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Abstract
The global pandemic COVID-19 necessitated various responses throughout the world, including social distancing, use of mask,
and complete lockdown. While these measures helped prevent the community spread of the virus, the resulting environmental
benefits of lockdown remained mostly unnoticed. While many studies documented improvements in air quality index, very few
have explored the reduction in black carbon (BC) aerosols and polycyclic aromatic hydrocarbons (PAHs) concentrations due to
lockdown. In this study, we evaluated the changes in concentrations of BC, PAHs, and PM2.5 before and during the lockdown
period. Our results show that lockdown resulted in a significant reduction in concentrations of these pollutants. The average mass
concentration of BC, PAHs, and PM2.5 before the lockdownwas 11.71 ± 3.33μgm

−3, 108.71 ± 27.77 ngm−3, and 147.65 ± 41.77
μgm−3, respectively. During the lockdown period, the concentration of BC, PAHs, and PM2.5 was 2.46 ± 0.95 μgm

−3, 23.19 ±
11.21 ngm−3, and 50.31 ± 11.95 μgm−3, respectively. The diagnostic ratio analysis for source apportionment showed changes in
the emission sources before and during the lockdown. The primary sources of PAHs emissions before the lockdown were
biomass, coal combustion, and vehicular traffic, while during the lockdown, PAHs emissions were primarily from the combus-
tion of biomass and coal. Similarly, before the lockdown, the BC mass concentrations came from fossil-fuel and wood-burning,
while during the lockdown period, most of the BC mass concentration came from wood-burning. Human health risk assessment
demonstrated a significant reduction in risk due to inhalation of PAHs and BC-contaminated air.
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Introduction

Atmospheric aerosols, including black carbon (BC) aerosol and
polycyclic aromatic hydrocarbons (PAHs), can pose an adverse
risk to human health. These aerosols are also major contributors
to PM2.5 particulates in the environment. BC mass concentration
sources are of either natural or anthropogenic origin. Primary
natural processes include forest fires, and volcanic eruptions,
while the primary anthropogenic activities include domestic uses,

including the burning of fossil fuel, biomass burning for agricul-
ture, and vehicular movements. Among these, fossil fuel and
wood-burning are the most predominant sources. Compared to
the presence of centuries of atmospheric CO2, BC has a very
short atmospheric lifetime (Kopp and Mauzerall 2010;
Grieshop et al. 2009; Ramanathan and Carmichael 2008). BC’s
physical characteristics, such as its intense black/dark color, can
easily absorb visible light and heat (Cachier 1995; Hansen et al.
1984). Studies have shown the direct effect of this process in the
high-altitude Himalayan-Tibetan region, where the heating effect
was attributed to BC (Lau et al. 2010). The atmospheric impact
of BC emission can be direct as well as indirect. For example,
BC absorbs atmospheric water molecules (hygroscopic) and de-
posit them on the buildings and metal surfaces. It also exhibits
optical properties like the scattering of light (He et al. 2015;
Khalizov et al. 2009; Zhang et al. 2008).

A perusal of literature suggests that, in the year 2000, Asia
was one of the most significant contributors to BC emissions
(Ohara et al. 2007; Streets et al. 2003). BC emission has been
on the rise because of economic growth, industrialization,
urbanization, energy demands, uncontrolled agricultural
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waste burning, peat fire, and forest fires in south and east
Asian regions (Chen et al. 2017; Rastogi et al. 2016;
Vadrevu et al. 2015). According to one estimate, approximate-
ly 40% of BC emissions attributed to open biomass burning,
40% to fossil fuel burning, and the remaining 20% to biofuel
burning (Ramanathan and Carmichael 2008). Global distribu-
tion and emission of BC levels play a critical role in preserving
a healthy lifestyle (He et al. 2016; Huang et al. 2020).

The molecular structure of PAHs consists of two to seven
fused aromatic rings. They are emitted from natural as well as
anthropogenic processes. In the atmosphere, primary anthro-
pogenic sources of PAHs are biomass burning, coal combus-
tion, petroleum, coke, and metal production (Zhang and Tao
2008), while natural sources of PAHs are forest fire and vol-
canic eruption fires (Baek et al. 1991; Xu et al. 2006). In the
atmosphere, the primary source of PAHs is vehicular emission
(Bull 2003; Liu et al. 2006; Wang et al. 2007; Mostert et al.
2010) although PAHs are also emitted from industrial activi-
ties, especially during energy production and incomplete
burning of carbonaceous materials (Xu et al. 2006; Cristale
et al. 2012). Most PAHs (around 95%) have a size below
3 μm, and as such, they can be easily transported over long
distances (Venkataraman et al. 1994). During the last few
decades, the occurrence, fate, and distribution of PAHs in
the environment have raised serious concerns because of their
carcinogenic, teratogenic, and mutagenic properties (Boeuf
et al. 2016). Like many aromatic compounds, PAHs’ occur-
rence in the atmosphere poses a serious threat to human health
(IARC 1984; Di-Toro et al. 2000; Arey and Atkinson 2003).

