et al., 2017; Tulsky, Holdnack, 

et al., 2017), and intellectual disabilities (Hessl et al., 2016). In addition, a study including 

adults with varied cognitive statuses provided supportive findings for the validity of NIHTB-

CB in assessing neurocognitive domains related to dementia (Hackett et al., 2018). 

Furthermore, for the cognitively unimpaired adult population, uncorrected, age-corrected, 

and fully-demographically-corrected normative standards have been developed for both 

English and Spanish versions (Casaletto et al., 2015, 2016). All of its unique features 

provide support that NIHTB-CB could potentially be a promising instrument in measuring 

cognition for AD research.

Understanding the latent factor structure of NIHTB-CB specifically for its application to AD 

research samples is necessary for correct interpretation of findings from AD studies using 

the battery. A factor analysis of NIHTB-CB on cognitively unimpaired adults identified five 

factors, including executive function / processing speed (EF-PS), working memory, episodic 

memory, vocabulary, and reading. A subsequent second-order factor analysis on the same 

data showed the differentiation of fluid cognition (EF-PS, working memory, episodic 

memory) versus crystalized cognition (vocabulary, reading) (Mungas et al., 2014). The five-

factor model has been validated in clinical samples with acquired brain injuries (TBI and 

stroke; Tulsky, Holdnack, et al., 2017). Both studies included other neuropsychological tests 

considered as gold standard measures in addition to NIHTB-CB, as their goal was to define 

convergent and discriminant validity of the battery based on its similarity and difference in 
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factor loading patterns compared to the standard measures. Another factor analysis (Hackett 

et al., 2018) which included the NIHTB-CB battery only was conducted on a mixed sample 

of participants who were cognitively unimpaired, with subjective cognitive decline (SCD), 

mild cognitive impairment (MCI), and dementia due to AD. Episodic Memory and Working 

Memory tests were excluded because they were too challenging for participants with 

cognitive impairment and yielded low completion rates. However, the supplemental AVLT 

Immediate Recall and Symbol Digit tests were included. Two factors were identified 

capturing fluid and crystalized cognition. However, when AD participants were excluded 

from the analysis, tests measuring the fluid cognition instead loaded on two separate factors 

capturing EF-PS and memory respectively, while the crystalized cognition factor remained 

unchanged. Based upon the literature, the first goal of this study was to investigate the factor 

structure of NIHTB-CB in its application to a typical AD research sample with a wide range 

of cognition status including the cognitively unimpaired, MCI, and dementia. Different from 

the previous studies, the factor analysis was performed on the NIHTB-CB battery only 

including all seven tests listed in Table 1. The focus was to understand the underlying 

structural relations of multiple cognition domains and capture cognitive processes as a 

related and organized neuropsychological system.

The evaluation of measurement invariance between the cognitively unimpaired versus 

impaired is important for defining the utility of a battery for AD research. Variant factor 

structure would imply qualitative changes in the underlying neuropsychological system as 

the disease progresses, whereas invariant factor structure would suggest a quantitative 

decline in the same cognitive spectrum (Hayden, Plassman, & Warren, 2011). Although 

measurement invariance of NIHTB-CB has not been tested, the finding of different numbers 

of factors between the analyses including versus excluding AD participants by Hackett et al. 

(2018) suggested the possibility of variant factor structure across clinical diagnosis. The 

second goal of this study was to evaluate measurement invariance of NIHTB-CB between 

cognitively unimpaired versus impaired groups including MCI and dementia.

Previous studies have found demographic differences in cognitive performance, including 

differences across age, sex, race/ethnicity groups, and education level, either using NIHTB-

CB (Casaletto et al., 2015, 2016; Flores et al., 2017) or other cognition measures (Collie, 

Shafiq-Antonacci, Maruff, Tyler, & Currie, 1999; Norman, Evans, Miller, & Heaton, 2000; 

Norman et al., 2011). Measurement invariance across these key demographic variables is 

necessary to confirm that differences in the cognition test scores truly represent demographic 

differences in the cognition abilities being tested (Dowling, Hermann, La Rue, & Sager, 

2010). Moreover, measurement tools that allow fair comparison across different 

demographic groups are fundamental to address health equity issues (Victorson et al., 2013). 

