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Automated identification of cephalometric landmarks:

Part 1—Comparisons between the latest deep-learning methods YOLOV3

and SSD
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Girish Srinivasane; Mohammed Noori A. Aljanabif; Richard E. Donatellig; Shin-Jae Leeh

ABSTRACT
Objective: To compare the accuracy and computational efficiency of two of the latest deep-
learning algorithms for automatic identification of cephalometric landmarks.
Materials and Methods: A total of 1028 cephalometric radiographic images were selected as
learning data that trained You-Only-Look-Once version 3 (YOLOv3) and Single Shot Multibox
Detector (SSD) methods. The number of target labeling was 80 landmarks. After the deep-learning
process, the algorithms were tested using a new test data set composed of 283 images. Accuracy
was determined by measuring the point-to-point error and success detection rate and was
visualized by drawing scattergrams. The computational time of both algorithms was also recorded.
Results: The YOLOv3 algorithm outperformed SSD in accuracy for 38 of 80 landmarks. The other
42 of 80 landmarks did not show a statistically significant difference between YOLOv3 and SSD.
Error plots of YOLOv3 showed not only a smaller error range but also a more isotropic tendency.
The mean computational time spent per image was 0.05 seconds and 2.89 seconds for YOLOv3
and SSD, respectively. YOLOv3 showed approximately 5% higher accuracy compared with the top
benchmarks in the literature.
Conclusions: Between the two latest deep-learning methods applied, YOLOv3 seemed to be more
promising as a fully automated cephalometric landmark identification system for use in clinical
practice. (Angle Orthod. 2019;89:903–909.)
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INTRODUCTION

The use of machine-learning techniques in the field

of medical imaging is rapidly evolving.1,2 Attempts to

apply machine-learning algorithms in orthodontics are

also increasing. Some of the major applications

currently used are automated diagnostics,1 data

mining,3 and landmark detection.4,5 Inconsistency in

landmark identification has been known to be a major

source of error in cephalometric analyses. The

diagnostic value of the analysis depends on the

accuracy and the reproducibility of landmark identifi-

cation.6,7 The most recent studies in orthodontics,

however, still rely on conventional cephalometric

analysis depending on human tasks.4,8–11 A complete-

The first two authors contributed equally to this study.
a Clinical Lecturer, Department of Orthodontics, Seoul Nation-

al University Dental Hospital, Seoul, Korea.
b Resident, Department of Orthodontics, Seoul National

University Dental Hospital, Seoul, Korea.
c Research Assistant, DDH Inc, Seoul, Korea.
d Staff Scientist, DDH Inc, Seoul, Korea.
e Research Scientist, DDH Inc, Seoul, Korea.
f Courtesy Resident, Ministry of Health, Damman, Kingdom of

Saudi Arabia.
g Assistant Professor, Assistant Program Director, Depart-

ment of Orthodontics, University of Florida College of Dentistry,
Gainesville, Fla.

h Professor, Department of Orthodontics, Seoul National
University School of Dentistry and Dental Research Institute,
Seoul, Korea.

Corresponding author: Dr Shin-Jae Lee, Department of
Orthodontics and Dental Research Institute, Seoul National
University School of Dentistry, 101 Daehakro, Jongro-Gu, Seoul
03080, Korea
(e-mail: nonext@snu.ac.kr)

Accepted: May 2019. Submitted: February 2019.
Published Online: July 8, 2019

� 2019 by The EH Angle Education and Research Foundation,
Inc.

DOI: 10.2319/022019-127.1 Angle Orthodontist, Vol 89, No 6, 2019903



ly automated approach has thus gained attention with
the aim of alleviating human error due to the analyst’s
subjectivity and reducing the tediousness of the
task.12–19

Since the first introduction of an automated landmark
identification method in the mid-1980s,20 numerous
methods of artificial intelligence techniques have been
suggested. However, in the past, the various ap-
proaches did not seem to be accurate enough for use
in clinical practice.15 Rapidly evolving newer algorithms
and increasing computational power provide improved
accuracy, reliability, and efficiency. Recent approaches
for fully automated cephalometric landmark identifica-
tion have shown significant improvement in accuracy
and are raising expectations for daily use of these
automatic techniques.12,16,18 Recently, an advanced
machine-learning method called ‘‘deep learning’’ has
been receiving the spotlight.14 However, the first step
toward applying this latest method to the automated
cephalometric analysis system is just recently being
taken.12