Nowadays, almost all countries (developed and developing
countries alike) are affected by the coronavirus pandemic
(COVID-19). In China, the metropolitan city of Wuhan, a
sudden increase in pneumonia cases were reported in
December 2019. These cases were attributed to the infections
caused by the novel COVID-19 (Wu et al. 2020; Li et al.
2020). Incidentally, Wuhan city also had the first confirmed
case of COVID-19 (Huang et al. 2020) followed by SARS-
CoV-2 (severe acute respiratory syndrome coronavirus) in
Spain (Saglietto et al. 2020). After that, the number of infected
persons increased rapidly with a short doubling time, and
within few months, it became a global pandemic (World
Health Organization 2020a, b; CDC 2020; Chan et al.
2020). Considering these widely reported cases of COVID-
19, the Government of India announced a nationwide lock-
down. The lockdown was planned in a phase-wise manner,
with Phase I started on March 25th to April 14th, 2020, and
lasted for 21 days. Phase I was the strict lockdown phase. The
Government of India ordered a complete shutdown of all in-
dustrial complexes, factories, educational institutes, and local
markets. During this phase, the government put a strict restric-
tion on large public gatherings in places of worship, hotels,
restaurants, and shopping malls that impacted residential mo-
bility. Phase II was a continuation of Phase I and lasted for

19 days, ending on May 3rd, 2020. During Phase II, some
industries in rural areas were allowed to open to relieve the
distress caused by the lockdown. The government allowed the
resumption of farm activities and construction of residential
buildings and roadways on a limited scale. Phase III & IV
started on May 4th to May 31st, 2020 and lasted for 14 days.
During these phases, considerable relaxation was granted in
areas with a lower incidence of COVID-19 cases.While many
countries worldwide suffered human casualties, better envi-
ronmental prospects were observed an overall improvement
in air quality and reduced emissions of BC, PAHs, and PM2.5.
While many studies reported improvement in air quality
(Agarwal et al. 2020; Anil and Alagha 2020; Gautam 2020;
Islam et al. 2020; Panda et al. 2020; Sharma et al. 2020; Singh
and Chauhan 2020), none have explored the reduction in pro-
file of BC and PAHs because of lockdown. This study pre-
sents the monitoring results of BC, PAHs, and PM2.5 partic-
ulates before and during the phased lockdown in one of the
major industrial cities in northeastern India.

Data collection and methodology

Description of study area

Sampling was conducted in Jamshedpur city (220 80′ N
Longitude and 860 20′ E Latitude) in the southern part of
the Jharkhand state of the eastern part of India. The city is
spread over the Chota Nagpur Plateau (CNP) region, covering
a total area of around 6500 km2. Jamshedpur city is
surrounded by dense forest and greenery of Dalma hills and
is known as India’s iron city. The total population of
Jamshedpur City is approximately 1.3 million (Census of
2011), and the population density is around 6400 people per
km2. The CNP has major industrial conglomerates, including
TATA Iron and Steel Company (TISCO), TATA motors, ce-
ment and chemical industries, power plants, and plastic indus-
tries. More than 1000 industries are currently operating in
Adityapur under Adityapur Industrial Development
Authority (AIDA). The AIDA is one of the largest industrial
development authorities in east India. There are many large,
medium, and small-scale industries are operating under
AIDA. Besides the industrial hub, the highway network is also
the primary source of emissions of various atmospheric pol-
lutants. This area may be affected by BC, PAHs, and PM2.5

aerosols. Industrial burning of coal, dung cake, wood, and
high traffic emissions have been the primary sources of atmo-
spheric pollution in this region. In this study, emissions of BC,
PAHs, and PM2.5 aerosols were monitored before (from
January 3rd to March 23rd) and during the lockdown (from
April 1st to June 14th 2020).

During the sampling event, the samplers were deployed
above the chemistry department building in the National
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Institute of Technology, Jamshedpur (NIT J). The sampling
site map is displayed in Fig. 1. The monthly metrological
parameter of study areas such as temperature (°F), wind speed
(mph), and humidity (%) in the study area (Table 1) was
collected from https://www.worldweatheronline.com.
Besides the measurements obtained from the satellite study,
additional fieldwork was undertaken to determine the BC
mass concentrations. The data obtained from the satellite
study was coarse and included large areas, while the
fieldwork was focused on the target study area of
Jamshedpur City, Eastern India.

Measurement of PM2.5 and PAHs concentrations

The sampling regime mainly consists of monitoring PM2.5

and PAHs concentrations once a week on weekdays and
weekends before (from 3rd January to 2nd March 2020)
and during the lockdown (from 1st April to 14th
June 2020). Series of samplers were deployed on the roof
of the chemistry department building at NIT-J. A mini
volume sampler (Envirotech Model APM 550) operated
at a constant flow rate of 16.5 L/min was used for sam-
pling. A 47-mm PTFE filter (Merck, Catalog number -
PM2547050) was used to collect particulate associated
PAHs during the sampling campaign. Before sampling,
the filter was kept in a desiccator and weighed before
and after the sampling to determine the weight of the
particulate using a single pan-top loading digital weight
balance (VWR, Model no: VWR1611-2263: with
Weighing chamber L × W × H: 162 × 171 × 225 mm).
The filter was stored in the culture box and kept in the
refrigerator at or below 40 °C until analysis. Background
contamination was checked using operational blanks

(unexposed filters), which were processed concurrently
with field samples.