Previous research on demographic invariance in cognition measures for older adults has 

mainly focused on race/ethnicity and related culture or language factors (Mungas, Widaman, 

Reed, & Tomaszewski Farias, 2011; Siedlecki et al., 2010; Tuokko et al., 2009). Research is 

significantly lacking in testing measurement invariance across multiple demographic 

variables or specifically for an AD research sample. Furthermore, in our literature review, 

the only demographic measurement invariance testing on NIHTB-CB for adults was age 

invariance in the cognitively unimpaired (Mungas et al., 2014). The third goal of this study 

was to test measurement invariance of NIHTB-CB across four major demographic variables, 
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including sex, race/ethnicity, age, and education, in its application to an AD research sample. 

These four demographic variables were employed in deriving the fully demographically 

corrected normative standards for NIHTB-CB (Casaletto et al., 2015, 2016), which implies 

the significance of these variables in cognition variability. Findings of the invariance testing 

will be informative for the application of NIHTB-CB and its norms to AD research, and the 

interpretation of demographic differences in measured cognitive abilities found in a study.

In summary, this study investigated the factor structure of NIHTB-CB and its measurement 

invariance across clinical diagnosis groups and key demographic variables for a mixed 

sample of older adults with unimpaired cognition, MCI, and dementia. Findings will help 

evaluate the battery’s utility for AD research.

Method

Participants

The study included 411 participants from the Wisconsin Alzheimer’s Disease Research 

Center (ADRC). ADRC participants were recruited from memory diagnostic clinics and 

community. Women and men aged 45 and older with decisional capacity were eligible for 

enrollment. Exclusion criteria included major medical conditions (e.g., advanced congestive 

heart failure, kidney failure, severe untreated sleep apnea, HIV/AIDS), major neurologic 

disorders (e.g., significant ischemic or hemorrhagic stroke, multiple sclerosis, history of 

brain surgery), major psychiatric conditions (e.g., major Axis I disorder or addictive 

disorder), or lack of a study partner. Table 2 summarizes the sample demographics.

ADRC Visit and Test Administration

The ADRC participants undergo annual or biennial clinical and cognitive assessment at an 

academic medical center in Madison, Wisconsin. (Visit frequency was based on age and 

clinical diagnosis). For the purposes of this study, we used cross-sectional data collected at a 

single time visit. The National Alzheimer’s Coordinating Center (NACC) Uniform Data Set 

(UDS) (Besser et al., 2018) was collected at each visit. Between March 14, 2016 and March 

08, 2017, the iPad English version of NIHTB-CB was administered at one visit immediately 

after completion of the NACC UDS neuropsychological battery version 3 (Weintraub et al., 

2018). The study protocol was approved by the University of Wisconsin Institutional Review 

Board. Informed consent was obtained from each participant prior to the study.

Clinical Diagnosis

Following each ADRC visit, a clinical diagnosis was made at the Consensus Diagnosis 

Conference by a multidisciplinary team of geriatricians, neurologists, and 

neuropsychologists with expertise in dementia following NIA-AA Criteria (Albert et al., 

2011; McKhann et al., 2011). The diagnosis was based on the comprehensive clinical and 

cognitive assessment results acquired at the visit, and was not determined by biomarkers. 

Cognition measures independent from NIHTB-CB were used for diagnosis, including the 

NACC UDS neuropsychological battery and AVLT (Schmidt, 1996). The sample included 

77.1% unimpaired and 22.9% impaired individuals with varied severity levels and causes 

(Table 2).
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Statistical Analyses

Evaluating the factor structure of the whole sample—Exploratory factor analysis 

(EFA) with the oblique geomin rotation was first performed on the whole sample with a 

focus on identifying the number of factors (Yates, 1987). Given seven tests, a maximum of 

three factors can be extracted (Muthén & Muthén, 2009). The number of factors was chosen 

based on the following criteria: (1) the number of eigenvalues greater than one; (2) good 

model fit; (3) the model solution having a clear factor structure with each test loaded on a 

single factor, i.e., the test had a significant and high loading on one factor, but low loading(s) 

on the other factor(s); (4) clinical meanings; and (5) model parsimony (Fabrigar & Wegener, 

2012). Confirmatory factor analysis (CFA; Bollen, 1989) was next applied to further refine 

and confirm the factor structure identified by EFA with a focus on the relations between the 

tests (i.e., observed indicators) and the latent factors.

Testing factorial invariance across groups—As summarized in Table 3, invariance 

was tested in five dimensions, across clinical diagnosis, sex, race/ethnicity, age, and 

education, respectively, by comparing two groups in each dimension. The CFA model 

confirmed on the whole sample was first tested for each group separately. If the CFA fit well 

for both groups split by a specified variable, factorial invariance was next tested with a 

hierarchical series of nested two-group CFA models in the following order: (1) Configural 

invariance requires that the two groups have the same pattern of freely estimated and fixed at 

zero parameters, whereas all freely estimated parameters are allowed to differ across groups. 