Currently available automated landmark detection
solutions previously focused on a limited set of skeletal
landmarks (less than 20), limiting their application
either in determining precise anatomical structures or
in providing soft tissue information.12,16–18 Cephalomet-
ric landmarks are not solely used for cephalometric
analysis for skeletal characteristics. A much greater
number of both skeletal and soft tissue landmarks are
necessary for evaluation, treatment planning, and
predicting treatment outcomes. It has repeatedly been

emphasized that, when a greater number of anatomic
landmark locations are used, a more accurate predic-
tion of treatment outcome will result.8,9,21–24 To apply
automatic cephalometrics in clinical practice effective-
ly, computational performance would also be an
important factor, especially when the system has to
deal with a large number of landmarks to be identified.
Previous research revealed that the systems based on
the random forest method detected 19 landmarks in
several seconds.18 Recently, one of the deep-learning
methods, You-Only-Look-Once (YOLO), was shown to
require a shorter time for detecting objects.25 A
comparison among the latest machine-learning algo-
rithms in terms of computational efficiency might be of
interest to clinical orthodontists.

The purpose of this study was to compare the
accuracy and computational performance of two of the
latest machine-learning methods for automatic identi-
fication of cephalometric landmarks. This study applied
two different algorithms in identifying 80 landmarks: (1)
the YOLO version 3 (YOLOv3)–based method with
modification25,26 and (2) the Single Shot Multibox
Detector (SSD)–based method.27 The null hypothesis
was that there would be no difference in accuracy and
computational performance between the two automat-
ed landmark identification systems.

MATERIALS AND METHODS

Subjects

A total of 1311 lateral cephalometric radiograph
images were selected and downloaded from the
Picture Aided Communication System server (INFIN-
ITT Healthcare Co Ltd, Seoul, Korea) at Seoul National
University Dental Hospital, Seoul, Korea. In later
stages, 1028 images were randomly selected as
learning data, and the remaining 283 images played
a role as new test data. Images of patients with growth
capacity, fixed orthodontic appliances, large dental
prostheses, and/or surgical bone plates were all
included. The exclusion criteria were limited to only
extremely poor-quality images, which made landmark
identification practically impossible. The institutional
review board for the protection of human subjects at
Seoul National University School of Dentistry and
Seoul National University Dental Hospital reviewed
and approved the research protocol (institutional
review board Nos. S-D 2018010 and ERI 19007).

Manual Identification of Cephalometric Landmarks

Of 1311 lateral cephalometric images, a total of 80
landmarks, including two vertical reference points that
were located on the free-hanging metal chain on the
right side, 46 skeletal landmarks, and 32 soft tissue

Figure 1. An image indicating the 80 cephalometric landmarks

detected in the present study. Detailed landmark information is

provided in Table 1.
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landmarks (Figure 1), were manually identified by a
single examiner with more than 28 years of clinical
orthodontic experience. A modification of a commercial
cephalometric analysis software (V-Ceph version 8,
Osstem Implant Co Ltd, Seoul, Korea) was used to
digitize the records for the 80 landmarks. Among them,
27 were arbitrary landmarks to render smooth line
drawings of anatomic structures, and 53 were conven-
tional landmarks that have been well-accepted in
clinical orthodontic practice (Table 1).

Two Deep-Learning Systems

Two systems were built on a server running Ubuntu
18.04.1 LTS OS with a Tesla V100 GPU acceleration
card (NVIDIA Corp, Santa Clara, Calif). One system
was based on YOLOv3,26 the other was based on
SSD.27 Learning data (N ¼ 1028) trained the two
machines’ learning algorithms. Manually recorded
location data of 80 landmarks served as standardized
inputs in this learning process.

The target image was resized to 608 3 608 pixels
from the original size of 1670 3 2010 pixels for optimal
deep learning. One millimeter was equal to 6.7 pixels.
While learning, each image along with its correspond-
ing landmark labels was then passed through convo-
lutional neural network (CNN) architecture for both
YOLOv3 and SSD.

