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Abstract

We develop a Bayesian group-based trajectory model (GBTM) and extend it to incorporate 

dual trajectories and Bayesian model averaging for model selection. Our framework lends itself 

to many of the standard distributions used in GBTMs, including normal, censored normal, 

binary, and ordered outcomes. On the model selection front, GBTMs require the researcher 

to specify a functional relationship between time and the outcome within each latent group. 

These relationships are generally polynomials with varying degrees in each group, but can also 

include additional covariates or other functions of time. When the number of groups is large, the 

model space can grow prohibitively complex, requiring a time-consuming brute-force search over 

potentially thousands of models. The approach developed in this paper requires just one model fit 

and has the additional advantage of accounting for uncertainty in model selection.
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1 Introduction

There has been a growing interest in examining trajectories of individual outcomes or 

developmental processes across a wide range of disciplines. The widespread interest and 

increasing availability of panel data with long time series creates a strong demand for 

methods that allow researchers to model trajectories and uncover the heterogeneity among 

them. Growth models (GMs) describe the process of development or growth in a hierarchical 

or random coefficient framework, by assuming that individual observations deviate around 

a single underlying population trajectory (Goldstein, 1987; Raudenbush and Bryk, 2002). 

By redefining certain random coefficients as latent factors, growth trajectories can also be 

estimated in a structural equation modeling (SEM) framework, which is referred to as the 

latent growth model (LGM) or the latent growth curve model (LGCM) (McArdle, 1988; 

Meredith and Tisak, 1990; McArdle and Epstein, 1987; Muthén, 2004). The LGM can be 

particularly appealing in psychology because many psychological variables have serious 
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measurement errors and the latent variable approach can reduce bias in estimation (Curran et 

al., 2010).

The latent growth mixture model (LGMM) or the growth mixture model (GMM) is a recent 

development of LGMs. Repealing the assumption that the entire population is statistically 

homogeneous, it assumes that there are two or more latent subgroups of the population 

whose members appear to be more similar to each other than to the remaining individuals 

in a given dataset (Muthén and Shedden, 1999). Each individual belongs to one of a finite 

number of subgroups, each of which represents a component of a mixture distribution 

(McLachlan and Peel, 2004). Although appealing, the GMM can be quite complex to 

applied researchers (Jones et al., 2001; Jones and Nagin, 2007).

Enlightened by a nonparametric model developed by Heckman and Singer (1984), the 

group-based trajectory model (GBTM) provides an alternative and simplified approach to 

uncover hidden heterogeneity in outcome trajectories across individuals in the population 

(Nagin, 1999, 2005). Compared to the general GMM, the GBTM assumes homogeneity 

conditional on trajectory group membership. Moreover, rather than categorizing individuals 

into latent groups, the GBTM only assigns each individual a probability of belonging to each 

latent group (Nagin, 2005). The model has been applied in thousands of articles published 

in sociology (e.g. Hayford, 2009; Petts, 2009), psychology (e.g. Pepler et al., 2008; Li and 

Lerner, 2011), criminology (e.g. Nagin and Piquero, 2010; Block et al., 2010), economics 

and business (e.g. Day and Sin, 2011), public health and medicine (e.g. Gill et al., 2010; 

Fountain et al., 2012; Modi et al., 2011; Hsu and Jones, 2012), and many other fields.

One major drawback of the GBTM is its sensitivity to assumptions regarding the number 

of latent groups and shape of the trajectories within each group. The standard practice is to 

estimate many models differing across these two dimensions and to select the model which 

maximizes some measure of model fit, such as the Bayesian Information Criteria (BIC). 

This approach is subject to two criticisms. First, selecting one model over another based 

on a marginal improvement in model fit may be highly influenced by noise, particularly 

when multiple specifications yield similar model fit measures. Ideally, one would capture 

uncertainty in the model selection process. Second, optimizing over the entire model space 

requires a brute force search. For example, a researcher choosing the optimal polynomial 

specification for polynomials up to and including a third degree in a GBTM with five groups 

has at least 21 possible models to search through.1 If the researcher is also optimizing the 

number of groups, say by searching all specifications between two and five groups, this 

would increase to at least 52 possible models. Adding additional functions of age, adding 

other covariates, or extending to a dual trajectory model would quickly render the search 

unmanageable given that a single model on a moderately sized dataset often takes several 

minutes to fit using standard statistical software. This likely creates sub-optimal incentives 

for many researchers. For example, researchers may restrict the model space to simple 

functions such as polynomials whereas searching over a broader model space could yield 

1In single trajectory models where the researcher searches through polynomials up to degree d and the number of latent groups 

between 2 and K, there are ∑k = 2
K d + k − 1

k  possible models to choose, if the order of groups does not matter.
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richer insights. It also increases the burden of model checking and updating as the entire 

search would need to be redone with every alteration.

This paper addresses these issues by developing a Bayesian framework and Markov-chain 

Monte Carlo (MCMC) algorithms for estimation and model selection in GBTMs. Our 

primary contribution is a Bayesian model averaging procedure that can be used to 

select the functional forms of the trajectories. Bayesian model averaging serves several 

practical purposes in this context. First, it accounts for uncertainty in model selection 

by incorporating all of the best fitting models in the posterior predictive distribution of 

trajectories. Second, averaging over multiple plausible models (e.g. ensembling) typically 

yields more accurate predictions than selecting a single optimal model (Raftery et al., 1997). 

Third, model averaging can save researchers a considerable amount of time by relieving 

them of the need to fit dozens, or even hundreds, of models and compare their fits. We focus 

on several standard outcome types that are often used in the literature, including continuous, 

censored, binary, and ordered outcomes.

While selecting the number of latent groups is a key component in GBTMs, this paper 

instead focuses on selecting the functional forms within each group. There are several 

reasons for this choice. First, the optimal number of groups is a function of the chosen 

functional forms, and therefore it makes little sense to choose the number of groupings 

independently. Having settled on a functional form will therefore be complementary to 

the process of optimizing the number of groups. Second, the optimal number of groups 

typically depends on subjective factors such as model interpretability, whereas functional 

form selection may be more amenable to deterministic statistical criteria. Third, there have 

been several papers analyzing the optimal choice of groups in both GBTMs and the more 

general case of the finite mixture model (Biernacki et al., 2000; Brame et al., 2006; Klijn et 

al., 2017), whereas there has been little written about selecting functional forms.

Along the way to developing the model selection procedure, we first develop MCMC 

algorithms for estimating standard GBTMs in congruence with Nagin (2005) in the 

Bayesian framework. We hope this will provide a pedagogical contribution in clarifying how 

Bayesian estimation can proceed in this common context, and in demonstrating how various 

posterior quantities, such as trajectories and joint distributions of groups in dual trajectory 

models, can be analyzed in practice. Despite an growing interest in the Bayesian estimation 

of the GMM, no studies have focused on introducing Bayesian estimation for the standard 

GBTM that is already well known among many applied researchers. As we will demonstrate 

in the paper, the Bayesian approach has a number of features ideally suited for the GBTM 

independent of the model selection procedure. The first advantage is the ability to conduct 

finite sample inference of the model parameters without relying on asymptotic assumptions. 

Unlike approximation error due to invalid asymptotic assumptions, errors in the Monte 

Carlo approximations used in Bayesian estimation procedures can be made arbitrarily small 

by drawing more samples in the MCMC algorithm. Finite sample inference is particularly 

important in GBTM studies since the sample is partitioned into multiple subsets, each of 

which must be large enough to invoke asymptotic assumptions. This feature also plays a key 

role in dual trajectory models, in which there is typically some joint outcome that does not 

occur often enough to justify an asymptotic approximation.
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A second advantage is the ability to conduct inference on arbitrary functions of model 

parameters. This is a crucial feature of GBTMs since many of the model’s key outputs are 

complicated functions of the estimated parameters. For example, the main object of interest 

is the trajectories themselves, which are typically nonlinear functions of the estimated 

parameters. A second example is the group membership probabilities. In the standard single 

trajectory model, these are often modeled using a generalized logit function of a subset 

of the model parameters. In the dual trajectory model, the problem is compounded since 

researchers may be interested in up to five distributions - the joint distribution of the group-

membership probabilities, both conditional distributions of group memberships given the 

other pair member’s group membership, and both marginal group-membership distributions. 

Researchers typically only estimate either the joint distribution or one conditional and 

one marginal distribution, as the remaining distributions can be represented as functions 

of these distributions. However, using maximum likelihood methods, one has to resort to 

approximations to compute confidence intervals or standard errors for all five distributions. 

We demonstrate that MCMC methods provide exceedingly simple ways to examine the 

entire posterior distribution of each of these distributions’ parameters.

We focus our examples largely on the dual trajectory model for two reasons. First, the extant 

literature on Bayesian GMMs has focused on single trajectory models. Second, the model 

space is more likely to grow prohibitively large in dual models due to an increase in the 

number of groups, making it a natural point to apply the model averaging procedures. It 

should be noted that while estimation of multiple trajectories is possible (Nagin et al., 2018), 

we limit the scope of this paper to single and dual trajectory models used in the majority of 

applications.

The paper proceeds as follows. First, we review and discuss the relevant literature on 

group-based trajectory models. Next, we introduce the Bayesian models and present simple 

MCMC algorithms for sampling from the posterior distributions when the outcomes are 

normally distributed. Finally, we introduce the model averaging procedure and demonstrate 

its capabilities. The paper concludes with a discussion of the findings and a path for 

future research. The R code and data used in this paper are available in GitHub at https://

github.com/jtm508/bayestraj. Vignettes are also provided to help users adapt the code to 

applications of their own interest.

2 Review of the Group-Based Trajectory Model

2.1 Model Specification

The GBTM requires longitudinal data which track some outcome for individuals i = 1, …, N 
over Ti periods. Following the notation in Nagin (2005), we denote individual i’s sequence 

of outcomes by yi = {yi1, …, yiTi}. Each individual i belongs to some latent group, ci ∈ 
{1, …, K} with respective probabilities π = {π1, …, πK}. Letting Pk(yi; θk) denote the 

likelihood of yi conditional on ci = k, we can write the likelihood for individual i as

P yi; π, θ = ∑
k = 1

K
πkPk yi; θk
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where θ = {θ1, …, θK} parametrizes the model for each group. Throughout the paper, the 

likelihoods will implicitly be conditioning on the data as well. Because K is restricted to be a 

finite integer, this model falls into the general class of finite mixture models (McLachlan and 

Peel, 2004).

In order to simplify the model, it is assumed that the elements of yi are independent 

conditional on group memberships. That is, for each group k,

Pk yi; θk = ∏
t = 1

Ti
pk yit; θk

where pk(yit; θk) is the probability distribution function of yit conditional on ci = k. Under 

the standard assumption of independence across individuals, the complete likelihood of the 

data can be written as

ℒ(π, θ) = ∏
i = 1

N
P yi; π, θ (1a)

= ∏
i = 1

N
∑

k = 1

K
πk ∏

t = 1

Ti
pk yit; θk (1b)

Much of the applied literature using GBTMs has focused on the question of how trajectories 

can be related to a set of observed covariates. For such purposes, researchers often model the 

group membership probabilities for each individual using a logit formula:

πi, k = exp vi′γk
∑j = 1

K exp vi′γj
, (2)

where vi is a vector of time-invariant covariates associated with the individual and γ is a 

parameter to be estimated. As is the case in multinomial logit models, the researcher must 

fix γk = 0 for some baseline group k in order to identify the model because the resulting 

probabilities are only affected by differences in these parameters.