A total of 16 priority USEPA-PAHs were extracted by
Soxhlet extraction. The filter was carefully cut into two
pieces to avoid dust loss and kept into 200-ml distillation
vessels for 10 h using dichloromethane (DCM) solvent.
The extraction thimble is initially lowered into the sol-
vent. The extraction process was efficient and showed a
more than 97% recovery rate. After extractions, the ex-
tracted volume was reduced to 10 ml by a rotatory evap-
orator. The extracted DCM was condensed in a chiller.
The solvent was boiled to reduce the total extraction time,
and the evaporated solvent condensed quickly for reuse.
This process has significantly reduced the amount of sol-
vent required. The extract was purified using sodium
sulfate–silica gel column (glass column of 30 cm long
and 3-cm diameter). The purified extract was reduced to
1–2 ml by 99.9% pure nitrogen gas and quantified by
advanced gas chromatography (GC-FID, Agilent 7890B)
coupled with flame ionization detector (FID) equipped
with capillary column HP- 5MS (30 m × 0.25 mm i.d ×
0.25 μm). In splitless mode, 1 μl of each sample was
injected. The nitrogen (carrier gas) gas flow rate was
maintained at 2 ml min−1. The oven temperature ramped
from 600 °C for 3 min and increased up to 3200 °C at the
rate of 50 °C min−1 and remained constant for the next
20 min. According to the peak area of spectra and reten-
tion time, the 16 USEPA priority PAHs concentrations
were quantified. The laboratory blank and field blank
samples were extracted and analyzed in the same way as
field samples. No PAHs compounds were detected in
blank samples, thereby confirming that no cross-
contamination of samples occurred.

Fig. 1 Satellite aerial view
(Google Earth) of the sampling
area at National Institute
Technology, Jamshedpur (NIT J)
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Measurement of BC mass concentrations

The Aethalometer is one of the best and easiest techniques to
measure the BC mass concentration compared to the other
techniques like particle soot absorption photometer, coeffi-
cient of haze tape sample, and thermal oxidation/reflectance
(Allen et al. 1999). Continuous real-time measurement of BC
mass concentrations was performed before and during the
lockdown period. An Aethalometer (AE-33, Magee
Scientific, USA) was used for analyzing the BC mass. The
Aethalometer had seven different wavelengths 370, 470, 520,
590, 660, 880, and 950 nm. This technique is based on the
amount of light attenuated by the filter due to the deposition of
BC. In the above technique, atmospheric air is pumped over
an inlet at the flow rate (about 5 LPM) through a quartz filter.
The standard wavelength for measurement of BC mass con-
centration was 880 nm because BC primarily absorbs the light
at this wavelength (other aerosol components have negligible
absorption) (Hansen et al. 1984; Weingartner et al. 2003). At
the standard wavelength of 880 nm, a light beam from a high-
intensity light-emitting-diode lamp was transferred through
the sample deposited on the filter strip. The measurement of
attenuation of the light beam was linearly proportional to the
amount of BC deposited on the filter strip. The measurements
were made at every 5-min interval.

Source apportionment of BC and PAHs

The BC primarily results from incomplete combustions of
biofuel and atmospheric burning of fossil fuels (Bond et al.
2013; Petzold et al. 2013). While many researchers have pro-
posed various methods to determine the source apportionment
of BC, of these some conventional methods used for deter-
mining the source allocation of BC are chemical mass balance
(CMB; Favez et al. 2010), the macro-tracer method (Larsen
et al. 2012), the Aethalometer model (Fuller et al. 2014; Sciare
et al. 2011), the radiocarbon method (Zhang et al. 2015), pos-
itive matrix factorization (Florou et al. 2017), principal com-
ponent analysis (Thepnuan et al. 2019), and other specialized

models (Briggs and Long 2016; Belis et al. 2013) have gained
widespread acceptance. In this study, we used the handy
Aethalometer model for source apportionment. Although this
model identifies fewer source-categories (e.g., traffic emission
and wood-burning), it only requires a different-wavelength
light absorption dataset (Zotter et al. 2017). We also describe
the fire count data and air backward trajectory to analyze the
source apportionment of BC mass concentrations, PAHs, and
PM2.5. To distinguish between sources of BC mass concen-
trations of local emissions at Jamshedpur, we have calculated
the percent difference of BC measured at two different wave-
lengths BC370 and BC880.

BC370–BC880ð Þ=BC880

If the fractional BC values are negative, then it suggests
that BC emission originated from fossil fuel combustion (die-
sel and petrol) (Herich et al. 2011). On the other hand, the
fractional BC values are positive; then, it suggests that BC
emission originated fromwood burning (forest fire, residential
burning of coal, and dry leaf) (Wang et al. 2011). From the
diagnostic ratio analysis, we can determine the different
sources of PAHs. For diagnostic ratio analysis, the traffic,
industrial, and biomass, and coal-burning sources were
analyzed.

Human health risk evaluation for BC

Many studies have demonstrated that exposure to BC and
resulting human health consequences is almost identical to
passive smoking (Muller and Muller 2013; van der Zee et al.
2016; Wu et al. 2018). Many similarities exist between expo-
sure to BC and smoking and resulting in human health impact.
Both have similar exposure routes (inhalation), similar health
risks, and spontaneous atmospheric exposure (Van der Zee
et al. 2016). Due to its smaller particulate size, BC aerosols
are directly inhaled from the proximal local or regional
sources, including inhalation of environmental tobacco smoke
(Ev.TS). Chronic exposure to BC may pose an adverse risk to

Table 1 Meteorological parameter data, PM2.5, and BC concentration of before lockdown and during lockdown

Parameters Before lockdown During lockdown

Jan Feb Mar Apr May Jun

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Temperature (°C) 19.3 1.93 20.53 2.67 26.38 3.13 31.2 4.1 32 3.96 31.6 3.25