Confirmed configural invariance serves as the baseline model and implies that the same 

latent constructs are measured for both groups. (2) Based on configural invariance, metric 

(weak) invariance requires that the factor loadings, i.e., slopes or regression coefficients of 

the tests on the latent constructs, are equal across groups. Under confirmed metric 

invariance, latent factor variances and covariances are comparable across groups, and group 

difference in the ratios of factor variances and the correlations of latent factors are thus 

interpretable. (3) Scalar (strong) invariance additionally requires equal indicator intercepts, 

i.e., difficulty levels of the tests. Under confirmed scalar invariance, latent factor means are 

also comparable and group difference in the latent factor means is thus interpretable. (4) 

Residual variance (strict) invariance additionally requires equal indicator residual variances. 

Under confirmed strict invariance, the unique factors contribute equally across groups, and 

thus the group differences in the means and variances of the indicators are entirely 

attributable to the group differences in the latent factors. Based on strict invariance, (5) 

factor variance-covariance invariance and (6) factor mean invariance were further tested in 

order (Meredith, 1993; Meredith & Teresi, 2006; Vandenberg, 2002; Vandenberg & Lance, 

2000; Widaman & Reise, 1997). Models (1 to 4) test measurement invariance and evaluate 

whether the relations between the tests and the latent constructs are same across groups. 

Scalar invariance is required to confirm measurement invariance, and allows meaningful 

comparison in the latent constructs between groups. Strict invariance is more desirable but is 

usually difficult to achieve. Models (5, 6) test structural invariance and evaluate group 

differences in the variabilities, correlations, and levels of the latent constructs being 

measured (Byrne, Shavelson, & Muthén, 1989; Vandenberg & Lance, 2000).
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Model estimation—Analyses were performed on raw scores (Bowden, Cook, 

Bardenhagen, Shores, & Carstairs, 2004). These were the “computed” scores for Flanker 

and DCCS, “raw” scores for Processing Speed and Working Memory, and “theta” scores for 

Episodic Memory, Vocabulary, and Reading. (Explanation of these scores is provided in the 

note under Table 1). (NIH & Northwestern University, 2006–2016). Two extremely high 

scores (22.7 and 35.7) for Vocabulary and one (36.1) for Reading were excluded from the 

analysis, because the tests may not reliably measure these individuals’ abilities, given lack of 

items with high difficulty levels. Such items are needed to appropriately assess the highest 

functioning individuals. Models were tested with Mplus version 8 (Muthén & Muthén, 

1998–2017) using the full information maximum likelihood (FIML) sandwich estimator 

with robust standard errors (MLR) which handles missingness and nonnormality (Enders, 

2010; Wang & Wang, 2012; Yuan & Bentler, 2000). The description of model identification 

and sample Mplus codes are provide in the supplemental material.

Assessing model fit—Model fit was evaluated based on multiple indices in order to 

make best use of the available data and draw the most robust conclusion. Overall model fit 

was assessed using fit indices including the comparative fit index (CFI; Bentler, 1990), the 

root mean squared error of approximation (RMSEA) with 90% confidence interval (Steiger 

& Lind, 1980), and the standardized root mean squared residual (SRMR; Bentler, 1995). 

Model fit was considered adequate by meeting the following criteria: CFI ≥ 0.95, RMSEA ≤ 

0.08, SRMR ≤ 0.08 (Browne & Cudeck, 1992; Hu & Bentler, 1998, 1999). Misfit in 

individual parameters was evaluated using model modification indices (MI), which are the 

amount of reduction in the model χ2 if a parameter fixed at zero or constrained equal across 

groups were freely estimated (Steiger, Shapiro, & Browne, 1985). A parameter was freed by 

using the threshold MI >10 as a start (Wang & Wang, 2012). However, parameters with MI 

close to 10 were also freed if the model fit needed further improvement and the freed 

parameter had an estimate sufficiently different from zero. For factorial invariance testing 

with nested two-group CFAs, a more restricted invariance model was selected if the overall 

model fit was acceptable, and it was similar in model fit compared with the less restricted 

invariance model it nested within. Model fit difference was assessed using the Satorra-

Bentler (SB) scaled correction χ2 difference test (Satorra & Bentler, 2001) and change in 