Researchers must make two important choices when fitting GBTMs. The first is the number 

of latent groups, K. While it is technically possible that subjects are truly clustered into 

K distinct groups, the reality is usually that the mixing distribution is continuous and 

requires infinite data to fully capture. The finite mixture model merely provides a flexible 

approximation to the more complex underlying reality (Nagin and Tremblay, 2005). The 

implication for researchers trying to maximize model fit is that the optimal number of 

latent groups can increase with sample size, provided that the additional data has sufficient 

variation. However, for a fixed sample, researchers must cope with the fact that the 

likelihood is guaranteed to increase with K, and therefore must settle on a criterion for 

balancing the better in-sample fit with the number of parameters in the model. Nagin (1999) 

suggests researchers can choose the number of groups which optimize some information 
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criterion, such as BIC. Researchers using mixture models for cluster analysis may also 

want to consider more subjective criteria when choosing the number groups. It is often 

recommended to balance such metrics with considerations of interpretability and a reliance 

on subject matter expertise. A few interpretable clusters consistent with theory and previous 

research may be preferable compared with a large number of uninterpretable clusters which 

maximize BIC. Thus, even with arbitrarily large datasets, it will still always make sense to 

limit the number of groups.

The second consideration is the functional form of the outcomes. The functional form 

specifies the outcome’s probability distribution at each time period by relating the time 

variable to a parameter in the distribution. Common choices for the distribution include 

Poisson, Bernoulli, normal, and censored normal. For example, in the normal model, it is 

assumed that pk yit; θk = N xit′ βk, σk
2  where xit is a vector of covariates. While the choice 

of distribution is usually obvious given the nature of the outcome variable, there is a 

considerable amount of freedom in choosing which variables to include xit. For example, in 

an age trajectory problem, the researcher could potentially include age, age2, age3, ln(age), 

spline terms, and so forth. The optimal functional forms ought to be flexible enough to 

capture nonlinearities in the trajectories, which naturally leads to a multitude of choices for 

model specification. This choice is further complicated by the fact that the optimal form will 

likely differ across the various latent groups. Like the choice of K, researchers often choose 

the functional forms by optimizing fit metrics like BIC. Unfortunately, this gives rise to an 

ugly combinatorial problem in which the number of possible combinations of K and the 

functional forms within each group becomes intractably large.2 Given the time-consuming 

nature of estimating each model and limited computational resources, researchers can only 

search a subset of the possible models before settling on an optimum.

An important extension of the group-based single trajectory model is the dual trajectory 

model (Nagin and Tremblay, 2001), which links two single trajectory models by a joint 

probability distribution over group memberships. The two series of measurements must 

share a common identity in order to link the outcomes. Formally, the dual trajectory 

model considers two series of outcomes for units i = 1, …, N. We refer to each unit i 
as a pair (though we note that in many application, i represents a single individual with 

two outcomes). For now we suppress the i subscripts and the parameter vector θ for 

notational simplicity. The measured outcomes for series 1 and series 2 are denoted by 

y1 = y11, y12, …, y1T1  and y2 = y21, y22, …, y2T2  respectively. We assume y1 ⊥ y2|c1 and 

y2 ⊥ y1|c2 where c1 ∈ {1, …, K1} and c2 ∈ {1, …, K2} denote the group memberships. 

Additionally, outcomes within each series of measurements are independent over time. That 

is, the likelihood of the outcomes in series 1 and 2, respectively, can be written as

fc1 y1 = ∏
t = 1

T1
ft

c1 y1t

2Functional forms may be additionally constrained by the nature of the data. In short panels, limited degrees of freedom will push 
researchers toward low-degree polynomials. In long panels, smooth functions may have difficulty adequately modeling the trajectories. 
In such situations, autoregressive models present a viable alternative. These methods are beyond the scope of this paper.
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ℎc2 y2 = ∏
t = 1

T2
ℎt

c2 y2t ,

and the joint likelihood as

P y1, y2 = ∑
c1 = 1

K1
∑

c2 = 1

K2
πc1c2fc1 y1 ℎc2 y2 (3a)

= ∑
c1 = 1

K1
∑

c2 = 1

K2
πc2 c1πc1fc1 y1 ℎc2 y2 (3b)

= ∑
c1 = 1

K1
πc1fc1 y1 ∑

c2 = 1

K2
πc2 c1ℎc2 y2 , (3c)

where ft
c1( ⋅ ) and ℎt

c2( ⋅ ) are probability distributions governing the outcome variables, and 

πc1c2, πc2 ∣ c1, and πc1 are joint, conditional, and marginal probabilities of group membership, 

respectively. The joint distribution over latent groups ensures that one pair member’s group 

membership is informative about the other pair member’s group membership, and thus 

provides the crucial link between the two series of measurements.

The representation in equation 3c for the likelihood is the natural one for instances in which 

y1 temporally precedes y2, such as the intergenerational linkage model we estimate later 

in the paper. Note that we only need to estimate πc2 ∣ c1 and πc1 in order to estimate the 

remaining probabilities of interest:

πc2 = ∑
c1 = 1

K1
πc2 ∣ c1πc1 (4a)

πc1c2 = πc2 ∣ c1πc1 (4b)

πc1 ∣ c2 =
πc1c2
πc2

. (4c)

We assume that each pair is independent. Thus if we denote yi1 and yi2 as the vectors of 

outcomes for pair i, then the likelihood of the entire data is
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ℒ(π, θ) = ∏
i = 1

N
P yi1, yi2 (5)

where π and θ represent the parameters of the model.

Like the standard group-based single trajectory model, an individual’s group membership 

probability can be modeled via a generalized logit function. It is common to estimate πc1 and 

πc2 ∣ c1 for each c1 and c2. However, these equations are more difficult to estimate precisely 

due to the limited number of transitions between certain groups.

The same considerations discussed for the single trajectory model regarding choosing the 

optimal number of groups and the functional forms within each group apply to the dual 

trajectory model as well. However, the interaction between the two series causes a squared 

increase in the number of possibilities to consider. Nagin and Tremblay (2001) suggest 

choosing K1 and K2 in the dual trajectory model separately by fitting univariate trajectory 

models in order to simplify the choice set.

2.2 Frequentist Estimation and Challenges

Estimation of both the single and dual trajectory models are typically conducted using 

maximum likelihood methods. Jones et al. (2001) provide an efficient SAS procedure to 

estimate the model directly using quasi-Newton methods to maximize the likelihood. Similar 

packages have since been introduced in M-Plus (Muthén and Muthén, 2012) and Stata 

(Jones and Nagin, 2013). Thanks to canned software implementations, applications of the 

GBTM increased from 8 to 80 publications per year in major psychology journals in 2000–

2010 (Nagin and Odgers, 2010). In psychology, GBTMs have been used to study disorders 

and depressions (e.g. Dekker et al., 2007; Mora et al., 2009; Côté et al., 2009; Odgers et 

al., 2008), inattention and hyperactivity (e.g. Jester et al., 2008), physical aggression (e.g. 

Brame et al., 2001), adherence (e.g. Li et al., 2014; Modi et al., 2010), risk involvement (e.g. 

Wang et al., 2014), and many other topics. Nagin and Odgers (2010), Frankfurt et al. (2016), 

and Piquero (2008) provide excellent review of GBTM applications for clinical research, 

counseling psychologists, and criminology, respectively.

While the existing packages provide unbiased point estimates of the model parameters, 

the standard errors are estimated by inverting the negative of the Hessian matrix evaluated 

at the maximum likelihood estimates to obtain estimates of the asymptotic covariance 

matrix. Though this is an asymptotically valid procedure, it may not yield valid inferences 

in finite samples. Acknowledging this problem, Loughran and Nagin (2006) conduct a 

resampling study where they estimate a GBTM on a sample of 13,000 individuals, and 

compare the estimates and standard errors with models fit to random subsets of the full 

dataset. They conclude that even for samples as small as 500 individuals, the estimates are 

comparable to that of the larger model. However, the biases tend to grow as the sample sizes 

decrease, particularly for groups with low membership probabilities. For example, in the 

500-individual model, the mean absolute predictive error, defined as the absolute difference 
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between the actual values and the predicted values, was over 10% for their “high-chronic” 

group, which is estimated to be only 3% of the population.

Since Loughran and Nagin (2006) use data which tracks cohort members from ages 10–

26, tracking 500 individuals amounts to much more than 500 observations. When using 

data with shorter panels, asymptotic assumptions will require more individuals to justify. 

Moreover, while low-membership groups may not be a primary concern in single trajectory 

models, the imprecise estimates for such groups will be amplified in the dual trajectory 

model, where the researcher must estimate transition probabilities and joint distributions 

of group memberships. Even if the sample size within each group is large, there could 

be transitions or joint groups which occur with low probability. In such cases, asymptotic 

approximations may be difficult to defend.

Aside from computing standard errors for the model parameters, researchers also must 

calculate confidence intervals for the predicted trajectories. This presents a formidable 

challenge since trajectories are nonlinear transformations of the model parameters. Jones 

and Nagin (2007) suggest using either the bootstrap method or a first-order Taylor expansion 

to approximate the standard errors. They ultimately recommend the latter as the bootstrap 

can be quite time-consuming. An identical problem arises in computing standard errors for 

the group membership and transition probabilities.

2.3 Bayesian Approaches to Growth Mixture Models

While the majority of the GMM research has utilized maximum likelihood-based methods, 

a small body of research has used Bayesian estimation procedures, which can be relevant 

to the Bayesian estimation of GBTMs. Garrett and Zeger (2000) discuss issues regarding 

Bayesian estimation of latent class models, which provides the general framework for 

the GMM. More recent research has emphasized the advantages of Bayesian inference 

in the more general class of GMMs. In particular, Bayesian methods with accurate 

informative priors can recover parameters and class proportions more effectively than 

maximum-likelihood methods and Bayesian methods with diffuse priors (Depaoli, 2013). 

Researchers can directly incorporate background knowledge via the prior distribution, which 

is particularly valuable when some latent groups have small sizes due to limited data (van de 

Schoot et al., 2018).

The extant literature differs from this paper in a number of important ways. First, while 

most Bayesian GMMs are hierarchical generalizations of the single-trajectory GBTM 

specified in this paper, our proposed model averaging procedure does not directly apply 

to the more general GMMs aimed at modeling individual-level variation. Thus while the 

single-trajectory model in this paper can be thought of as a special case of extant work, 

its formalization is necessary as a stepping stone to the more complex model averaging 

framework we subsequently develop in Section 4. Additionally, the simpler GBTM model 

specification will be useful to researchers unsure how to reduce the GMM specification to 

the GBTM in the Bayesian framework.

Second, the extant literature has yet to tackle the dual trajectory model specified in Nagin 

and Tremblay (2001). A near-exception is Elliott et al. (2005) who formulate a Bayesian 
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model and Gibbs sampling routine for dual trajectories. However, this particular model 

forces each unit into one group which determines both trajectories. This approach is less 

flexible than the model considered in this paper, which allows for separate groups in the two 

trajectories and a joint distribution over these two group-memberships.

Another stream of noteworthy contributions is the semiparametric Bayesian approaches used 

in Dunson and Herring (2006), Dunson et al. (2008), and Goldston et al. (2016) which 

use Dirichlet process priors to infer the number of latent groups. Dirichlet process priors 

have been the subject of considerable research in the machine learning and nonparametric 

Bayesian literature due to their ability to incorporate the optimal number of latent groups 

into a wide range of models. While we view the trend towards nonparametrics as exciting 

and important, many social scientists prefer to incorporate theory and subject matter 

expertise when selecting the number of groups, and the complexity of these models may 

prove to be prohibitive for many researchers.

3 Bayesian Group-Based Trajectory Models

In this section, we introduce a Bayesian approach to estimating the group-based single 

and dual trajectory models. First, we provide a brief overview of the Markov chain Monte 

Carlo (MCMC) methods which are used to estimate the models. We then develop the 

models, mirroring the frequentist version of the GBTM surveyed in Nagin (2005), which 

many applied researchers are already familiar with. We show how to construct a MCMC 

algorithm for the single trajectory model with continuous outcomes. We then discuss some 

common issues which researchers may come across, such as constructing trajectories from 

posterior samples and directly modeling group membership. Finally, we extend the model 

to incorporate dual trajectories. In Appendix 1, we also show how to extend the model to 

binary, ordered, and censored outcomes.