Wind speed (mph) 2.53 0.76 2.71 0.66 2.79 0.91 4.4 0.7 4.8 0.93 4.4 0.98

Humidity (%) 0.61 0.15 0.58 0.08 0.54 0.12 0.62 0.1 0.59 0.11 0.56 0.07

PM2.5 (μgm
−3) 162.7 47.4 158 39.3 125.3 28.5 45.8 8.9 50.4 11.9 54.7 13.3

BCA (μgm−3) 12.7 3.86 12.65 3.14 10.03 2.28 1.8 0.3 2.26 0.59 3.31 1.02
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human health, including carcinogenic and non-carcinogenic
risks (De Prins et al. 2014; Niranjan and Thakur 2017;
Magalhaes et al. 2018). In this study, we have calculated the
health risks associated with atmospheric BC exposure to local
inhabitants before and during the lockdown period. Children
and adults were considered as a potential representative
receptor chronically exposed to airborne BC. The amount of
mass of BC inhaled by this population is compared with the
amount of mass inhaled because of passive cigarette smoking.
Van der Zee et al. (2016) developed a risk evaluation method
specifically for exposure to Ev.TS. In this method, the authors
used Ev.TS to estimate BC’s health risk for four different
health conditions. The population with low birth weight
(LBWt.), percentage lung function decrement of school-aged
children (PLFDSC), cardiovascular mortality (CvM), and
lung cancer (LC) were considered for estimating the health
risk resulting from BC. All four health issues are noticeable
by associating BC pollution and Ev.TS exposure (Kelly and
Fussell 2015; WHO (World Health Organization) 2014;
Oberg et al. 2010). For each health condition, the relative risk
due to exposure to BC and Ev.TS can be calculated. The
relative risk describes the relationship between exposure
Ev.TS and BC (WHO (World Health Organization) 2003;
Rothman et al. 2008; Van der zee et al. 2016). The contact
between a specified change in BC concentration and health
risk issue was characterized by the meta-analysis of recorded
concentration-response functions (CRFs). For a given health
issue (R), an increase in 1 μgm−3 of BC concentration is
equivalent to the number of passively smoked cigarettes
(PSC) (Van der Zee et al. 2016). Therefore, R is written as:

R ¼ ln RRBCð Þ=ΔConc½ �= ln RREV:TSð Þ=assumed number of PSC½ �
ð1Þ

here,

[ln(RRBC)/ΔConc] the resultant risks for change in
ΔConcentration (i.e., 1 μg m−3) of BC.

[ln(RRETS)/assumed
number of PSC]

the resultant risks of Ev.TS exposure
for the assumed number of PSC per
day.

RRBC RR of BC with respect to a health
issue.

RREV.TS RR of EV.TS with respect to a health
issue.

The value of RRBC and RR for Ev.TS are taken from Pani
et al. (2020) and Van der Zee et al. (2016). In the case of
PLFDSC, the assumed number of PSC per day is 9. For a
child of a non-smoking mother, the assumed number of PSC
per day is 7 for CVM and LC, and the same value was as-
sumed for adults with the risk of LBWt (Van der Zee et al.
2016). The equivalent numbers of PSC per day (i.e., NPSC:

passive cigarette-equivalence) were estimated using the fol-
lowing formula:

NPSC ¼ R�ΔBC ð2Þ
and

ΔBC ¼ BCobsð Þ– BCbacð Þ½ � ð3Þ
where,

BCobs Observed BC concentration,
BCbac Background BC concentration

In this research, we focused on health risk estimates of BC
pollution but did not evaluate the overall concern regarding
the onset of disease due to BC pollution or Ev.TS exposure.
The values of RRBC and RREv.TS are derived from thorough,
systematic reviews and can be summarized to implement the
relevant health risk estimates. Our evaluations are based en-
tirely on the assumptions, including the study conducted by
Van der Zee et al. (2016), i.e., 14 daily cigarette consumption
as per WHO assessment for smokers in the USA and North-
West Europe. As such, the health risk estimate provided in this
study has some limitations.

Human health risk evaluation for PAHs

Exposure to PAHs through various routes and pathways poses
an adverse risk to human health. The toxicity of various forms
of PAHs differs significantly; thus, the toxicity equivalent
factors (TEF) were established for each specific forms of
PAHs. Using these TEFs, toxic equivalency was determined
to evaluate the exposure to PAHs (Yu et al. 2008; Yang et al.
2007). The toxic equivalent factors for all PAHs were deter-
mined by using the cancer risk of all PAHs relative to the
cancer risk of BaP. Equation. 4 was used for estimating the
toxic equivalent, which is a simple multiplication of the con-
centration of each carcinogenic PAHs and their respective
TEFs.

TEQ ¼ ∑Ci x TEFi ð4Þ
where, Ci represents the concentration of individual PAHs,
and TEFi represents the toxic equivalency factor value
(Nisbet and Lagoy 1992). Since the toxic equivalent factors
were based on the cancer risk relative to BaP, the resulting
TEQs were 1 value for BaP and DBahA; 0.1 value for BaA,
BkF, and IcP; 0.01 value for Chr, Ant, and B(ghi)P; and 0.01
for Phe, Flt, and Pyr. Additionally, the exposure risk due to
individual PAHs can be quantitatively calculated by incre-
mental lifetime cancer risk (ILCR) (Peng et al. 2011; U.S.
EPA 1991; Chen and Liao 2006). To calculate the ILCR,
lifetime average daily dose (LADD) of PAHs for children
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(age six years) and adults (age 70 years) were determined. The
LADD indicates the mass of PAHs inhaled/ingested by the
chronically exposed population per kg of body weight per
day over their lifetime. The LADD only establishes the dose
an individual inhales/ingest and does not necessarily indicate
the adverse health risk. To quantify the risk, the LADD is
multiplied by the respective slope factors (inhalation/inges-
tion/dermal). Equations 5 and 6 were used for quantifying
the ILCR.