CFI. Because the χ2 test can be overly sensitive for sample sizes above 150 (Dowling et al., 

2010) and to adjust for inflated type I error rate associated with multiple comparisons (i.e. 

five model comparison pairs across the six invariance levels), a more-conservative 

significance level of p < 0.01 (i.e. 0.05/5) was adopted. Insignificant χ2 difference tests (i.e., 

p ≥ 0.01) and ΔCFI ≤ 0.01 (Cheung & Rensvold, 2002) were considered as the criteria for 

similar model fit. Partial invariance (Byrne et al., 1989; Millsap & Kwok, 2004) was 

examined by allowing part of the constrained parameters to differ across groups, if this was 

suggested by large MIs and led to improved model fit. Under partial invariance, at least two 

invariant indicators per factor were required to confirm measurement invariance and 

meaningful comparisons across groups (Dowling et al., 2010; Mungas et al., 2011).
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Results

Descriptive Statistics

Univariate descriptive statistics and Pearson correlations of the tests are provided in Tables 4 

and 5 for the whole sample and each diagnosis group, and provided in the supplemental 

Tables S1 and S2 for each demographic group. The dementia/MCI group generally had 

higher missing rates, lower averages, greater variabilities, and lower correlations than the 

cognitively unimpaired group.

EFA and CFA for the Whole Sample

EFA yielded two eigenvalues (3.98, 1.13) greater than one. Supplemental Figure S1 

provided the scree plot of all eigenvalues. As shown in Table 6, the one-factor solution had 

unacceptable model fit, whereas standard errors could not be computed for the three-factor 

solution due to model identification issues. In contrast, the two-factor solution yielded good 

model fit and a clear fluid-crystalized cognition factor structure as depicted in Figure 1 

(Heaton et al., 2014). This model was next confirmed by CFA, as evidenced by its excellent 

overall model fit, all MIs < 10, and all factor loadings being large (0.60 to 0.90), positive, 

and significant (Table 7).

CFA for Each Group

Except for the group with age < 65, the two-factor fluid-crystalized cognition CFA (Figure 

1) fit well for all groups with a few minor variations: (1) Working Memory had small 

crossloadings on the crystalized cognition factor for the cognitively unimpaired (0.24) and 

non-URG (0.19) groups; and (2) the residual variance of Reading was fixed at zero for 

model identification needs for the dementia/MCI group. Differently, the group with age < 65 

had three factors, including executive function / processing speed (EF-PS), memory, and 

language (Figure 2). More detailed results are summarized in Table 7.

Two-Group CFAs for Invariance Testing

Following the results of the single-group CFAs, two-group CFAs were next tested for 

factorial invariance across diagnosis, sex, race/ethnicity, and education, but not across age. 

Results are summarized in Table 8.

Across diagnosis: cognitively unimpaired versus dementia/MCI—The results 

showed that (1) the configural invariance model fit well except that Working Memory was 

cross loaded on the crystalized cognition factor for the cognitively unimpaired group only. 

(2) The metric invariance model had a small deviation from meeting the criteria for similar 

model fit compared against the configural invariance model, p = 0.007 for χ2 difference test 

and ΔCFI = 0.015. Given that the model had good overall fit and there were no large MIs to 

indicate misfit in individual parameters, the model was considered acceptable. Partial 

invariance was allowed such that Episodic Memory differed across diagnosis and yielded a 

greater loading for the cognitively unimpaired than dementia/MCI, which suggested that the 

test was more sensitive in detecting individual difference in the underlying latent fluid 

cognition construct for the unimpaired. (3) With similar justification, the scalar invariance 

model was considered acceptable with partial invariance. Working Memory and Episodic 
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Memory yielded higher indicator intercepts for the cognitively unimpaired, which implied 

that these tests were more difficult and less favorable for individuals with dementia/MCI. (4) 

Four tests had residual variances different across diagnosis, including DCCS, Working 

Memory, Episodic Memory, and Vocabulary, which indicated that the group difference in 

some unique factors also contributed to the group difference in the observed scores of these 

tests in addition to the fluid and crystalized cognition constructs. (5) The two factors had 

greater variances and lower means for individuals with dementia/MCI than the cognitively 

unimpaired, which suggested greater individual variabilities and lower levels in the 

cognition constructs for this group.