3.1 A Brief Overview of Markov Chain Monte Carlo

The goal of Bayesian inference is to obtain the posterior distribution of the model 

parameters by applying Bayes’ theorem:

P θ1, …, θP ∣ y =
P y ∣ θ1, …, θP P θ1, …, θP

P(y)

where P(θ1, …, θP) is the prior distribution. However, since the posterior distribution is 

generally an intractable distribution with unknown properties, most Bayesian models rely on 

drawing samples and using Monte Carlo approximations to approximate various properties, 

such as posterior means, standard deviations and so forth. The challenge is devising an 

algorithm to obtain the samples. MCMC is a class of algorithms designed for this purpose. Q 
samples from the posterior distribution can be drawn by formulating a Markov chain:
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θ1
1, …, θP

1

θ1
2, …, θP

2

⋮

θ1
Q, …, θP

Q

where, by the Markov structure, each draw will depend on its predecessor.

The specific MCMC algorithm used throughout this paper is the Gibbs sampler Geman 

and Geman (1984). Via Gibbs sampling, the Markov chain will approximate the posterior 

distribution to arbitrary precision if each individual parameter is drawn conditional on the 

other parameters. That is, iteration q of the Markov chain consists of drawing from the 

following conditional distributions:

θ1
q P θ1 ∣ θ2

q − 1, …, θP
q − 1, y

θ2
q P θ2 ∣ θ1

q, θ3
q − 1, …, θP

q − 1, y

⋮

θP − 1
q P θP − 1 ∣ θ1

q, …, θP − 2
q , θP

q − 1, y

θP
q P θP ∣ θ1

q, …, θP − 1
q , y

With carefully specified prior distributions, each of these conditional distributions can be 

shown via Bayes’ theorem to be a well-known distribution which can easily be sampled 

from. In this paper, we specify conjugate prior distributions, meaning the conditional 

distributions belongs to the same family as the prior (e.g. a normal prior will yield a normal 

conditional distribution).

Since successive samples are drawn conditional on the previous samples, it is clear that these 

samples are not independent. However, a version of the central limit theorem guarantees 

that Monte Carlo approximations based on these samples will correspond with the true 

distribution provided a sufficient number of samples are drawn. A more complete discussion 

on the MCMC can be found in various references, such as Brooks et al. (2011).

3.2 Single Trajectory Model

3.2.1 Model Specification—The Bayesian analysis retains the model specification 

used in the frequentist approach summarized in equation 1. We assume each outcome 

is independently and identically normally distributed conditional on the latent group 

membership and the remaining model parameters:

yit ∣ ci N xit′ βci, σ2 . (6)

Although we will operate under the assumption of homoskedasticity to stay consistent with 

the literature, it is a simple extension to allow σ2 to vary across the groups.
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Our prior distributions for the model parameters are standard independent conjugate priors 

often used in linear regression models - normal priors over the regression coefficients 

and an inverse-gamma prior over the variance. (Hoff, 2009). This prior specification 

enables posterior inference via Gibbs sampling. We also include a Dirichlet prior on the 

group membership probabilities, the standard conjugate prior used in finite mixture models 

(McLachlan and Peel, 2004).

π Dirichlet α1, …, αK (7a)

σ2 ℐG ν0/2, ν0σ0
2/2 (7b)

βk N(μ, Σ), k = 1, …, K1 (7c)

Diffuse prior settings which place roughly equal prior weight on all parameter values will 

yield results similar to the maximum likelihood estimates.3 For the Dirichlet distribution, 

setting αk = 1 for each k places a uniform prior over all group membership probabilities. For 

the inverse gamma prior, the standard interpretation is that the prior is based on a sample of 

size ν0 with a sample variance of σ0
2. Setting ν0 = 0.001 and σ0

2 = 1 is considered a diffuse 

but proper prior (Hoff, 2009). Although inverse-gamma priors are subject to some criticism 

(Gelman, 2006), our experience is that they usually produce reasonable results and provide a 

useful starting point for Bayesian analysis.4 The priors on βk can be made diffuse by using 

a large covariance matrix for Σ. The notion of “large” depends on the scale of the data, but a 

common practice is to set μ = 0 and Σ = λI for some large constant λ, were I is the identity 

matrix. As λ approaches infinity, the distribution approaches an improper uniform prior. As 

with any Bayesian approach, there can be no prior specifications which are guaranteed to 

work well in any situation. The priors specified here can be considered as flexible default 

specifications, but researchers ought to validate their models through posterior predictive 

checks and be willing to alter priors when necessary.

Inference proceeds using a slight variation of the standard Gibbs sampler commonly used 

to estimate finite mixtures models. The Gibbs sampler exploits the independence of the 

outcome yi and the mixing distribution π conditional on the latent group membership, 

ci, by sampling ci in a data augmentation step of the MCMC algorithm. Specifically, the 

Gibbs sampling algorithm initializes the parameters randomly and then cycles through the 

following full conditional distributions:

3We have verified on both simulated and observational data that the maximum likelihood estimates and associated standard errors 
coincide with the posterior means and standard deviations, respectively, typically to several significant digits. Table 1 summarizes one 
such sample.
4Researchers willing to break conjugacy may find improvements from other priors such as half-normal or half-Cauchy. This will 
require sampling the variance parameter using a more complex MCMC procedure. In our experience, the inverse-gamma prior work 
very well for the sample sizes and parameter values typical of GBTM models. Of course, we can make no guarantees under all 
circumstances. Researchers should validate their models and be willing to alter prior distributions if the resulting posteriors are 
problematic.
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ci ∣ π, β, σ2, yi, i = 1, …, N
π ∣ c

βk ∣ c, σ2, y, k = 1, …, K

σ2 ∣ c, β, y

The full conditional distributions are provided in Appendix 2. Readers may note that these 

distributions do not always condition on every single parameter in the model, as instructed 

in the section above. For example, π is only conditioned on c. The reason is simply that π 
is conditionally independent of the other parameters given c, and so P(π|c) = P(π|c, β, σ2, 

y). There is therefore no need to condition on the other parameters in this case. This concept 

will be applied in all of the Gibbs samplers discussed in this paper.

Researchers can estimate the model by iteratively drawing from these conditional 

distributions, Q times, forming a Markov chain consisting of Q samples from the joint 

posterior distribution of all of the model’s parameters. A potential problem which may arise 

in Gibbs Sampling is the label switching problem. We provide commentary on this issue in 

Appendix 3.

3.2.2 Estimating Trajectories—Once we have obtained samples from the posterior 

distribution of the model parameters, it is simple to use the estimates to obtain and plot the 

trajectories themselves. In the frequentist trajectory model, once one obtains the maximum 

likelihood estimate for βk for some group k, the predicted trajectory in the normal model can 

be obtained by multiplying xt′βk for each t in the age range of the data, where xt is the vector 

of age variables for age t. For example, if our functional form includes age and age-squared, 

then x5 = (1, 5, 25) and x5′βk is the predicted outcome at age 5 in group k. Calculating this 

for a range of t-values will yield the estimated trajectories. In the more general case, the 

prediction at age t can be written as f(xt; θ), where f is typically some inverse-link function 

and θ contains the model parameters. For example, in a logistic regression trajectory, f(xt; θ) 

would be the inverse-logit function which maps the linear predictor into a probability.

As discussed in the previous section, there is an added challenge of computing standard 

errors and confidence intervals when using maximum likelihood methods, since f can 

be a complicated nonlinear function. As a result, one has to resort to asymptotic 

approximations to compute confidence intervals. However, with Bayesian estimation, valid 

finite sample inference for these metrics essentially come free with the posterior samples. 

The distributions of the trajectories are the posterior predictive distributions of the outcomes. 

If we define yt to be a draw from the trajectory at time t, then the posterior predictive 

distribution of yt is

p yt ∣ y = ∫ p yt ∣ θ p(θ ∣ y)dθ (8)

where p(θ|y) is the posterior distribution of θ.
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In the normal model, p yt ∣ θ  is the normal distribution with parameters xt′βk and σ2 for the 

corresponding group k. Once we have obtained samples from the posterior distribution of 

the model parameters, we can sample from the posterior predictive distribution using the 

following algorithm:

For q = 1, …, Q:

1. Sample βk
q, σ2,q from P(βk, σ2|y) (i.e. take a draw from the posterior 

distribution samples)

2. Sample yt
q N xt′βk

q, σ2, q

The draws yt
1, …, yt

Q) are samples from p yt ∣ y  and can be used to conduct inference. For 

example, the expected outcome at time t is 1
Q ∑yt

q. Alternatively, the prediction can be 

summarized with the median of the draws. A 95% credible interval can be computed by 

taking the 0.025 and 0.975 quantiles from the distribution. Computing the same statistics for 

t = 1, …, T will yield the posterior predictive trajectories for group k with the associated 

confidence bands. While drawing these samples for each combination of t and k may 

seem time-consuming, it can actually be accomplished in a matter of seconds (after having 

obtained posterior samples) through matrix multiplication.

It is standard practice to ignore the contribution of σ2 in the trajectories and simply focus 

on the shape. The rationale is that shape of the trajectory is completely determined by βk, 

with σ2 only adding noise. In this case, one could ignore the σ2,q draw in step 1, and then 

calculate yt
q = xt′βk

q in step 2. This corresponds to integrating over βk but not σ2 in equation 

8. However, while this method captures uncertainty regarding the mean trajectory within 

each group, it ignores individual variation around the mean.

3.2.3 Modeling Group Membership Probabilities—Just like in the frequentist 

GBTM model, researchers wishing to model the group membership probabilities as a 

function of covariates can use a generalized logit formula,

πi, k =
exp vi′γk

∑j = 1
K exp vi′γj

,

where vi is a vector of covariates. The γk parameters can be sampled in the MCMC 

algorithm in place of the πk’s. πi,k can then be computed deterministically conditional on vi 

and γk.

Note that this is equivalent to estimating a multinomial logit model using the latent group 

membership variables as the categorical outcomes. Once these latent variables are drawn in 

the Gibbs sampler, one can use any multinomial logit sampling routine to draw the γk’s 

conditional on the ci’s. A particularly convenient sampling routine to embed in a Gibbs 

sampler is the polya-gamma data augmentation scheme developed by Polson et al. (2013).
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3.3 Dual Trajectory Model

Extending the Gibbs sampler to the dual trajectory model is straightforward, although the 

notation becomes much more burdensome. We use the superscripts 1 and 2 denote the two 

series, and assume likelihoods conditional on group membership of the following forms:

yit1 ∣ ci1 N xit1 ′βci1
1 , σ1

2 , i = 1, …, N (9a)

yit2 ∣ ci2 N xit2 ′βci2
2 , σ2

2 , i = 1, …, N . (9b)

For the group membership probabilities, we must now define a prior on the joint distribution 

of group memberships for the two series of measurements. This can be done by placing 

priors on group memberships for the first series, and transition probabilities for the second 

series. Denote π1 = π1, …, πK1
1  as the group membership probabilities for the first series. 

Then denote π2 as the K1 × K2 “transition” matrix with entry π2[j, k] ≡ πk|j. We refer to the 

kth row of π2 as πk
2. The priors are

π1 Dirichlet α1
1, …, αK1

1
(10a)

πk
2 Dirichlet α1

2, …, αK2
2 , k = 1, …, K1 (10b)

σ1
2, σ2

2 ℐG ν0/2, ν0σ0
2/2 (10c)

βk
1 N μ1, Σ1 , k = 1, …, K1 (10d)

βk
2 N μ2, Σ2 , k = 1, …, K2 (10e)

Inference is conducted by extending the Gibbs sampler developed for the single trajectory 

model. Recall that we introduced the group membership, ci, as a a model parameter 

by sampling ci in a data augmentation step of the MCMC algorithm. This reduced our 

model to a set of independent regressions by exploiting the conditional independence given 

group membership. The dual trajectory model extends this conditional independence insight 

further by noting that one pair member’s outcome is independent of the other pair member’s 

outcome conditional on its group membership. That is, by drawing both ci1 and ci2 for each 

pair i in the MCMC algorithm, we can perform inference for each group’s parameters as if 

the data were generated from independent normal models.