LADD mg kg−1 day−1
� �

¼ Cs� IR� CF� EF� EDð Þ= BW� ATð Þ ð5Þ
ILCR ¼ LADD� CSF ð6Þ
where,

Cs is the sum of the converted airborne particulate (ng/m3)
concentration of PAHs based on TEQ value.

IR is the air inhalation rate (m3/day)
CF represents the unit conversion factor (1 × 10−6 mg/kg)
EF represents the exposure frequency (day/ year)
ED represents the lifetime exposure duration
BW represents the body weight (kg)
AT represents the averaging time for carcinogens (days)

CSF represents the inhalation cancer slope factor
(3.85 mg kg−1 day−1) (Peng et al. 2011).

Results and discussion

Variation in BC mass concentration

The measurement of BC was obtained from the satellite study
through the Giovanni NASA website. These measurements
demonstrated that eastern and northeastern India had signifi-
cantly higher BC concentrations than the rest of the country.
In general, the measured BC concentrations in the Indo-
Gangetic Plain (IGP) were higher before and during the

lockdown period than those measured during the same period
in the rest of the country (Fig. 2). The BCmass concentrations
in eastern India, before and during the lockdown period,
ranged from 3.5 to 4.2 μgm−3, and 2.2 to 3 μgm−3, respec-
tively (Fig. 2a, b). BC concentration variation is primarily due
to the complete lockdown of industries and reduced vehicular
traffic during the lockdown period (Fig. 3). The decreasing
trend in BC concentration was noticeable, especially when
the lockdownwas imposed on the last week ofMarch (Fig. 3).

We monitored the BCmass concentrations for 12 h per day
before and during the lockdown period. At the study site, the
average BC mass concentrations before and during the lock-
down period were approximately 11.71 ± 3.33 μgm−3 and
2.46 ± 0.95 μgm−3, respectively (Fig. 4b). The monthly
(January, February, and March 2020) average concentration
of BC was approximately 12.70 ± 3.86 μgm−3, 12.65 ± 3.14
μgm−3, and 10.03 ± 2.28 μgm−3, respectively. In general, be-
fore the lockdown, the BC concentrations varied from 6.61 to
20.94 μgm−3. While during the lockdown period, the monthly
(April, May, and June 2020) average concentration of BCwas
approximately 1.80 ± 0.34 μgm−3, 2.26 ± 0.59 μgm−3, and
3.31 ± 1.02 μgm−3, respectively. In general, the BC concen-
trations varied from 1.10 to 5.27 μgm−3. Continuous reduc-
tion in BC mass concentration emission was recorded during
the lockdown period due to the complete shutdown of indus-
tries, construction activities, and vehicular traffic during lock-
down period.

Variation in PM2.5 and PAHs concentrations

Wemonitored the PM2.5 concentrations before and during the
lockdown period. Throughout the study, variation in PM2.5

concentrations was observed (Fig. 4a). The average PM2.5

concentrations at the study site before and during the lock-
down period were 147.65 ± 41.77 μgm−3 and 50.31 ± 11.95
μgm−3, respectively. The monthly average concentrations of
PM2.5 for January, February, and March 2020 were approxi-
mately 162.74 ± 47.44 μgm−3, 158.09 ± 39.31 μgm−3, and

Fig. 2 Time average map of BC
surface mass concentration
monthly 0.5 × 0.625 deg.
[MERRA-2 Model
M2TMNXAER v 5.12.4] at the
two different situations. a Before
the lockdown period. b During
the lockdown period
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125.33 ± 28.54 μgm−3, respectively. Before the lockdown,
PM2.5 concentrations varied from 82.67 to 261.78 μgm−3.
On the other hand, during the lockdown period, the monthly
average concentration of PM2.5 were 45.80 ± 8.90 μgm−3,
50.43 ± 11.93 μgm−3, and 54.70 ± 13.26 μgm−3 in April,
May, and June 2020, respectively. In general, the PM2.5 con-
centrations varied from 21.36 to 79.35 μgm−3.

Like BC and PM2.5 concentrations, PAHs concentrations
were also observed during this period. In this study, the sum of
16 PAHs concentrations was analyzed. Variations in PAHs
concentrations throughout the study period are shown in
Fig. 5. The approximate average PAHs concentrations at the
study site before and during the lockdown were 108.71 ±
27.77 ngm−3 and 23.19 ± 11.21 ngm−3, respectively. These
measurements show that PAHs concentration gradually de-
creased during the lockdown. Compared to the pre-
lockdown period, approximately one-fifth reduction in emis-
sion of PAHs concentrations was recorded during the lock-
down period. Before the lockdown, the highest concentrations
were recorded for phenanthrene (Phe) 9.23 ± 2.27 ngm−3,
while the lowest concentrations were recorded for acenaph-
thylene (Acy) 4.09 ± 1.19 ngm−3. During lockdown periods,
however, the highest concentrations were recorded for

benzo[b]fluoranthene (BbF) 1.89 ± 1.42 ngm−3, while the
lowest concentrations were recorded for benzo[a]pyrene
(BaP) 0.68 ± 0.51 ngm−3. Tables 1 and 2 provide the statistical
summaries of BC and PM2.5 mass concentrations and summa-
ry results of all 16 PAHs concentrations. High BC, PAHs, and
PM2.5 mass concentrations at the study site suggested that the
atmosphere is mostly polluted by anthropogenic activities
such as coal, wood, and fossil-fuel burning. The regular emis-
sion of BC, PM2.5, and PAHs concentrations at the study site
was partly due to industrial and vehicular emissions and partly
due to residential burning of coal, wood, biomass, and kero-
sene. During the lockdown, all anthropogenic activities were
at a standstill resulting in reduced emissions of air pollutants in
the atmosphere. In summary, the mandatory lockdown due to
the COVID-19 pandemic has significantly reduced the atmo-
spheric emissions of BC, PAHs, and PM2.5.