Across sex: male versus female—(1) Testing across sex achieved configural, full 

metric, and close to full scalar invariance, except that Episodic Memory had a slightly higher 

intercept for females than males, which implied that the test was easier and more favorable 

for females. (2) All tests had residual variances invariant across sex, which suggested that 

sex similarity or difference in the test scores can be fully attributable to sex similarity or 

difference in the underlying fluid and crystalized cognition constructs. (3) The two sexes 

also had equal factor variances, covariance, and means, which indicated sex similarity in the 

variabilities, correlation, and average levels of the cognition constructs.

Across Race/Ethnicity: URG versus non-URG—(1) The two race/ethnicity groups 

generally had configural invariance, except that Working Memory was cross loaded on the 

crystalized cognition factor for non-URG only. (2) All tests had invariant factor loadings, 

except that Processing Speed had a greater loading for non-URG, which suggested that the 

test was more sensitive in detecting individual difference in the fluid cognition ability for 

non-URG. (3) All tests had invariant intercepts, which indicates that the tests had 

comparable difficulty levels across groups. (4) Invariant residual variances were observed for 

all tests, except for URG being larger in Reading, which implied that some unique factors 

contributed more to the Reading scores for URG, and thus contributed to group difference in 

the scores. (5) The two groups had equal factor variances and covariance, which indicates 

group similarity in the variabilities and correlation of the cognition constructs. (6) The two 

groups also had equal means in the fluid cognition factor, however, URG had a lower mean 

in the crystalized cognition factor.

Across Education: low versus high—(1) Testing across education achieved 

configural, full metric, and full scalar invariance, which implied that all tests had comparable 

discrimination abilities and difficulty levels for the two groups. (2) Three tests had unequal 

residual variances, including Flanker, DCCS, and Episodic Memory, which indicated that 

some unique factors contributed differently to the scores of these tests across education. (3) 

The two groups had equal variance in the fluid cognition, however, the low education group 

had a greater variance in the crystalized cognition and a higher correlation of the two factors. 

(4) The high education group had higher means for both factors.
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Discussion

Factor Structure of the Whole Sample

The two-factor fluid-crystalized cognition structure was confirmed for the whole sample and 

for each group except for the group with age < 65. This factor structure was consistent with 

previous factor analyses on NIHTB-CB (Hackett et al., 2018; Mungas et al., 2014). These 

findings support using fluid and crystalized cognition composites for AD research. Fluid 

abilities are “used to solve problems, think and act quickly, and encode new episodic 

memories” (Heaton et al., 2014, p. 2), and are mostly influenced by biological processes. 

They grow rapidly through childhood, reach a peak at early adulthood, and decline 

afterward. These abilities tend to be more sensitive to changes in brain structure and 

functions associated with aging and neurological disorders. Thus, fluid cognition composite 

could be a sensitive measure to detect cognitive impairment associated with AD. Crystalized 

abilities “represent an accumulated store of verbal knowledge and skills” (Heaton et al., 

2014, p. 3), and are influenced by experience, education, and cultural exposure. They 

develop rapidly during childhood, continue to improve slightly into middle adulthood, and 

remain stable at late adulthood. Thus, crystalized cognition composite may serve as an 

efficient measure for cognitive reserve (Hackett et al., 2018). A study (McDonough et al., 

2016) found that cognitively unimpaired adults whose fluid cognitive ability was worse 

compared to crystalized cognitive ability measured using factor scores showed evidence of 

early AD neuropathology evaluated using structural MRI and PET imaging. Larger 

discrepancy in the fluid and crystalized cognitions was associated with greater beta-amyloid 

deposition and cortical thickness in AD-vulnerable brain regions. The finding suggested that 

this discrepancy may be a marker of preclinical AD, and highlighted the importance of the 

distinction between these two cognition constructs.

Different Factor Structure across Age

The two-factor fluid-crystalized cognition structure was held for individuals with age ≥ 65. 

However, for individuals with age < 65, the fluid cognition factor was separated into two 

factors: EF-PS and memory. This was aligned with the finding by Hackett et al. (2018) about 

the separation of EF-PS and memory into two factors when excluding AD participants, given 

that AD participants were much older than the rest of the sample on average. Previous 

research showed that age affects cognitive domains differently (Heaton, Ryan, & Grant, 

2009; Tulsky et al, 2003). Therefore a possible reason is that memory may decline at a later 

age or at a different rate compared to EF-PS, and thus the two constructs may be more 

divergent during the transition period from middle to late adulthood. In addition, Flanker, 