The Gibbs sampling algorithm cycles through the following full conditional distributions:
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ci1 ∣ ci2, π1, π2, β1, σ1
2, y1, i = 1, …, N

ci2 ∣ ci1, π1, π2, β2, σ2
2, y2, i = 1, …, N

π1 ∣ c1

πk
2 ∣ c1, c2, k = 1, …, K1

βk
1 ∣ c1, σ1

2, y1, k = 1, …, K1

βk
2 ∣ c2, σ2

2, y2, k = 1, …, K2

σ1
2 ∣ c1, β1, y1

σ2
2 ∣ c2, β2, y2

The full conditional distributions are mostly the same as in the single trajectory model, 

only now we need to incorporate each pair member’s group membership into the other 

member’s group membership probabilities. The altered full conditional distributions are 

provided in Appendix 2. Using equation 4, it is simple to sample the joint group membership 

probabilities, the marginal probabilities for series two, and the conditional probability for 

series one group membership given the series two group membership. The discussions 

of trajectory estimation, modeling group membership, and non-normal outcomes from the 

single trajectory section apply just the same to the dual trajectory model.

3.4 Demonstration on Simulated Data

Although the validity of our sampling algorithm can be justified on mathematical grounds 

(Geman and Geman, 1984), in this section we provide a simulation to further demonstrate 

the model performance and its ability to generate a rich set of output. Due to the page limit, 

we only present one simulation here. However, interested readers may follow our vignettes 

to set random parameters to generate simulated datasets and verify the model. We limit our 

simulations to the dual trajectory models since all single-trajectory model outputs can be 

discussed in the context of dual trajectory models, and because extant Bayesian GMMs can 

be viewed as a generalization of the single trajectory model.

We simulated data with known parameters from the dual trajectory data generating process 

for N = 1000 pairs and tested whether our algorithm could recover them. The outcomes 

were simulated for T = 9 periods for both series. We choose K1 = K2 = 3 as the 

number of latent groups for both outcomes. The data generating process is as follows. 

For each pair, a panel dataset was constructed using a second-degree polynomial. We then 

chose the parameter vector: θ = β1, β2, σ1
2, σ1

2, π1, π2 , where each parameter is described 

in the previous subsection. Note that while π1 is the marginal probability of the first 

series’ group memberships, π2 is the K1 × K2 matrix of conditional probabilities for the 

second series’ group memberships. The values of the parameters can be seen in Table 1. 

Once the parameters were chosen, we drew each pair’s group membership for the first 

series as ci1  Categorical  π1 . Then we drew the second series’ group membership from 
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ci2  Categorical  πci1
2 . Outcomes were then generated for each observation in the panel as 

yit1 N xit1 ′βci1
1 , σ1

2  and yit2 N xit2 ′βci2
2 , σ2

2 .

For illustrative purposes, we specified one transition probability which would be difficult 

to perform inference on using standard maximum likelihood methods with asymptotic 

assumptions. Group three was given a 20% membership probability for series one and 

the transition from group three to group one was specified as 1%. With 1000 pairs, this 

places 200 units in group three by expectation. With 200 units in group three, there is a 

roughly 13% chance that zero transitions between group three and group one would occur 

in the data. We simulated such a dataset to demonstrate the improved inference from using 

Bayesian methods on small or sparse datasets.

We first estimated model using the “traj” package in Stata 16 (Jones and Nagin, 2013) to 

form a baseline for comparison. We then ran the MCMC algorithm programmed in R for 

10,000 draws, discarding the first 1000 as the burn-in period. Our hyper-parameters where 

chosen as follows: α1 = α2 = 1, ν0 = 0.001, σ0
2 = 1, μ1 = μ2 = 0, and Σ1 = Σ2 = 100I, where 

I denotes the identity matrix. Judging by the trace plots, no label-switching occurred. Figure 

1 plots the first 50 iterations from several trace plots to show that the Markov Chain quickly 

converges to a region surrounding the true parameter values. From Table 1, we can see that 

the MCMC algorithm is able to recover each of the regression parameters with reasonable 

precision. The medians of the posterior distributions are all very close to the true parameters, 

which generally fall within two standard deviations of the median. In the events where this is 

not the case, the maximum likelihood estimates displayed similar results, suggesting that any 

discrepancies between the estimated and true parameters arose from random variation in the 

data generating process rather than errors in the estimation routines.

Table 2 contains the maximum likelihood and Bayesian estimation results for the group 

membership and transition probabilities. Once again the true parameter values all fall within 

two standard deviations of the posterior medians. However, as expected, the maximum 

likelihood estimate is unable to obtain a good estimate of the transition from group three 

to group one. Since no such transition occurred in the data, the MLE is 0%. Further, due 

to an inappropriate application of asymptotics, the standard error is also roughly 0. By 

contrast, the Bayesian results produce a posterior distribution with the true value of 1% 

contained within the 95% credible interval. The full posterior distributions of the transition 

probabilities are shown in Figure 2.

Researchers may also be interested in recovering the joint probabilities of group 

membership, the marginal probabilities for the second trajectory, and the conditional 

probabilities of the first trajectory groups given the second trajectory group memberships. 

While these parameters were not used to generate the data, their true values can be computed 

using equation 4. As an example of our ability to recover these parameters, Figure 3 plots 

the posteriors of the joint distributions, with the true values being represented by the vertical 

lines. In each case, the true values lies inside the 95% credible interval. In the event that 

the probability was very close to 0, researchers can use these plots to examine the skewness 
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of the posterior distribution. We note that using maximum likelihood methods, it would be 

difficult to calculate the standard error without asymptotic approximations, and examining 

the skewness of the distributions would require a time-consuming bootstrapping process 

after the model is fit. We report this result as a figure rather than a table in order to 

emphasize the ease and flexibility of examining the entire distribution of functions of the 

model parameters using MCMC methods.

4 Bayesian Model Averaging

The main advantages of the Bayesian models introduced thus far are the ability to conduct 

finite sample inference without relying on asymptotic approximations for small samples 

or Taylor expansion approximations for functions of model parameters, including the 

trajectories. For some researchers, however, these advantages may seem more theoretical 

than practical. This section, by contrast, introduces a Bayesian procedure to automate model 

selection, which can save researchers dozens of hours of computing time while allowing for 

more flexible trajectory shapes.

As discussed earlier, the standard frequentist practice for functional form selection is to 

compare models with different degrees of polynomials and to select the model which 

maximizes BIC. This practice has two fundamental disadvantages. First, the number of 

possible models can become unmanageable, particularly in dual trajectory models. This can 

lead to unimaginative trajectories because the time-consuming nature of fitting the models 

leads researchers to exclude the majority of potential models from their tests. Second, 

when there are multiple models with comparable BIC, selecting a single model may not be 

sufficient. Ideally, a model selection technique would incorporate uncertainty in the model 

selection process. Our Bayesian procedure solves both of these problems and can be applied 

to both the single and dual trajectory models.

The model introduced in this section builds off of recent work from the statistics literature 

(Lee et al., 2016) that introduces a Bayesian model averaging method for the finite mixture 

model of linear regressions, of which the GBTM is a special case. The key insight is that 

the standard g-prior specification introduced by Zellner (1986), which is commonly used 

in applied Bayesian work for model selection in linear regression models, can easily be 

incorporated into the finite mixture model with similar results.

In practice, this works by introducing another data augmentation step into the Gibbs 

sampler. Consider the problem of selecting which of D functions of age, {f1(age), …, 

fD(age)} to include as variables in the trajectory model for each latent group k. For example, 

a simple variable selection problem may select for third-degree polynomials of age: {age0, 

age1, age2, age3}. For each group k we introduce an indicator vector zk = z1
k, …zD

k  where 

element zd
k takes on the value of 1 if fd(age) should be included in the model for group k. 

The solution to the variable selection problem is to sample each zd
k from its full conditional 

distribution in the Gibbs sampler, and impose βd
k = 0 whenever zd

k = 0. Under this data 

augmentation scheme, each distinct value of zk represents a distinct model for group k. 

The posterior samples of βk, therefore, correspond to exactly one of these models in each 
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sweep of the Markov chain. Continuing our example, suppose zk equals (1,1,0,0) in 50% 

of the sweeps,(1,1,1,0) in 30% of the sweeps, and (1,1,1,1) in 20% of the sweeps. The 

posterior distribution of βk will then consist of samples from a first-degree polynomial 

model 50% of the time, a second-degree polynomial model 30% of the time, and a third-

degree polynomial model 20% of the time. Thus the full posterior distribution of βk and the 

resulting trajectories are weighted averages of these three model specifications, where the 

weights correspond to the inferred probabilities that each distinct model is the true model 

which generated the data.

4.1 The Gibbs Sampler

For notational simplicity, we only exposit the single trajectory model. The sampler can be 

extended to dual trajectories by applying the model selection equations to both series, and 

sampling the group-membership probabilities using the same equations specified in Section 

3.3. We use the notation z−d
k  to denote the vector zk excluding the dth element. Using Bayes’ 

theorem, the conditional distribution of zd
k is Bernoulli where

Pr zd
k = 1 ∣ yk, Xk, z−d

k

=
p yk ∣ Xk, zd

k = 1, z−d
k λd

k

p yk ∣ Xk, zd
k = 0, z−d

k 1 − λd
k + p yk ∣ Xk, zd

k = 1, z−d
k λd

k
(11)

where λd
k = P zd

k = 1 ∣ Xk, z−d
k . Evaluating this function requires us to introduce priors for 

λd
k. It is convenient to assume uniform priors of λd

k = 0.5 in which case these terms cancel out 

in the fraction. The main challenge is then evaluating the marginal likelihood:

p yk ∣ Xk, zk = ∫ p yk ∣ Xk, zk, θ p(θ)dθ . (12)

Clearly the solution to the integral will depend on our prior specification of θ. In the case 

of the normal latent trajectory model, θ = (β, σ2), so we must define a prior for which 

the marginal likelihood has an analytic solution. For this purpose, we switch the prior 

distributions to Zellner’s g-prior for the model parameters, which includes a heteroskedastic 

Jeffreys prior for σ2:

p σk
2 ∝ 1

σk
2 , k = 1, …, K (13a)

p βk ∣ σk
2, c N βk, 0, gkσk

2 Xk′Xk
−1 . (13b)

Some intuition for this choice of prior is as follows. In the classical maximum likelihood 

estimation of regression coefficients, the conditional covariance matrix of the estimator 

for β is V βMLE ∣ X = σ2 X′X −1. The g-prior sets the covariance term proportional to 

the frequentist estimator. The researcher, therefore, must only choose the gk term which 
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determines the informativeness. Note that since Xk depends on the observations for which 

ci = k, this is a data-dependent prior which changes in each iteration of the Markov chain. 