Backward trajectories analysis

Backward trajectory analysis demonstrates the transport path-
ways of air pollutants. It helps determine the direction of air-
flow and the possible regional sources before pollutants reach
the targeted location. Local meteorology, emission, and

Fig. 3 Daily basis mass
concentration of PM2.5 and BC
before and during the lockdown
period at NIT J

Fig. 4 Monthly basis mass
concentration with standard
deviation of PM2.5 and BC before
and during the lockdown period at
NIT J
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photo-chemistry can play essential roles in concentration var-
iation. The higher concentration level of PAHs and BC at the
study site is directly or indirectly linked with the local sources
of emissions and long-range transport of pollutants from other
countries. We have used 7-day back trajectory data for two
different situations (before and during the lockdown) to

determine the potential sources. The back trajectory was
mapped using an online global environmental dataset
program—NCEP (National Centers for Environmental
Prediction) Climate Forecast System. The overall trajectories
were prepared with the help of Meteorological Data Explorer
developed by the Centre for Global Environmental Research

Table 2 The concentration of
PAHs before and during
lockdown

PAHs Abbreviation No. of rings Before lockdown During lockdown

Mean SD Mean SD

Naphthalene Nap 2 6.47 2.18 1.03 0.43

Acenaphthylene Acy 3 4.09 1.91 1.3 0.79

Acenaphthene Ace 3 5.86 1.7 1.34 0.42

Fluorene Flu 3 5.32 2.51 1.2 0.76

Phenanthrene Phe 3 9.23 2.27 1.15 0.15

Anthracene Ant 3 9.12 2.44 1.07 0.42

Fluoranthene Flua 4 8.81 1.78 1.73 0.96

Pyrene Pyr 4 6.92 1.05 1.39 0.45

Chrysene Chr 4 8.18 2.26 1.82 1.49

Benzo[a]anthracene BaA 4 6.16 1.98 1.79 1.6

Benzo[b]fluoranthene BbF 5 7.82 2.76 1.89 1.42

Benzo[k]fluoranthene BkF 5 8.56 2.97 1.46 0.79

Benzo[a]pyrene BaP 5 5.93 0.7 0.86 0.51

Dibenzo[ah]anthracene DBahA 5 5.46 0.65 1.83 1.29

Benzo[ghi]perylene B(ghi)P 6 4.95 1.43 1.53 0.76

Indeno[123-cd]pyrene IcP 6 5.83 1.57 1.8 1.2

∑PAH 108.71 27.77 23.19 11.21
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Fig. 5 Concentration (ng/m3) of
PAHs before and during the
lockdown periods at NIT J
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(CGER), Japan, and Igor software. Backward trajectories are
calculated at different heights (altitude) from 0 to 5000 m
using distinct color bands. The fire count data from NASA
FIRMSwere also incorporated along with back trajectories, as
shown in Fig. 6. (https://firms.modaps.eosdis.nasa.gov/data/
download/DL_FIRE_M6_76896.zip). Mean individual
trajectories corresponding to before and during the
lockdown periods were considered for finalizing the
trajectories during these two intervals. According to the
back-trajectory analysis, the air mass originated from different
sources during different seasons. Before the lockdown period,
the airborne particulate matter was transported from northeast
India. Maximum air pollutants were originated from the
Himalayan region, while some originated from the Bay of
Bengal. Interestingly, compared to other regions, the differ-
ence in the height of trajectories in these regions is lower.
Long-range atmospheric transport was also observed, span-
ning as far as Southern and Southwestern Asian countries
such as Afghanistan, Pakistan, and Iran (Fig. 6a). Maximum
air pollutants were originated from Pakistan and Afghanistan.
However, the height of trajectories is moderate during the
lockdown period (Fig. 6b). During the lockdown period, it
was seen that the airborne particulate matter was transported
fromNorthern and Northeastern India.While some particulate
matter also originated from the Indian Ocean and the Bay of
Bengal.

Source apportionment of BC and PAHs

Source apportionment analysis is critical for accurately iden-
tifying various air pollutants originating from various natural
and anthropogenic sources. The technique for analyzing the
sources varies with the pollutants’ characteristics, even though
they may originate from the same sources. For example, BC
and PAHs’ mass concentration could originate from the same
source, yet they have different characterization techniques for
source apportionment analysis. The BC measurement tech-
nique could determine the sources of BC mass concentration,
while the Aethalometer model can characterize additional
source-categories like wood-burning and traffic emissions.
In this study, the presence of UV absorbing organic

compounds was identified by using 370-nm wavelengths.
An analysis of BC measured at 370 nm (UV) and 880 nm
(near-IR) wavelengths are favorable for the source recognition
of BC (Srivastava et al. 2012). In India, coal-burning is a
significant energy source that supplies 76% of the country’s
requirements. It is the highest contributory source of BC mass
concentration in the atmosphere (SAFAR (System for Air
Quality Forecasting and Research) 2010). In this study, source
apportionment analysis was conducted before and during the
lockdown period. This analysis focuses on differentiating be-
tween the BC and PAHs sources originating from wood-
burning and fossil fuel.