DCCS, and Processing Speed tests all involve reaction time in scoring, whereas the other 

tests do not. This might have also contributed to age differences in the factor structure given 

that reaction speed might differ significantly between the two age groups. In total, 

researchers should exercise caution in the analysis and interpretation of longitudinal changes 

measured using the fluid cognition composite. Separate composites for EF-PS and memory 

could be considered for the age population under 65, and individual component tests might 

be preferred for longitudinal trajectories spanned across 65.
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Partial Measurement Invariance across Diagnosis

Configural invariance across diagnosis was confirmed, such that the fluid and crystalized 

cognition factors were found for both cognitively unimpaired and impaired groups. Partial 

metric and scalar invariance was found: Episodic Memory was less sensitive in detecting 

individual difference for the group with dementia/MCI, and Episodic Memory and Working 

Memory were more difficult and less favorable for this group. Relatedly, higher missing 

rates were observed for these two tests, which was consistent with the low completion rates 

found on these tests by Hackett et al. (2018). Given that the majority of this group had AD 

as a cause, these findings highlight two things: (1) impairment in memory is a salient feature 

in AD dementia and, (2) the tests are too challenging for individuals with AD and insensitive 

at the lower end of memory function, suggesting potentially limited utility for this 

population. Additional factors could have also contributed to refusal or incompletion, 

including fatigue associated with immediately administering NIHTB-CB after completion of 

the NACC UDS 3 battery and unfamiliarity with electronic testing. Both cognition factors 

had greater variances for the dementia/MCI group than the cognitively unimpaired group, 

and the correlation of the two factors for the former (0.22) was only about half of the size for 

the latter (0.42). This suggested more heterogeneity in cognitive abilities for the impaired, 

which was likely due to the heterogeneity in their disease severity. Nonetheless, lower means 

for dementia/MCI than the unimpaired found on both factors supported the validity of these 

factors in distinguishing between clinical diagnoses.

Measurement Invariance across Sex, Race/Ethnicity, and Education

Measurement invariance was generally confirmed across sex, race/ethnicity, and education at 

the scalar invariance level, allowing meaningful comparisons of latent factor means, 

variances, and correlation and identification of demographic differences in these factors 

properties. URG had a lower mean level in crystalized cognition, which could have resulted 

from cultural differences and historical injustice in the exposure to the contents of test items. 

Moreover, these factors might have played different roles for each included URG subgroup. 

The high education group had higher mean levels in both cognition constructs, highlighting 

the positive influence of education on cognitive function and reserve.

Conclusions

To our knowledge, this is the first study that evaluated factor structure and tested 

measurement invariance of NIHTB-CB including all seven tests on an AD research sample. 

Its utility in AD research is supported by the confirmed fluid-crystalized cognition factor 

structure and its measurement invariance across sex, race/ethnicity, and education. 

Nonetheless, partial invariance was found across clinical diagnosis, highlighting the 

potential challenges in measuring memory of individuals with AD. Different factor 

structures were identified across age, suggesting the possible longitudinal variation in the 

underlying meaning of fluid cognition.

Limitations and Future Directions

Sample size—In this study, sample sizes (n) for individual impaired diagnoses and 

minority race/ethnicity groups were small. Small samples tend to have greater probability in 
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model non-convergence and improper solutions, inflated type I error rates, and reduced 

statistical power for detecting the violation of invariance (Chen, 2007; Jorgensen, Kite, 

Chen, & Short, 2018; Marsh, Hau, & Wen, 2004; Meade, Johnson, & Braddy, 2008). Small 

ns in these groups also led to unbalanced ns in the two-group CFAs. Unbalanced ns are 

associated with reduced power, which becomes more severe as the ratio of group ns 

increases (Brace & Savalei, 2017; Chen, 2007; Yoon & Lai, 2018). To address these issues, 

we combined dementia and MCI, and combined more than one race/ethnicity into one 

group. Such grouping is admittedly problematic, because subgroups are not monolithic. If 

subgroups have different factor structures, the combined group would represent the largest 

membership, masking unique pattern(s) of the smaller subgroup(s). We recommend several 

strategies to address small or unbalanced ns for future invariance testing. (1) Increase efforts 

to recruit more participants with impaired diagnosis or from minority race/ethnicity groups. 

(2) The impact of limited ns can be alleviated with greater factor over-determination and 

higher communalities, which for example can be achieved by including more reliable 

indicators for each factor (MacCallum, Widaman, Zhang, & Hong, 1999; Meade & 

Lautenschlager, 2004; Meade & Bauer, 2007). (3) Two approaches adopted in this study 

may help yield more robust findings. One is to test CFA on each group separately to first 

ensure the same factor structure between groups before pooling them together for the two-

group CFA. The other is to draw conclusions based on evaluating multiple test indices, 

including overall model fit indices, change in fit indices between nested models, and MI for 

individual parameters. (4) The subsampling method, which repeatedly samples a subset of 

the larger group to have the same n as the smaller group, may provide a solution to achieve 

adequate power under severe unbalanced ns (Yoon & Lai, 2018).