Although this is somewhat controversial amongst traditional Bayesians (Berger, 2006), its 

practical advantages have distinguished the g-prior as the standard prior used in Bayesian 

model selection (Liang et al., 2008). Primarily, the marginal likelihood has a well-known 

closed form solution:

p yk ∣ Xk, zk =
Γ nk − 1

2

π nk − 1 nk
yk − yk

− nk − 1 1 + gk
nk − 1 − q zk /2

1 + gk 1 − R2 zk nk − 1 /2 (14)

where Γ(·) is the gamma function, || · || is the Euclidean norm, nk = ∑i: ci = kTi is the number 

of observations in group k, q zk = ∑d = 1
D zd

k is the number of variables selected by zk, π ≈ 

3.14, and R2(zk) is the proportion of variance (R-squared) explained by the MLE:

R2 zk = 1 −
yk − Xk zk ′βk, MLE ′ yk − Xk zk ′βk, MLE

yk − yk ′ yk − yk

βk, MLE = Xk zk ′Xk zk −1Xk zk yk .

where Xk(zk) contains the columns of Xk for which zd
k = 1. Setting gk = nk will 

implement a ”unit-information prior“ which contains the informational equivalent of a 

single observation. This will retain the analytical benefits of efficient marginal likelihood 

evaluation while alleviating some of the concerns regarding the data-dependent prior. The 

full conditionals are provided in Appendix 2. We recommend setting βk,0 = βk,MLE in the 

prior distribution for βk as in Lee et al. (2016), as our own experience also suggests the 

estimates of σk
2 are significantly more reliable when centering the prior around the MLE.5 

Doing so simplifies the conditional distribution for βk to have a mean of βk,MLE in the Gibbs 

sampler.

The resulting Gibbs sampler will place a large mass at 0 on elements of the βk’s for 

which the associated variable has been effectively selected out of the model. The posterior 

predictive distributions used to plot the trajectories incorporate uncertainty over the possible 

models by integrating over z, for which each distinct value represents a distinct model. The 

Gibbs sampler allows researchers to integrate over a large number of models to perform 

efficient model selection while simultaneously accounting for model uncertainty.

5Note that this runs afoul of the standard practice for g-priors, as explained in Li and Clyde (2018). However, the standard practice 
involves standardizing X(zk) so that each column has mean zero and is orthogonal to a vector of 1’s. This would be difficult to do 
since we do not know which observations belong to group k a-priori. Without such standardization, our simulations suggested that 

groups with large intercepts tend to yield posterior distributions of σk
2 centered well above the true values. As a result, we reluctantly 

favor using the MLE as the prior mean.
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4.2 Selecting Sets of Covariates

The approach outlined above selects each covariate individually. However, researchers may 

find it advantageous to select certain sets of covariates simultaneously. For example, by far 

the most common functional form in GBTMs is a polynomial of degree W. Yet the approach 

advocated above would likely contain samples from models which do not respect the full 

degree of the polynomial. For example, it may sample models where x3 is selected into the 

model while x2 is eliminated, contravening standard statistical practice.

This problem can be resolved by placing a prior over a set of covariates rather than its 

individual components. In the context of polynomials of degree W, one could put a prior 

over W rather than the individual terms. Suppose a researcher is considering polynomials of 

degree 0, 1, 2, and 3 in latent group k and has prior beliefs that Pr(Wk = w) = pw for w = 0, 

1, 2, 3. Let z−W
k  denote the variables included in the model aside from the polynomial terms. 

Then

Pr W k = w ∣ yk, Xk, z−W
k =

p yk ∣ Xk, z−W
k , w pw

∑j = 0
3 p yk ∣ Xk, z−W

k , j pj
(15)

The p yk ∣ Xk, z−W
k , w  terms are the marginal likelihoods given by equation 14 and can be 

computed analytically. Therefore Wk can be sampled from a categorical distribution with the 

corresponding posterior probabilities. Upon sampling Wk, the rest of zk can be filled in with 

1’s and 0’s to reflect the selected model. Inference then proceeds according to the Gibbs 

sampler described above.

A default prior on Wk could be a uniform distribution. Researchers rarely consider terms 

degrees greater than 3 when searching manually, so one could set pw = 1
4  for w = 0, 1, 2, 

3. Alternatively one could place informative priors which penalize higher degrees. However, 

the marginal likelihood already contains a term which penalizes additional covariates, thus 

imposing parsimony in the posterior distribution even with a uniform prior.

In practice, one may sample certain covariates as sets and others individually. For example, 

consider a model whose potential covariates include a polynomial of time up to degree 3, 

the logarithm of time, and an additional covariate x. Then x and the logarithm of time could 

both be sampled individually while the polynomial terms could be sampled as a set.

4.3 Demonstration on Simulated Data

To demonstrate the utility of the model averaging procedure, we simulated a second dataset 

from the dual trajectory model data generating process described earlier. The model includes 

1000 pairs with three groups in each series. The first series contains simulations for 9 

periods for each individual, while the second contains 8 periods. The covariates include 

an intercept and a third degree polynomial for age. We also fixed some of the second 

and third-degree coefficients to zero in order to verify that the model selection procedure 

removes these terms from the model. Our hyperparameters are chosen to be non-informative 
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when possible. We set λd
k = 0.5 for each zd

k. For the g-priors, we set gk = nk for a unit-

information prior and βk,0 = βk,MLE for each group. We retain the uniform prior over group 

memberships, with α1 = α2 = 1. The Gibbs sampler was run for 25,000 iterations, with the 

first 5,000 discarded as the burn-in period.

The results are reported in Table 3. The table includes an “Inclusion Probability,” defined as 
1
Q ∑q = 1

Q 1 zd, q
k = 1  for variable d in group k, where Q is the number of posterior samples. 

If the procedure is working properly, the inclusion probabilities should be close to zero for 

terms where the coefficients were fixed to zero.

The results indicate that the method is efficiently selecting the correct variables. The 

inclusion probabilities are exactly one for each variable with a non-zero coefficient. Most 

of the variables with zero-valued coefficients had 95% credible intervals of [0,0] and all 

have inclusion probabilities under 4%, indicating that these variables have effectively been 

selected out of the model.

4.4 Application: Intergenerational Resemblance of Income Trajectories in the United 
States

Having demonstrated the approach using simulated data, we now turn to a use case 

involving observational data. The topic we choose is intergenerational resemblance of 

income trajectories, which is of interest to social scientists across disciplines but is 

understudied. Income changes and evolves over an individual’s life course. Most existing 

studies have only focused on income levels, whereas the shape of income trajectories is 

less studied. Two individuals with the same levels of lifetime income but different shapes 

of income trajectories may have different levels of well-being. For example, recent studies 

find that growing up in a family with decreasing or volatile household income trajectories is 

associated with a higher risk of psychiatric disorder for children (Björkenstam et al., 2017; 

Cheng et al., 2020). In this application, we look at income as another well-being outcome 

and examine the hypothesis that men’s income trajectories resemble both the level and the 

shape of their fathers’ income trajectories.

We apply our Bayesian model selection algorithm to data from the Panel Study of Income 

Dynamics (PSID), which reports longitudinal income data for fathers and sons from 1968–

2017 (Johnson et al., 2020). We limit our sample to the 943 pairs of fathers and their first 

sons, with the goal of analyzing both inter- and intragenerational income resemblance. We 

fit models on log income and average over a model space consisting of up to third degree 

polynomials in order to emulate the typical model space a researcher may explore for such 

a scenario. As described above, we select the polynomial degree rather than individual 

polynomial terms in order to avoid averaging over models which include high degree terms 

while simultaneously selecting out lower degree terms.

We first attempted to optimize the number of latent groups using BIC, where the inclusion 

probabilities were used to determine the number of parameters in each model. However, BIC 

continued to increase until both fathers and sons had K = 9 latent groups, some with very 

low sample sizes and considerable uncertainty in the trajectory shapes. We ultimately settled 
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on K = 5 groups for both fathers and sons, as adding additional groups beyond 5 created 

groups with either too much variability or not enough differentiation from the existing 

groups. Figure 5 includes the trajectories for our preferred specification. For transparency, 

we have also included the trajectories for K = 6 and K = 7 in Appendix Figures 1a and 1b.

We use the same hyperparameters that we used in the simulation in order to be 

noninformative. Specifically, λd
k = 0.5 for each zd

k, gk = nk for each k, and βk,0 = βk,MLE 

for each k. In order to ensure that our MCMC algorithm did not converge to a local 

optimum, we ran multiple short chains using dispersed starting values and chose the initial 

settings which maximized the log-likelihood. We then ran the chain for 25,000 iterations 

and discarded the first 5,000 draws as the burn-in period. The total estimation time was 12 

minutes.

Table 4 contains parameter estimates and inclusion probabilities for the linear, square, 

and cubic terms. Intercepts were forced into the model for each latent group. The model 

averaging procedure included the linear age term 100% of the time in each group with 

the exception of Low-Earning fathers. Here the linear term is only included in half of 

the models, indicating members of this group earn low wages consistently throughout 

their lives. Squared terms were included in nearly 100% of the iterations for eight of the 

ten groups. The other two groups contained squared terms in 18.9% and 47.6% of the 

iterations, respectively. The inclusion of cubic terms was more dispersed. Six of the ten 

groups included cubics in fewer than 11% of the iterations, while the remaining four groups 

included cubics in at least 77% of the iterations. It should be noted that due to the scale 

of the data, the cubic coefficients are sometimes indistinguishable from zero using three 

significant digits. Nonetheless, it is evident from Figure 5 they are sufficiently large to 

visibly alter several of the trajectories. To illustrate the mechanics of model averaging, the 

first 1000 samples from the posterior of the cubic coefficient for the sons’ “Upper” group 

are plotted in Figure 4. According to Table 4, this coefficient was selected out of 22% of 

models, which is illustrated by the cluster of zeros dispersed throughout the chain.

Figure 5 plots the trajectories for both fathers and sons. The trajectories are ordered based 

on lifetime income, with the blue line group containing the highest lifetime income and 

the red line group containing the lowest lifetime income. We exponentiate the results in 

the posterior predictive distribution to transform the data from the log scale to dollars for 

easier interpretation, a task which would be considerably more difficult in the frequentist 

paradigm. There are five distinct groups in the fathers’ generation. Marginal probabilities 

in Table 4 Panel B represent the estimated percentages of fathers in each latent group. The 

group of “Low Earners” (22%) have both the lowest lifetime income and slightly decreasing 

income trajectories. The “Lower-Middle” group (25.9%) have the second lowest lifetime 

income and relatively stable income trajectories over time. The “Upper-Middle” group 

(21.8%) have higher lifetime income than the previous two groups and stably increasing 

income trajectories. The “Mid-Life Peak” group (15%) start with lower income than the 

“Upper-Middle” group, but have a dramatic increase in income in midlife before falling in 

the final years. The “Sustained Increase” group (15.1%) starts with the highest income and 

also have sustained increases into late adulthood.
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In general, the income levels for sons’ generation are higher than those for the fathers. 

The shapes of sons’ income trajectories and the group sizes highly resemble those of their 

fathers’ trajectories for the groups of “Low Earners” (21.1%), “Lower-Middle” (24.4%), 

and “Upper-Middle” (28.1%). There is no “Mid-Life Peak” group in the sons’ generation, 

but instead there is a group of wealthy sons who start with the highest income and have 

stable increases in their income over the life course. There is also a “Ultra-Rich” group, with 

average annual income above $200,000. Despite the high average income, this group also 

has the largest estimated variance and the widest predictive intervals (which by convention 

does not include uncertainty associated with the variance term), suggesting this is somewhat 

of a catch-all group for varying levels of income above $100,000.

Transition probabilities for the sons in Table 4 Panel C provide the probabilities of 

sons being in group i conditional on fathers being in group j. We also report transition 

probabilities for the fathers, though these are less interesting from a theoretical standpoint 

due to the fathers preceding the sons. These transition probabilities give us clear information 

on the degree of “social fluidity” in the United States. For example, conditional on fathers 

being “Low Earners”, the probability of sons being “Low Earners” is 32.0%, whereas the 

probabilities of sons being “Upper” and “Ultra-Rich” are just 6.3% and 3.3%, respectively. 

By contract, conditional on fathers being in the “Sustained Increase” group, the probability 

of sons being “Low Earners” is just 11.7%, whereas the probabilities of sons being “Upper” 

and “Ultra-Rich” are 26.6% and 25.1%, respectively. We also examined plots of the group 

membership and posterior probabilities, as well as the transition probabilities, but the 

distributions were all nearly symmetric around the medians.