Test Procedures and Comparisons Between the
Two Systems

To test the accuracy and computational efficiency
between the two systems, 283 test data that were not

Table 1. List of Anatomical Landmarks Shown in Figure 1

Landmark No. Name

1 Vertical reference point 1

2 Vertical reference point 2

3 Sella

4 Nasion

5 Nasal tip

6 Porion

7 Orbitale

8 Key ridgea

9 Key ridge contour smoothing point 1a

10 Key ridge contour smoothing point 2a

11 Key ridge contour smoothing point 3a

12 Anterior nasal spine

13 Posterior nasal spine

14 Point A

15 Point A contour smoothing pointa

16 Supradentale

17 U1 root tip

18 U1 incisal edge

19 L1 incisal edge

20 L1 root tip

21 Infradentale

22 Point B contour smoothing pointa

23 Point B

24 Protuberance menti

25 Pogonion

26 Gnathion

27 Menton

28 Gonion, constructed

29 Mandibular body contour smoothing point 1a

30 Mandibular body contour smoothing point 2a

31 Mandibular body contour smoothing point 3a

32 Gonion, anatomic

33 Gonion contour smoothing point 1a

34 Gonion contour smoothing point 2a

35 Articulare

36 Ramus contour smoothing point 1a

37 Ramus contour smoothing point 2a

38 Condylion

39 Ramus tip

40 Pterygomaxillary fissure

41 Pterygoid

42 Basion

43 U6 crown mesial edge

44 U6 mesiobuccal cusp

45 U6 root tip

46 L6 crown mesial edge

47 L6 mesiobuccal cusp

48 L6 root tip

49 Glabella

50 Glabella contour smoothing pointa

51 Nasion

52 Nasion contour smoothing point 1a

53 Nasion contour smoothing point 2a

54 Supranasal tip

55 Pronasale

56 Columella

57 Columella contour smoothing pointa

58 Subnasale

59 Cheek point

60 Point A

61 Superior labial sulcus

62 Labiale superius

Table 1. Continued

Landmark No. Name

63 Upper lip

64 Upper lip contour smoothing pointa

65 Stomion superius

66 Stomion inferius

67 Lower lip contour smoothing pointa

68 Lower lip

69 Labiale inferius

70 Inferior labial sulcus

71 Point B

72 Protuberance menti

73 Pogonion

74 Gnathion

75 Menton

76 Menton contour smoothing pointa

77 Cervical point

78 Cervical point contour smoothing point 1a

79 Cervical point contour smoothing point 2a

80 Terminal point

a Arbitrary landmarks to render a smooth line drawing of anatomic
structures. Landmarks 3 to 48 are skeletal landmarks and 49 to 80
are soft tissue landmarks.
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included in the learning data were used. The accuracy

of the two systems are reported as point-to-point errors

that were calculated as the absolute distance value

between the ground truth position and the correspond-

ing automatically identified landmarks. To visualize and

evaluate errors, two-dimensional scattergrams and

95% confidence ellipses based on chi-square distribu-

tion28–30 for each landmark were depicted. To follow the

format of previous accuracy reports, thereby making

analogous comparisons with previous results possible,

the successful detection rates (SDRs) for 2-, 2.5-, 3-,

and 4-mm ranges were calculated for 19 landmarks

that were previously used in the literature.12 Computa-

tional performances were reported as the mean

running time required to identify 80 landmarks of an

image under this study’s laboratory conditions. The

differences in the test errors between YOLOv3 and

SSD were compared with the t-test at the probability of

.05 with the Bonferroni correction of alpha errors. All

statistical analyses were performed by Language R

(Vienna, Austria).31

RESULTS

YOLOv3 outperformed SSD in accuracy for 38 of 80

landmarks. The other 42 of 80 landmarks did not show

statistically significant differences between the two

methods. None of the landmarks was found to be more

accurately identified by the SSD method (Figure 2).

Among the scattergrams, the porion and condylion
points are provided as representative plots in Figure 3.
The figure shows that YOLOv3 has not only smaller
ellipses in size but also a more homogenous distribu-
tion of detecting errors irrespective of the direction. The
latter can be seen by a more circular shape of the
ellipses of YOLOv3, while SSD has crushed-shaped
ellipses (Figure 3).

The mean time spent in identification and visualiza-
tion of the 80 landmarks per image was recorded as
0.05 and 2.89 seconds for YOLOv3 and SSD,
respectively. When compared with the top benchmark
in the literature to date so far,12 YOLOv3 showed
approximately 5% higher SDR in all ranges (Figure 4).