Missing data—The two memory tests were too challenging for participants with dementia 

or MCI and led to high missing rates. In addition, three unreliably extremely high scores on 

Vocabulary and Reading were excluded given lack of items to appropriately assess the 

highest functioning individuals. These findings implied limited utility of the battery for such 

populations. Logistic regression analyses showed that performance on other tests predicted 

missingness for each situation with high predictive power (c-statistic ranged from 0.87 to 

0.97, Supplemental Table S3 and Figure S2). This supported that the data could be missing 

at random (MAR) if such prediction completely accounted for the missingness. However, if 

missingness was additionally related to the missing score itself, missing not at random 

(MNAR) could have occurred, which unfortunately was not testable. We used the FIML 

estimator to handle missing data. FIML provides unbiased parameter estimates under MAR, 

but biased estimates under MNAR, although the bias tends to be isolated to a subset of 

model parameters (Enders, 2010). The potential bias could possibly include omission of 

non-invariance or underestimation of difference in factor means across diagnosis.

Biomarker profile—Following the new NIA-AA research framework toward a biological 

definition of AD based on biomarkers (Jack et al., 2018), the next research steps could be the 

evaluation of factor structure and measurement invariance across different AT(N) biomarker 

profiles and brain changes. Findings would help further define the utility scope of NIHTB-

CB in AD research.
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Figure 1. 
Factor structure of the whole sample and all groups except for the group with age < 65.
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Figure 2. 
Factor structure of the group with age < 65.
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Table 2

Sample Characteristics (n=411)

Variable Subgroup n (%)

Sex Male 171 (41.6)

Female 240 (58.4)

Race White 329 (80.1)

African American 61 (14.8)

American Indian or Alaska Native 18 (4.4)

Asian 1 (0.2)

Other 1 (0.2)

Unknown 1 (0.2)

Hispanic No 402 (97.8)

Yes 4 (1.0)

Unknown 5 (1.2)

Education Less than high school or GED 6 (1.5)

High school or GED 138 (33.6)

Bachelor 123 (29.9)

Master 96 (23.4)

Doctorate 48 (11.7)

Diagnosis Cognitively unimpaired 317 (77.1)

Dementia due to AD 40 (9.7)

Dementia due to other causes 3 (0.7)

MCI due to AD 32 (7.8)

MCI due to other causes 7 (1.7)

Impaired not MCI 12 (2.9)

Note. Age ranged 45–94 years, with M = 66.3, SD = 9.8. All four participants with Hispanic ethnicity had white race.
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Table 3

Classification of Clinical Diagnosis and Demographic Groups for Invariance Testing

Variable Group n

Diagnosis Cognitively unimpaired 317

Dementia / MCI 
a 82

Sex Male 171

Female 240

Race / Ethnicity Under represented groups (URG) 90

Non-URG 314

Age < 65 years 165

≥ 65 years 152

Education Without bachelor’s degree (low) 144

With bachelor’s degree (high) 267

Note. Because of the limited sample size in each impaired group, dementia and MCI due to all causes were combined into one group, whereas the 
impaired not MCI were excluded from the invariance testing. Due to a similar consideration, race/ethnicity groups were classified as 
underrepresented groups (URG) versus non-URG. Following the NIH definition (NIH Diversity in Extramural Programs, 2019), a participant was 
classified as URG if s/he self-reported primary, secondary, or tertiary race as African American, American Indian or Alaska native, Native 
Hawaiian or other Pacific Islander, or self-reported Hispanic ethnicity. A participant was classified as non-URG if s/he self-reported only White or 
Asian in primary and secondary races and self-reported No to Hispanic ethnicity. A participant was classified as URG unknown and not included 
for the invariance testing, if s/he self-reported other or unknown in race or ethnicity. Age was classified as a binary variable, < 65 versus ≥ 65, since 
around 65 is commonly considered as the start of late adulthood. Because age is the biggest risk factor for dementia/MCI, and in the current sample 
age was highly associated with the incidence rate of dementia/MCI, 6.8% for participants < 65 versus 31.5% for those ≥ 65, p < .0001 (Fisher’s 
exact test), age invariance was tested only for cognitively unimpaired participants. Education level was classified into low (without bachelor’s 
degree) versus high (with bachelor’s degree) education groups, as these two groups would likely have access to different occupations, involving 
different cognitive demands and leading to different social economic status.