Figure 6 visualizes the group-membership probabilities discussed in the paragraph above 

using a Sankey diagram. The Sankey diagram visualizes the flow of groups from fathers 

to sons and has the advantage of including all information contained in the marginal, joint, 

and transition probabilities in a single figure. Starting at the bottom left, the “Low Earners” 

block takes up about 21% of the left y-axis, corresponding to the 21.1% group-membership 

probability recorded in Table 4. The five segments flowing out of the “Low Earners” block 

correspond to the transition probabilities in Table 4 when viewed as proportions of these 

five segments. The slim segments connecting “Low Earning” fathers to “Ultra Rich” and 

“Upper Class” sons highlight the dim prospects for upward mobility, as discussed in the 

preceding paragraph. Each segment can also be viewed as a joint probability of the two 

connected groups by considering the thickness as a proportion of the entire height of figure. 

Two joint probabilities can easily be compared through the thickness of the lines. For 

example, the segment connecting “Sustained Increase” and “Ultra Rich” is about twice 

as thick as the segment connecting “Sustained Increase” and “Low-Earners,” suggesting 

Pr(Father = Sustained Increase, Son = Ultra Rich) ≈ 2 × Pr(Father = Sustained Increase, Son 

= Low-Earners).

The Sankey diagram convincingly demonstrates the existence of a substantial degree of 

persistence between the two generations. Children of the highest income fathers transition to 

the top three income groups for sons at a much higher rate than to the lowest two groups. 

Conversely, sons from low income fathers rarely attain high income status themselves, 
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mostly topping out as middle income at best. Children of fathers in the middle income 

groups are more evenly dispersed across the distribution of sons’ incomes.

Overall, the model averaging procedure produced intuitive and rich results for income 

trajectories of fathers and sons. Moreover, we were able to produce a more robust model 

which accounted for uncertainty in polynomial degree in a fraction of the time it would 

have taken to exhaustively search across the model space using a sequence of frequentist 

models. We searched over a model space consisting of up to third-degree polynomials in 

order to emulate the typical model space which researchers would consider. However, the 

model space could be extended to include other transformations such as the logarithm of age 

with very little additional effort, which may allow researchers to dream up more imaginative 

trajectories.

5 Conclusion

This paper introduced MCMC algorithms to estimate Bayesian group-based single trajectory 

and dual trajectory models, and also proposed a Bayesian model averaging procedure 

for selecting the functional forms of the trajectories. The model averaging procedure has 

two key advantages over the standard model selection techniques. First, it automatically 

incorporates uncertainty in model selection. Second, it allows the researcher to forego the 

time-consuming process of searching over a high-dimensional model space. In addition to 

providing automatic model selection, Bayesian models also conduct finite sample inference 

for the posterior distribution without relying on asymptotics and have the ability to produce 

posterior samples for arbitrary functions of the parameters.

While we hope to have demonstrated the practical utility of the Bayesian approach, 

practitioners should be aware of the profound implications of the Bayesian approach to 

both inference and model selection. While the frequentist paradigm leads researchers to 

search for a single true model which generated the data, the Bayesian approach gives up on 

this goal entirely, in favor of an approach which embraces uncertainty in the data generation 

process by modeling the parameters themselves as random variables. In this sense, Bayesian 

inference should be viewed as an alternative to frequentist inference, rather than a solution 

to its problems. Future extensions of the frequentist approach are still needed to improve the 

efficiency of model selection in GBTMs. Although the Bayesian approach can get around 

this issue more easily, it does not solve the frequentist problem. Both approaches have 

their unique advantages, and the Bayesian approach introduced in this study is appealing 

particularly from a practical and computational perspective.

One potential limitation of our procedure, as in other models using the Gibbs sampler, is 

the tendency for the Markov chain to get stuck in a local optimum. This issue arises in 

all Bayesian mixture models and also in maximum likelihood estimation of GBTMs. In 

maximum likelihood estimation, it can potentially be overcome by using multiple starting 

values (McLachlan and Peel, 2000; Muthén and Muthén, 2012; Hipp and Bauer, 2006). In 

the Bayesian approach, we recommend the same solution. Researchers can begin the chain 

from multiple starting values and seeds and settle on the initial conditions which maximize 
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some criterion such as the log-likelihood. However, future research may want to consider 

ways to reach the global optimum more efficiently.

Future research will also want to consider a broader set of distributions for the outcomes. 

We restrict our analysis in this paper to variants of normally distributed outcomes. While 

this encompasses a surprisingly broad class of models with continuous, censored, binary, 

and ordered outcomes, much of the applied literature has utilized other distributions such as 

the Poisson and zero-inflated Poisson distributions. The same basic approach used in this 

paper can apply to any distribution of the outcome, with the caveat that conjugate priors 

may not always be available. In such cases, parameters can be sampled using other MCMC 

algorithms such as Metropolis Hastings. Bayesian model averaging can also be performed 

using other distributions. However, priors will need to be specified such that the marginal 

likelihood can be efficiently computed in order the make the algorithms feasible. Li and 

Clyde (2018) provide an overview of g-priors in generalized linear models, which could 

potentially extend the model averaging framework to a wider class of models. For the time 

being, maximum likelihood approaches may be more easily applied to models outside the 

scope of this paper.

Future extensions of the Bayesian model can also look for model-based ways to select the 

number of latent groups. One potential method would be to place a prior on the number of 

groups. This can be done in a nonparametric fashion using Dirichlet process priors (Dunson 

and Herring, 2006; Dunson et al., 2008; Goldston et al., 2016). The main drawback of 

this approach is that the number of groups is not fixed throughout the MCMC iterations, 

which makes it difficult to interpret the results. For this reason, Goldston et al. (2016) 

adopt a multistage process where they fit a Dirichlet process model in stage one and then 

use the mean number of groups in stage two. Another drawback of a fully non-parametric 

approach is that it inhibits the researchers ability to guide the choice through subject matter 

expertise. However, Bayesian nonparametrics can sidestep this issue to some extent because 

the researcher can impose a strong prior to limit the number of groups in large datasets.

Finally, although the GBTM has many advantages, there are other methods that allow 

researchers to model trajectories. We see all these methods as complementary rather than 

competing. The choice of methods should depend on research questions and the plausibility 

of model assumptions in specific cases. Moreover, researchers are encouraged to verify 

their substantive results using multiple trajectory models to better understand the uncertainty 

(Warren et al., 2015; Feldman et al., 2009).
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APPENDIX

Appendix 1: Extensions to Binary, Ordered, and Censored Normal 

Outcomes

The Gibbs sampler described for continuous outcomes can be extended to model trajectories 

for binary, ordered, and censored normal outcomes. This is accomplished by modeling each 

observed outcome yi as a function of a latent variable yi* which is normally distributed 

conditional on the data and model parameters. Upon sampling this latent variable in the 

MCMC algorithm, each of these models can be reduced to the Gibbs sampler described 

above where yi* is used in place of yi.

Frequentist GBTMs use logistic regression as the standard model for binary outcomes. For 

Bayesian inference, it will be more convenient to adopt the probit model,

Pr yit = 1 ∣ ci = Φ xit′ βci ,

where Φ(·) is the standard normal CDF. The probit model can be equivalently stated using 

latent variables:

yit* ∣ ci N xit′ βci, 1 (16a)

yit =
0, yit* < 0
1, yit* ≥ 0

(16b)

where yit* is not observed. Note that in a probit GBTM, the variance term is fixed to one and 

therefore does not need to be sampled in the Gibbs sampler.

The benefit of using probit regression rather than logistic regression is that probit regression 

reduces to linear regression on the latent variable. Therefore the Gibbs sampler derived in 

the previous section could be directly applied if yit* was observed. While this is not the case, 

Albert and Chib (1993) point out that yit* can be drawn from its conditional distribution 

in each iteration of the Gibbs sampler. Upon sampling each yit*, the ci’s can be sampled 

conditional on yi* rather than yi and the βk’s can be sampled conditional on yk* rather than yk. 

The conditional distribution of yit* is

yit* ∣ yit, ci, βci
TN xit′ βci, 1, − ∞, 0 , yit = 0

TN xit′ βci, 1, 0, ∞ , yit = 1
(17)
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where TN( ⋅ ) is a truncated normal distribution. The distribution is truncated above at 0 if 

yit = 0 and truncated below at 0 if yit = 1.

Albert and Chib (1993) also generalize their model to develop a Gibbs sampler for the 

ordered probit model which is appropriate when the outcome is discrete and ordered. 

Although not common in GBTM applications, it can sometimes be appropriate as a 

substitute for the commonly used Poisson-distributed GBTM for count data. Poisson 

regression requires more complex MCMC procedures and will be more difficult to integrate 

into the Bayesian model selection framework discussed later, leaving the ordered probit as a 

more tractable alternative.

Chib (1992) shows how to use essentially the same strategy when the outcome follows a 

censored normal distribution. If the outcome is bounded by Smin and Smax, then the latent 

variable representation is

yit* ∣ ci N xit′ βci, σ2
(18a)

yit =
Smin, yit* ≤ Smin

yit*, yit* ∈ Smin, Smax

Smax yit* ≥ Smax .
(18b)

where yit* is once again not observed. Like the probit model, yit* can be drawn in the Gibbs 

sampler which will reduce the problem to the linear regression case discussed earlier. If yit ∈ 
(Smin, Smax), then yit* = yit. Otherwise, it can be drawn from a truncated normal distribution:

yit* ∣ yit, ci, βci
TN xit′ βci, σ2, − ∞, Smin , yit = Smin

TN xit′ βci, σ2, Smax, ∞ , yit = Smax
. (19)

Appendix 2: Full Conditionals

1. The full conditional distributions in the Bayesian single trajectory model can all 

be solved for by applying Bayes theorem. The results are:

ci ∣ π, β, σ2, y  Categorical  P yi ∣ ci = 1; β1, σ2 π1
∑k = 1

K P yi ∣ ci = k; βk, σ2 πk
, …,

P yi ∣ ci = K; βK, σ2 πK
∑k = 1

K P yi ∣ ci = k; βk, σ2 πk
, i = 1, …, N

(20a)

π ∣ c Dirichlet ∑
i = 1

N
1 ci = 1 + α1, …, ∑

i = 1

N
1 ci = K + αK (20b)
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σ2 ∣ c, β, y ℐG 1
2 ν0 + N′ , 1

2 ν0σ0
2 + SSR (20c)

βk ∣ c, σ2, y N Xk′Xk/σ2 + Σ−1 −1 Xk′yk/σ2 + Σ−1μ , Xk′Xk/σ2 + Σ−1 −1 ,
k = 1, …, K

(20d)

where Xk and yk are the design matrix and outcomes, respectively, for the data 

in group k, and SSR = ∑i = 1
N ∑t = 1

Ti yit − xit′ βci
2 is the sum of squared residuals. 

We use N′ = ∑i = 1
N Ti to denote the number of observations in the data.

The conditional distributions described above are standard conjugate prior 

results, but still warrant some discussion. The conditional distribution of ci is a 

direct application of Bayes’ theorem for each group probability. The distribution 

for π highlights the interpretation of the α parameters as psuedo-counts, since 

each αi plays the same role in the conditional distribution as the number of units 

corresponding to group i. It αi = 1 for each i, the prior is as if the researcher 

had previously observed one unit belonging to each of the K categories. The 

full conditionals for βk and σ2 are standard results from Bayesian estimation of 

linear regression models (Hoff, 2009). ν0 plays the same role in the conditional 

as the sample size, and so can be thought of as a “prior sample size.” Similarly, 

σ0
2 corresponds to the prior variance of the outcome. The β, meanwhile, end up 

looking like the OLS estimate if Σ is sufficiently large.