The source apportionment analysis results show that before
the lockdown, the contributions of BC and PAHs from fossil
fuel and wood burning were approximately the same.
However, during the COVID-19 pandemic (during lock-
down), the BC and PAHS emissions fromwood-burning were
as high as those from fossil fuel burning. These changes in
emissions sources could be attributed to the significantly re-
duced movement of vehicles and complete shutdown of in-
dustries operating in the study area (Fig. 7). Among the vari-
ous sources discussed above, biofuel burning and agriculture
fires were recognized as the largest BC emitting sources over
the Indo-Genetic Basin (IGB) areas (Venkataraman et al.
2006). The concentration of BC is high before and during
the lockdown (Fig. 2). The Himalayan range in this region
could have potentially obstructed the wind movement and
subsequently impacted the BC mass flow. Otherwise, it is
well-known that BC can be transported over long distances
because it is chemically inert, and its fine size makes it easily
airborne (Wolff 1981).

Diagnostic ratio analysis (DRA)

DRA is a widely used technique for source apportionment
(Tobiszewski and Namieśnik 2012). The ratios of
Flua/(Flua+Pyr), Ant/(Ant+Phe), IcP/(IcP + B(ghi)P), BaA/
(BaA + Chr), and BaP/B(ghi)P were used for distinguishing
the sources of PAHs in the atmosphere. For example, if the
ratio of Flua/(Flua+Pyr) is < 0.1, it indicates that the source is
petrogenic/unburned petroleum, between 0.4 and 0.5, the

Fig. 6 Seven-day air mass back-
trajectories as well as fire count
graph on two different situations.
a Before the lockdown period. b
During the lockdown period, at
altitude level of 500 m above
ground level, over sampling side
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source is fossil fuel combustion, and > 0.5, then the source is
biomass and coal combustion (De La Torre-Roche et al. 2009;
Yunker et al. 2002). Since the ratios of Flua/(Flua+Pyr) at the
study site before and during the lockdownwere 0.55 and 0.53,
we inferred that the sources of PAHs at the study site were
biomass and coal combustion. Similarly, if the ratio of Ant/
(Ant+Phe) is < 0.1, it indicates that the source is petrogenic,
and if the ratio is > 0.1, the source is pyrogenic (Pies et al.
2008). Ant/(Ant+Phe) ratio at the study site was 0.50 and 0.46
before and during the lockdown period, respectively, suggest-
ing the pyrogenic source. The IcP/(IcP + B(ghi)P) ratio is an
indicator of petroleum combustion, petrogenic, and biomass
coal combustion source. The value of 0.5 < Ratio < 0.2 indi-
cates that the PAHs source is petrogenic and biomass com-
bustion. This ratio within the range of 0.2–0.5 also indicates
that PAHs originated from petroleum combustion (Ravindra
et al. 2008). The IcP/(IcP + B(ghi)P) ratios for the study site
before and during the lockdown period were 0.54 and 0.49,
respectively, suggesting emissions from biomass and coal
combustion. The ratio of BaA/(BaA + Chr) is an indicator of
petrogenic and combustion sources if the value is 0.35 <
Ratio < 0.2 (Yunker et al. 2002; Tobiszewski and Namieśnik
2012). The BaA/(BaA + Chr) ratios for the study site before
and during the lockdown period were 0.42 and 0.45, respec-
tively, suggesting emissions from biomass and coal combus-
tion. BaP/B(ghi)P ratio indicates that the source of PAHs is
from traffic emissions. If this ratio is < 0.6, it indicates a non-
traffic source, but if the ratio is > 0.6, it indicates the traffic
source of emission. BaP/B(ghi)P ratio values before and dur-
ing the lockdownwere 1.19 and 0.56, respectively, suggesting
that PAHs originated from a traffic source before lockdown,
but during the lockdown, the PAHs originated from non-

traffic sources. The summary calculations for the DRA is pre-
sented in Table 3. The comprehensive DRA confirmed that
biomass and coal combustion and vehicular emissions were
primary sources of PAHs before the lockdown period. During
the lockdown period, emissions of PAHs primarily arise from
the combustion of biomass and coal.

Human health risk assessment for BC and PAHs

We report the health risk assessment expressed in two differ-
ent situations, i.e., before the lockdown and during the lock-
down period at Jamshedpur city. In the present study, we
assumed that BC’s daily exposure for the people living in
Jamshedpur city was equivalent to the daily mean BC (bal-
ance load concerning the background BC) level. The summa-
ry of human health risk assessment for BC shows one to one
correspondence for PSC between before and during the lock-
down period (Table 4). The risk estimates are presented for an
increment of 1 μgm−3 in BC concentration. These increments
are generally used to express the relative risks of air pollutants
such as BC. The BCbac concentration level was determined as
the 1.25th percentile of BCobs concentrations for all the
datasets (Rupakheti et al. 2017). The observed concentrations
before and during the lockdown period were 7.34 μgm−3 and
1.07 μgm−3, respectively. Before lockdown, the health risk
assessment of BC concentration was found to be as high as
15.58, 7.85, 14.06, and 32.08 passive cigarettes-comparable
concerning the risk of CVM, LC, LBWt, and PLEDSC, re-
spectively. During the lockdown, the health risk assessment of
BC concentration was significantly lower with 4.92, 2.48,
4.44, and 10.12 passive cigarettes comparable concerning
the risk of CVM, LC, LBWt, and PLEDSC, respectively.