a
72 out of the 82 dementia / MCI participants had AD as a cause.
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Table 5

Pearson Correlations of the Test Scores for the Whole Sample and Each Diagnosis Group

The whole sample (ns: 370 to 403)

Test 1 2 3 4 5 6 7

1. Flanker -

2. DCCS 0.67 (401) -

3. Processing Speed 0.67 (403) 0.64 (400) -

4. Working Memory 0.62 (395) 0.57 (393) 0.54 (394) -

5. Episodic Memory 0.40 (372) 0.37 (371) 0.33 (373) 0.45 (372) -

6. Vocabulary 0.39 (403) 0.37 (399) 0.30 (402) 0.43 (394) 0.34 (371) -

7. Reading 0.40 (399) 0.36 (395) 0.32 (400) 0.45 (389) 0.30 (370) 0.76 (398) -

Lower diagonal: cognitively unimpaired (ns: 311 to 316)

Upper diagonal: dementia / MCI (ns: 48 to 77)

Test 1 2 3 4 5 6 7

1. Flanker - 0.39 (74) 0.70 (76) 0.57 (67) 0.27 (48) 0.08 (77) 0.14 (74)

2. DCCS 0.57 (316) - 0.50 (74) 0.31 (66) 0.03 (48) 0.11 (74) 0.10 (71)

3. Processing Speed 0.40 (315) 0.49 (315) - 0.44 (67) 0.16 (49) 0.04 (77) 0.16 (75)

4. Working Memory 0.35 (316) 0.42 (316) 0.37 (315) - 0.35 (48) 0.11 (68) 0.15 (64)

5. Episodic Memory 0.25 (313) 0.23 (313) 0.23 (313) 0.29 (313) - 0.02 (49) 0.13 (48)

6. Vocabulary 0.28 (314) 0.24 (314) 0.18 (313) 0.33 (314) 0.22 (311) - 0.66 (75)

7. Reading 0.30 (313) 0.28 (313) 0.22 (313) 0.39 (313) 0.19 (311) 0.74 (311) -

Note. Insignificant correlations (p > .05) are underscored. Sample sizes are included in the parentheses () after the correlations. The dementia/MCI 
group had much smaller sample sizes than the cognitively unimpaired group. Thus the comparison should be based on the effect size of the 
correlations rather than the p-values. In addition, the pairwise missing rate was consistently higher for the dementia/MCI group than the cognitively 
unimpaired group. The missing rate was similar between different correlation coefficients (i.e., different pairs of tests) for the cognitively 
unimpaired. However, it varied for the dementia/MCI group and was most substantial for the correlations that involved memory tests. This missing 
pattern implied a systematic restriction in the samples such that only the relatively less impaired in the dementia/MCI group was included in the 
correlation estimation and comparison, and this restriction was most severe for correlations that involved memory tests. As a result, different 
subsamples of the dementia/MCI group were being compared between different correlations.
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Table 6

Factor Loadings, χ2 Test, and Model Fit Indices for the Exploratory Factor Analyses with Geomin Rotation 

for the Whole Sample (n=411)

One-Factor Two-Factor

1 1 2

Factor loadings

 Flanker 0.83 0.85 −0.01

 DCCS 0.81 0.81 0.02

 Processing Speed 0.60 0.83 −0.08

 Working Memory 0.79 0.71 0.13

 Episodic Memory 0.76 0.51 0.14

 Vocabulary 0.53 −0.01 0.93

 Reading 0.55 0.10 0.77

χ2 test

 χ2 255.255 12.945

 df 14 8

 p-value <.0001 0.114

Model fit indices

 CFI 0.787 0.996

 RMSEA 90% CI 0.205 (0.183, 0.227) 0.039 (0.000, 0.076)

 SRMR 0.086 0.015

Note. Insignificant factor loadings (p > .05) are underscored. Factor loadings > .50 are in boldface. CFI = comparative fit index; RMSEA = root 
mean squared error of approximation; SRMR = standardized root mean squared residual. Model fit is considered adequate by meeting the 
following criteria: CFI ≥ 0.95, RMSEA ≤ 0.08, SRMR ≤ 0.08. The three-factor solution is not reported, because standard errors could not be 
computed due to model identification issues.
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