2. The full conditional distributions with the conditioning variables suppressed in 

the Bayesian dual trajectory model are:

ci1  Categorical
P yi1 ∣ ci1 = 1; β1

1, σ1
2 πci2 ∣ 1π1

1

∑k = 1
K1 P yi1 ∣ ci1 = k; βk

1, σ1
2 πci2 ∣ kπk

1
, …,

P yi1 ∣ ci1 = K1; βK1
1 , σ1

2 πci2 ∣ K1πK1
1

∑k = 1
K1 P yi1 ∣ ci1 = k; βk

1, σ1
2 πci2 ∣ kπk

1
, i = 1, …, N

(21a)

ci2  Categorical
P yi2 ∣ ci2 = 1; β1

2, σ2
2 π1 ∣ ci1πc1

1

∑k = 1
K2 P yi2 ∣ ci2 = k; βk

2, σ2
2 πk ∣ ci1πci1

1 , …,

P yi2 ∣ ci2 = K2; βK2
2 , σ2

2 πK2 ∣ ci1πc1
1

∑k = 1
K2 P yi2 ∣ ci2 = k; βk

2, σ2
2 πk ∣ ci1πci1

1 , i = 1, …, N

(21b)

π1 Dirichlet ∑
i = 1

N
1 ci1 = 1 + α1

1, …, ∑
i = 1

N
1 ci1 = K1 + αK1

1 (21c)
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πk
2 Dirichlet ∑

i = 1

N
1 ci1 = k ∩ ci2 = 1 + α1

2, …, ∑
i = 1

N
1 ci1 = k ∩ ci2 = K2 + αK2

2 ,

k = 1, …, K1

(21d)

The full conditionals for the βk’s and σ’s are the same as in the single trajectory 

case, but using data restricted to their respective series of measurements. The 

explanations for these equations are largely the same as the single-trajectory 

case, only now the group membership conditional distributions require a more 

complicated application of Bayes’ rule in order to account for the dependence 

between the two series. Proofs for the full conditionals of ci1 and ci2 are below:

P ci1 = k ∣ π1, π2, ci2, β1, σ1
2, yi1

=
P yi1, ci2 ∣ ci1 = k; π1, π2, β1, σ1

2 P ci1 = k ∣ π1, π2, β1, σ1
2

∑j = 1
K1 P yi1, ci2 ∣ ci1 = j; π1, π2, β1, σ1

2 P ci1 = j ∣ π1, π2, β1, σ1
2

=
P yi1 ∣ ci1 = k; β1, σ1

2 P ci2 ∣ ci1 = k; π2 P ci1 = k ∣ π1

∑j = 1
K1 P yi1 ∣ ci1 = j; β1, σ1

2 P ci2 ∣ ci1 = j, π2 P ci1 = j ∣ π1

=
P yi1 ∣ ci1 = k; β1, σ1

2 πci2 ∣ kπk
1

∑j = 1
K1 P yi1 ∣ ci1 = j; β1, σ1

2 πci2 ∣ jπj1

Similarly,

P ci2 = k ∣ ci1, π1, π2, yi2, σ2
2, β2

=
P yi2, ci1 ∣ ci2 = k; π1, π2, σ2

2, β2 P ci2 = k ∣ π1, π2, σ2
2, β2

∑j = 1
K2 P yi2, ci1 ∣ ci2 = j; π1, π2, σ2

2, β2 P ci2 = j ∣ π1, π2, σ2
2, β2

=
P yi2 ∣ ci2 = k; σ2

2, β2 P ci1 ∣ ci2 = k; π1, π2, σ2
2, β2

∑j = 1
K2 P yi2 ∣ ci2 = j; σ2

2, β2 P ci1 ∣ ci2 = j; π1, π2 P ci2 = j ∣ π2 × P ci2 = k ∣ π1, π2, σ2
2, β2

=
P yi2 ∣ ci2 = k; σ2

2, β2 P ci2 = k ∣ ci1, π1, π2, σ2
2, β2 P ci1 ∣ π1, π2, σ2

2, β2

∑j = 1
K2 P yi2 ∣ ci2 = j; σ2

2, β2 P ci1 ∣ ci2 = j; π1, π2 P ci2 = j ∣ π2

=
P yi2 ∣ ci2 = k; σ2

2, β2 πk ∣ c1πc1
1

∑j = 1
K2 P yi2 ∣ ci2 = j; σ2

2, β2 πj ∣ c1πc1
1

where we use that P(A|B, C) P(B|C) = P(A, B|C) = P(B|A, C) P(A|C).

3. The Gibbs sampler for the Bayesian Model Averaging model is:

ci ∣ π, β, σ2, y  Categorical  P yi ∣ ci = 1; β1, σ2 π1
∑k = 1

K P yi ∣ ci = k; βk, σ2 πk
, …, (22a)
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P yi ∣ ci = K; βK, σ2 πK
∑k = 1

K P yi ∣ ci = k; βk, σ2 πk
, i = 1, …, N (22b)

π ∣ c  Dirichlet  ∑
i = 1

N
1 ci = 1 + α1, …, ∑

i = 1

N
1 ci = K + αK (22c)

zd
k ∣ z−d

k Be
p yk ∣ Xk, zd

k = 1, z−d
k λd

k

p yk ∣ Xk, zd
k = 0, z−d

k 1 − λd
k + p yk ∣ Xk, zd

k = 1, z−d
k λd

k (22d)

d = 1, …, D, k = 1, …, K (22e)

σk
2 ∣ zk, c, y ℐG nk

2 , SSRk zk

2 + (22f)

1
2gk

βk, MLE − βk, 0 ′X zk ′X zk βk, MLE − βk, 0 (22g)

βk ∣ zk, c, σ2, y N gk
gk + 1

βk, 0
gk

+ βk, MLE , gk
gk + 1σk

2 X zk ′X zk −1 , (22h)

k = 1, …, K . (22i)

where SSRk(zk) is the sum of squared residuals for group k in the maximum 

likelihood model restricted to the covariates selected by zk. Hoff (2009) suggests 

sampling zd
k in a random order over d.

Most of these equations are similar to the models discussed above. However, 

the σ2 and β terms are slightly different. Compared with the previous models 

with proper priors on the variances, we see that the σ2 conditional corresponds 

to a prior sample size of zero. Meanwhile, the β has a conditional mean as a 

compromise between the prior mean and the MLE and a conditional variance 

proportional to the variance of the MLE.

Appendix 3: Label Switching

A potential problem of the Bayesian approach to mixture models is the so-called “label-

switching problem” (Celeux et al., 2000; Frühwirth-Schnatter, 2006). Mixture models are 

not identified in the sense that the component labels have no inherent meaning. For example, 

suppose data is generated from a mixture of two normal distributions where the “first” 

mixture component is N θ1, σ2  and the “second” mixture component is N θ2, σ2 . This is 
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equivalent to a model where the “first” mixture component is N θ2, σ2  and the “second” 

mixture component is N θ1, σ2 . The labels “first” and “second” are simply constructs to 

help researchers conceptualize and discuss the model. The implication is that a mixture 

model with K components will have K! symmetric posterior modes, one for every possible 

permutation of the group labels.

In practice, the Gibbs sampler may switch between these modes as it navigates the posterior, 

causing the draws from a given component’s parameter to switch to a different component’s 

parameter mid-chain and rendering the draws meaningless. In mixture model applications 

to density estimation, where the goal is to estimate the posterior predictive probability of a 

new observation conditional on the existing data, label switching can often be ignored as the 

predictive distribution is unaffected. However, in applications which require the researcher 

to attach meaning to the mixture components, as in GBTMs, this can potentially cause a 

problem. The typical solution is to “post process” the draws from the posterior distribution 

(Stephens, 2000; Papastamoulis, 2016).

Label-switching should tend to be less of an issue in the dual trajectory model relative to 

the single-trajectory model. The transition probabilities place so much structure on the data 

that navigating between posterior modes is only possible by navigating through a region of 

the posterior with extremely low density. Intuitively, if one group switched labels, it would 

make the labels in the other group extremely unlikely conditional on the group transition 

probabilities.

Researchers can easily detect label switching by examining the trace plots for sudden swaps 

of parameter values in two or more groups (Jasra et al., 2005). We did not experience any 

label switching for the models programmed in this paper even when running the chains 

for 200,000 iterations, and using both observational and simulated data. This suggests that 

the parameters associated with the different latent groups were sufficiently distinct from 

one another that label switching would have required the Gibbs sampler to traverse very 

sparse regions of the parameter space (De Haan-Rietdijk et al., 2017). However, researchers 

applying this method ought to be aware of the issue.
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Appendix Figure 1a: 
Trajectories for Fathers and Sons with 6 Groups
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Appendix Figure 1b: 
Trajectories for Fathers and Sons with 7 Groups
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Figure 1. 
Trace Plots for the First Group for the First 50 Iterations, from Simulated Dual Trajectory 

Data

Note: The total number of iterations is 10,000. Here we only show the first 50 iterations 

for the first latent group to demonstrate the quick convergence of the Markov Chain Monte 

Carlo (MCMC).
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Figure 2. 
Marginal Distributions of Transition Probabilities, from Simulated Dual Trajectory Data

Note: pijk represents the transition probability from group j to group k.
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Figure 3. 
Joint Distribution of Group Membership Probabilities, from Simulated Dual Trajectory Data

Note: pijk represents the joint probability that the pair member from Series A belongs to 

group j and the corresponding pair member from Series B belongs to group k.
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Figure 4: 
Example of MCMC Samples for Cubic Term with Model Selection

Note: This discretized version of a traceplot corresponds to the first 1,000 MCMC iterations 

for the cubic coefficient in the son’s “Upper” group. The cluster of zeros show the draws 

where the cubic term is selected out of the model.
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Figure 5: 
Trajectories for Fathers and Sons in Main Specification with 5 Groups

Note: In accordance with the GBTM literatures, predictive intervals correspond to the mean 

trajectories in the group. This incorporates uncertainty in the β parameters, but does not 

incorporate the variance from the σ2 parameters.
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Figure 6: 
Sankey Diagram of Group Membership Transitions

Note: Groups are labeled in accordance with Table 4. The data used to make this figure 

come from the reported posterior medians of the group membership probabilities using data 

from the Panel Study of Income Dynamics 1968–2017. The width of the five blocks on 

the left correspond to fathers’ group membership probabilities. The width of the five blocks 

on the right correspond to sons’ group membership probabilities. The width of the five 

segments emanating out of each block correspond to transition probabilities. The width of a 

segment as a proportion of the total height of the figure corresponds to the joint probability.
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Table 1.

Comparison of the Bayesian and Maximum Likelihood Estimation (MLE) of Simulated Dual Trajectory Data

True Parameter
Estimate from 
MLE SE from MLE

Estimated Median 
of the Posterior 
Distribution

Estimated SD of the 
Posterior Distribution

Panel A: Estimate from Series A

Latent Group 1 Intercept 118 117.94 0.09 117.93 0.09

Age 3 3.01 0.04 3.02 0.04

Age^2 0.1 0.10 0.00 0.10 0.00

Latent Group 2 Intercept 110 110.01 0.07 110.01 0.07

Age 5 5.01 0.03 5.01 0.03

Age^2 −0.5 −0.50 0.00 −0.50 0.00

Latent Group 3 Intercept 111 110.95 0.10 110.93 0.10

Age −2 −1.98 0.05 −1.98 0.04

Age^2 0.1 0.10 0.00 0.10 0.00

Sigma 1.414 1.19 0.01 1.19 0.01

Panel B: Estimate from Series B

Latent Group 1 Intercept 112 112.10 0.18 112.06 0.18

Age 2 1.90 0.08 1.91 0.08

Age^2 0.7 0.71 0.01 0.71 0.01

Latent Group 2 Intercept 111 111.02 0.14 110.99 0.14

Age −3 −3.03 0.07 −3.02 0.06

Age^2 0.1 0.10 0.01 0.10 0.01

Latent Group 3 Intercept 110 109.76 0.12 109.75 0.12

Age 6 6.13 0.06 6.14 0.06

Age^2 −0.6 −0.61 0.01 −0.61 0.01

Sigma 2 2.03 0.02 2.03 0.02

Note: Maximum likelihood estimates are obtained from the package “traj” in Stata 16.
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Table 2.