Fig. 7 Fractional contribution of
BC measured at 370 and 880 nm
before and during the lockdown
period at NIT J
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The risk assessment demonstrates that the health risk was
higher during regular days (before the lockdown) than the
health risk during the COVID-19 pandemic (during lock-
down). Reduction in overall risk assessment due to exposure
to BAC is attributed to mandatory and legally enforced lock-
down that resulted in complete closure of all the anthropogen-
ic activities, including industries (small and large), workshops,
and transportation services. The complete lockdown has sig-
nificantly reduced the mass concentration of BC from all
sources.

Additional human health risk analysis of USEPA designat-
ed 16 priority PAHs were conducted. The results show that
before the lockdown, the highest carcinogenicity was attribut-
ed to BaP (40.6%) and DBahA (39%). During the lockdown
period, the carcinogenicity of BaP was reduced to 32%; how-
ever, the carcinogenicity due to DBahA increased to 52%.
Furthermore, The LADD values for carcinogenic PAHs for
adults were found at 1.44 × 10−6 and 4.3 × 10−5 mg kg−1 day−1

over the study site before and during the lockdown, respec-
tively. Similarly, for a child, the LADD values were before
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Table 4 The health risk estimates of BC communicated into equivalent
numbers of PSC per day with respect to four various health issues

Parameters Before lockdown DuringlLockdown

CVM 15.58 4.92

LC 7.85 2.48

LBWt 14.06 4.44

PLEDSC 32.08 10.12

PSC, passively smoked cigarettes; CVM, cardiovascular mortality; LC:
lung cancer; LBWt: low birth weight; PLFDSC, percentage lung function
decrement of school-aged children

Table 5 Health risk assessment due to PAHs exposure to children and
adult over the study area

Exposure parameters Exposed population

Child Adult

Body weight (kg) 18 60

Averaging time (days) 70 70

Inhalation rate (m3/days) 10 20

Exposure frequency (days/year) 365 365

Exposure duration (years) 24

Lifetime average daily dose (mg/kg.day) Before lockdown

6×10−5 1.44×10−6

During lockdown

1.7×10−5 4.3×10−5

Incremental lifetime cancer risk Before lockdown

6×10−5 1.44×10−6

During lockdown

1.7×10−5 1.65×10−6
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and during the lockdown were 6 × 10−5 and 1.7 ×
10−5 mg kg−1 day−1, respectively. Based on LADD values
observed for the study site, total ILCR due to inhalation of
airborne PAHs for adults before and during the lockdown
period were estimated as 5.5 × 10−6 and 1.65 × 10−6, respec-
tively. Similarly, the ILCR values for children before and
during the lockdown were estimated as 2.31 × 10−6 and
6.5 × 10−6, respectively. The excess lifetime cancer risk
(ELCR) was estimated by adding the ILCR values for adults
and children. The ELCR values before and during the lock-
down period were 7.81 × 10−6 and 8.15 × 10−6, respectively.
These estimated ELCR values were within the acceptable lim-
it 10−6–10−4 stipulated by the USEPA (United States
Environmental Protection Agency 1989). Complete summa-
ries of the health risk assessment of PAHs are presented in
Table 5. The result showed that the risk level was acceptable
over the study site during and before the lockdown period.

Conclusions

In this study, we report the spatio-temporal changes in
mass concentrations measurement of BC, PAHs, and
PM2.5 particulates before and during the lockdown period.
The mass concentration of PM2.5 before the lockdown
ranged from 82.67 to 261.78 μgm−3, and during the lock-
down, it ranged from 21.36 to 79.35 μgm−3, respectively.
An average PM2.5 mass concentrations before and during
the lockdown were recorded as 147.65 ± 41.77 μgm−3 and
50.31 ± 11.95 μgm−3, respectively. These measurements
demonstrate that during the lockdown period, a one-third
reduction in emissions of PM2.5 occurred. Similar reduc-
tions in mass concentrations of BC is observed with the
pre lockdown concentrations ranged from 6.61 to 20.94
μgm−3, respectively. While during the lockdown, the
mass concentration of BC ranged from 1.10 to 5.27
μgm−3, respectively. The average mass concentrations of
BC before and during the lockdown were 11.71 ± 3.33
μgm − 3 a n d 2 . 4 6 ± 0 . 9 5 μgm − 3 , r e s p e c t i v e l y .
Approximately 80% reductions in BC emission could be
attributed to reduced fuel consumption and considerable
reduction in other emission sources such as power plants,
diesel, and biofuel consumption. Potential uncertainties
exist to determine the reduction of BC levels accurately.
For example, the DRA of BC demonstrated that although
there is no difference between the release of BC arising
from wood burning and fossil fuel consumption during
regular days, during the lockdown, increased emissions
from wood burning is observed compared to the emis-
sions from fossil fuel consumptions. Significant reduction
in PAHs levels is observed during the lockdown period,
with the PAHs mass concentrations before and during the
lockdown period were 108.71 ± 27.77 ngm−3 and 23.19 ±

11.21 ngm−3, respectively. The diagnostic ratio analysis
of PAHs suggests that biomass, coal combustion, and ve-
hicle emission were primary sources of PAHs before the
lockdown period. However, during the lockdown period,
emissions from the combustion of biomass and coal were
major contributors of PAHs. The health risk assessment
due to exposure to PAHs before and during the lockdown
showed that the ELCR is well within the USEPA’s ac-
ceptable risk 10−6–10−4. Even though there was a net
reduction in the emission of PAHs, the risk posed by
reduced PAHs mass concentration was well within the
regulatory limit. A significant reduction in human health
risk due to BC exposure during the lockdown period was
observed. The reduced human health risk to BC could be
attributed to the complete shutdown of all industries
(small and large), workshops, and transportation activities
during the lockdown.
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