DISCUSSION

The present study was performed to investigate
which kind of latest deep-learning method would
produce the most accurate results in automatically
identifying cephalometric landmarks. Although auto-
matic cephalometric landmark identification has been a
topic of interest, until the mid-2000s the developed
algorithms did not seem accurate enough for clinical
purposes.15 More recently, annual global competitions
revealed impressive improvements in the accuracy of
automated cephalometric landmark identification.12,17,18

In fact, recent approaches based on deep learning
algorithms showed accuracy comparable with an
experienced orthodontist.16,18 The result of the present

Figure 2. Comparison of the mean point-to-point errors between the You-Only-Look-Once version 3 (YOLOv3, red) and Single Shot Detector

(SSD, blue) methods. The plot indicates that YOLOv3 was more accurate than SSD in general.
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study demonstrated that YOLOv3 was better than
SSD. Furthermore, the accuracy results of the present
study showed that YOLOv3 was better than other top
benchmarks to date so far.12,17,18 Among the previous
literature, the most accurate result was produced after
applying CNNs, which identified 19 landmarks.12 The
present study identified significantly more: 80 land-
marks that could readily be extrapolated for clinical use
in predicting treatment outcomes.8,21–24 For clinical
purposes, data from cephalometric landmark identifi-
cation could readily be extended even to predict and
visualize soft tissue changes after treatment. For the
aforementioned purposes, the previous international

competitions dealing with 19 landmarks17,18 might not
meet the clinical needs in orthodontic practice.

Applications of deep learning models to overall
technology are becoming reality.14 Papers focusing
on one of them, CNN, have been rapidly accumulat-
ing.1,2,12 Regarding automated cephalometric landmark
identification, efforts to apply CNN have begun
relatively recently. In 2016, with the aim of real-time
object detection in testing images, two novel algorithms
came out, namely, YOLO and SSD.25,27 YOLO uses
CNN to reduce the spatial dimension detection box. It
performs a linear regression to make boundary box
predictions. The purported advantage of YOLO is fast
computation and generalization. In the case of SSD,
the size of the detecting box is usually fixed and used
for simultaneous size detection. Therefore, the pur-
ported advantage of SSD is known to be the
simultaneous detection of objects with various sizes.
However, in landmark identification of cephalometric
radiographs, the size of the detecting box is generally
fixed. This was conjectured to be one reason for the
poorer detection performance of SSD. A well-known
limitation of both YOLO and SSD was that their
accuracy was inferior to other methods when the size
of objects is small. However, the latest version of
YOLO (YOLOv3) claimed to improve its accuracy to
the level of other preexisting methods while keeping
the aforementioned advantages.26

Some of the landmarks are prone to error in the
vertical direction, while others show greater errors in
the horizontal direction.15,28 Hence, evaluating the
accuracy based only on the linear distance might not

Figure 3. Error scattergrams and 95% confidence ellipses from the YOLOv3 (red) and SSD (blue) methods. YOLOv3 resulted in a more uniformly

distributed pattern of detection errors (more circular isotropic shaped ellipse) as well as higher accuracy (smaller sized ellipse) than SSD. (a)

Errors after detecting porion. (b) Errors after detecting condylion.

Figure 4. Compared with the top accuracy results in the previous

literature,12 the proposed YOLOv3 shows approximately 5% higher

success detection rates for all ranges.
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be informative enough. Therefore, two-dimensional
scattergrams and 95% confidence ellipses of 80
landmarks were depicted. As shown in Figure 3,

YOLOv3 was revealed to have ellipses with smaller
sizes and more circular shapes. In other words,
YOLOv3 was not just more accurate but also resulted
in a more isotropic shape of error patterns than did
SSD. This feature might be another advantage of

YOLOv3.

The computational time of an automated cephalo-
metric landmark identification system might be a
concern to clinicians. The mean time spent per image
was 0.05 seconds for YOLOv3 and 2.89 seconds for

SSD under this study’s laboratory conditions. Even
with an extensive number of landmarks to be identified,
both algorithms showed excellent speed. The applica-
tion of artificial intelligence in automated cephalometric
landmark identification may lessen the burden and
alleviate human errors. By gathering radiographic data

automatically, the YOLOv3 method may also help
reduce human tasks and the time required for both
research and clinical purposes.

One strength of the present study was that the data
included comprised the largest number of learning (n¼
1028) and test data (n ¼ 283) ever investigated.
Limitations of the present study were that intra/
interexaminer reliability statistics and reproducibility
comparisons are necessary. To determine whether the
automated cephalometric landmark identification may

perform better than orthodontic clinicians, a future
study is envisioned.

CONCLUSION

� YOLOv3 outperformed SSD in accuracy and compu-

tational time. YOLOv3 also demonstrated a more
isotropic form of detection errors than SSD did.
YOLOv3 seems to be a promising method for use
as an automated cephalometric landmark identifica-
tion system.
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