Comparison of the Bayesian and Maximum Likelihood Estimation (MLE) of Group Probabilities

True Parameter
Estimate from 
MLE

SE from 
MLE

Estimated Median 
of the Posterior 
Distribution

Estimated SD 
of the Posterior 
Distribution

95% Credible 
Interval

Panel A: Marginal Probabilities for Series A Latent Group

Group 1 30% 30.5% 1.5 30.5% 1.5 [27.7%, 33.5%]

Group 2 50% 48.0% 1.6 47.9% 1.6 [44.8%, 51.1%]

Group 3 20% 21.5% 1.3 21.5% 1.3 [19.1%, 24.1%]

Panel B: Marginal Probabilities for Series B Latent Group

Group 1 23.20% 20.8% -- 20.9% 1.3 [18.5%, 23.5%]

Group 2 31% 33.2% -- 33.2% 1.5 [30.3%, 36.0%]

Group 3 45.80% 46.0% -- 45.9% 1.6 [42.8%, 49.0%]

Panel C: Transition Probabilities from Series A to Series B

1|1 10% 9.2% 1.7 9.3% 1.7 [6.4%, 12.9%]

2|1 20% 20.7% 2.3 20.7% 2.3 [16.5%, 25.5%]

3|1 70% 70.2% 2.6 69.8% 2.6 [64.6%, 74.7%]

1|2 40% 37.5% 2.2 37.4% 2.2 [33.2%, 41.9%]

2|2 30% 32.3% 2.1 32.2% 2.1 [28.2%, 36.5%]

3|2 30% 30.2% 2.1 30.2% 2.1 [26.2%, 34.5%]

1|3 1% 0.0% 0.0 0.3% 0.5 [0.01%, 1.7%]

2|3 50% 53.0% 3.4 52.7% 3.4 [46.3%, 59.4%]

3|3 49% 47.0% 3.4 46.9% 3.4 [40.2%, 53.4%]

Panel D: Transition Probabilities from Series B to Series A

1|1 12.9% 13.5% -- 13.6% 2.4 [9.5%, 18.7%]

2|1 86.2% 86.5% -- 85.9% 2.4 [80.7%, 90.2%]

3|1 0.8% 0.0% -- 0.3% 0.5 [0.0%, 1.7%]

1|2 19.4% 19.0% -- 19.1% 2.2 [15.1%, 23.5%]

2|2 48.4% 46.7% -- 46.6% 2.7 [41.4%, 52.0%]

3|2 32.3% 34.3% -- 34.2% 2.6 [29.3%, 39.4%]

1|3 45.9% 46.5% -- 46.4% 2.4 [41.7%, 51.0%]

2|3 32.8% 31.5% -- 31.6% 2.2 [27.4%, 36.0%]

3|3 21.4% 22.0% -- 21.9% 1.9 [18.3%, 26.0%]

Note: Maximum likelihood estimates are obtained from the package “traj” in Stata 16. i|j refers to the conditional probability of being in Group j in 
the Series B (A) conditional on being in Group i in the Series A (B). -- indicates that Traj does not compute standard errors for this paramater.
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Table 4.

Group-Based Dual Trajectory Model Selection Coefficients from PSID Model

Father Son

Posterior 
Median

95% 
Credible 
Interval

Inclusion 
Probability

Posterior 
Median

95% 
Credible 
Interval

Inclusion 
Probability

Panel A: Trajectory Coefficients

Sustained 
Increase Intercept 10.96 [10.92, 10.99] -- Ultra-

Rich Intercept 10.65 [10.48, 10.84] --

Age 0.05 [0.05, 0.06] 100.0% Age 0.21 [0.14, 0.26] 100.0%

Age^2 0.00 [−0.00, −0.00] 100.0% Age^2 −0.01 [−0.01, 
−0.00] 100.0%

Age^3 0.00 [0.00, 0.00] 3.2% Age^3 0.00 [0.00, 0.00] 77.9%

Sigma 0.25 [0.24, 0.26] -- Sigma 0.70 [0.66, 0.74] --

Mid-Life 
Peak Intercept 10.68 [10.58,10.76] -- Upper Intercept 10.96 [10.91, 11.01] --

Age 0.10 [0.09,0.13] 100.0% Age 0.07 [0.05, 0.08] 100.0%

Age^2 0.00 [−0.00, −0.00] 100.0% Age^2 0.00 [−0.00, 
−0.00] 100.0%

Age^3 0.00 [0.00, 0.00] 9.6% Age^3 0.00 [0.00, 0.00] 77.9%

Sigma 0.68 [0.65,0.71] -- Sigma 0.28 [0.27, 0.30] --

Upper 
Middle Intercept 10.76 [10.73,10.81] -- Upper 

Middle Intercept 10.60 [10.56, 10.65] --

Age 0.05 [0.03,0.06] 100.0% Age 0.07 [0.04, 0.08] 100.0%

Age^2 0.00 [−0.00, −0.00] 100.0% Age^2 0.00 [−0.00, 
−0.00] 100.0%

Age^3 0.00 [0.00, 0.00] 94.6% Age^3 0.00 [0.00, 0.00] 86.7%

Sigma 0.23 [0.22,0.24] -- Sigma 0.33 [0.32, 0.34] --

Lower 
Middle Intercept 10.53 [10.49,10.59] -- Lower-

Middle Intercept 10.33 [10.28,10.38]

Age 0.02 [0.01,0.03] 100.0% Age 0.01 [0.01, 0.03] 100.0%

Age^2 0.00 [−0.00,−0.00] 100.0% Age^2 0.00 [−0.00, 0.00] 47.6%

Age^3 0.00 [0.00, 0.00] 10.2% Age^3 0.00 [0.00, 0.00] 2.6%

Sigma 0.37 [0.36,0.38] -- Sigma 0.39 [0.38, 0.40] --

Low 
Earners Intercept 10.28 [10.18, 10.40] -- Low 

Earners Intercept 9.90 [9.77, 10.02] --

Age 0.00 [−0.01,0.03] 50.0% Age 0.07 [0.05, 0.09] 100.0%

Age^2 0.00 [−0.00,0.00] 18.9% Age^2 0.00 [−0.00, 
−0.00] 100.0%

Age^3 0.00 [0.00, 0.00] 0.0% Age^3 0.00 [0.00, 0.00] 2.6%

Sigma 1.06 [1.03,1.08] -- Sigma 1.17 [1.13, 1.21] --

Panel B: Group Probabilities

Sustained Increase 15.1% [12.8%, 
17.7%] -- Ultra-

Rich 9.9% [7.7%, 
12.3%]

Mid-Life Peak 15.0% [12.6%, 
17.7%] -- Upper 16.4% [13.9%, 

19.2%]

Upper Middle 21.8% [19.0%, 
24.7%] -- Upper 

Middle 28.1% [24.9%, 
31.5%]
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Father Son

Posterior 
Median

95% 
Credible 
Interval

Inclusion 
Probability

Posterior 
Median

95% 
Credible 
Interval

Inclusion 
Probability

Lower Middle 25.9% [23.0%, 
28.9%] -- Lower-

Middle 24.4% [21.3%, 
27.6%]

Low Earners 22.0% [19.2%, 
24.9%] -- Low 

Earners 21.1% [18.4%, 
24.0%]

Panel C: Transition Probabilities

Sustained Increase | 
Ultra-Rich 38.5% [28.1%, 

49.6%] -- Ultra-Rich | Sustained 
Increase 25.1% [17.7%, 

33.6%]

Mid-Life Peak | Ultra-
Rich 25.0% [15.4%, 

35.9%] -- Upper | Sustained 
Increase 26.6% [19.2%, 

35.1%]

Upper Middle | Ultra-
Rich 13.5% [7.2%, 22.0%] -- Upper-Middle | 

Sustained Increase 26.4% [18.7%, 
35.0%]

Lower Middle | Ultra-
Rich 14.4% [7.6%, 23.2%] -- Lower-Middle | 

Sustained Increase 9.3% [4.2%, 
16.0%]

Low Earners | Ultra-
Rich 7.5% [2.3%, 15.4%] -- Low Earners | 

Sustained Increase 11.7% [6.6%, 
18.4%]

Sustained Increase | 
Upper 24.6% [17.7%, 

32.5%] -- Ultra-Rich | Mid-Life 
Peak 16.4% [9.4%, 

25.0%]

Mid-Life Peak | Upper 17.6% [10.8%, 
25.5%] -- Upper | Mid-Life 

Peak 19.2% [11.8%, 
28.0%]

Upper Middle | Upper 31.0% [23.2%, 
39.5%] -- Upper-Middle | Mid-

Life Peak 18.3% [10.8%, 
26.9%]

Lower Middle |Upper 17.6% [11.3%, 
24.8%] -- Lower-Middle | Mid-

Life Peak 22.1% [14.8%, 
30.6%]

Low Earners | Upper 8.5% [4.2%, 14.4%] -- Low Earners | Mid-
Life Peak 23.1% [16.0%, 

31.2%]

Sustained Increase |
Upper Middle 14.2% [9.8%, 19.5%] -- Ultra-Rich | Upper 

Middle 6.1% [3.2%, 
10.2%]

Mid-Life Peak | Upper 
Middle 9.8% [5.7%, 14.8%] -- Upper | Upper Middle 23.2% [17.4%, 

29.8%]

Upper Middle | Upper 
Middle 25.6% [20.0%, 

31.8%] -- Upper-Middle | 
Upper Middle 33.1% [26.0%, 

40.4%]

Lower Middle | Upper 
Middle 27.7% [22.0%, 

34.1%] -- Lower-Middle | 
Upper Middle 22.3% [16.4%, 

29.0%]

Low Earners | Upper 
Middle 22.2% [16.8%, 

28.1%] -- Low Earners | Upper 
Middle 14.8% [10.1%, 

20.4%]

Sustained Increase | 
Lower-Middle 5.8% [2.6%, 10.0%] -- Ultra-Rich | Lower 

Middle 5.5% [2.8%, 9.1%]

Mid-Life Peak | Lower-
Middle 13.6% [9.1%, 19.1%] -- Upper | Lower 

Middle 11.2% [7.2%, 
16.0%]

Upper Middle | Lower-
Middle 19.9% [14.7%, 

25.9%] -- Upper-Middle | 
Lower Middle 30.2% [23.9%, 

37.0%]

Lower Middle | Lower-
Middle 33.6% [27.1%, 

40.6%] -- Lower-Middle | 
Lower Middle 31.7% [25.2%, 

38.5%]

Low Earners | Lower-
Middle 26.5% [20.4%, 

33.2%] -- Low Earners | Lower 
Middle 21.0% [15.8%, 

27.1%]

Sustained Increase | 
Low Earners 8.4% [4.7%, 13.3%] -- Ultra-Rich | Low 

Earners 3.3% [1.0%, 7.3%]

Mid-Life Peak | Low 
Earners 16.5% [11.3%, 

22.6%] -- Upper | Low Earners 6.3% [3.1%, 
10.9%]
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Father Son

Posterior 
Median

95% 
Credible 
Interval

Inclusion 
Probability

Posterior 
Median

95% 
Credible 
Interval

Inclusion 
Probability

Upper Middle | Low 
Earners 15.3% [10.4%, 

21.2%] -- Upper-Middle | Low 
Earners 28.3% [21.5%, 

35.7%]

Lower Middle | Low 
Earners 25.7% [19.6%, 

32.9%] -- Lower-Middle | Low 
Earners 29.4% [22.6%, 

36.8%]

Low Earners | Low 
Earners 33.4% [26.6%, 

40.6%] -- Low Earners | Low 
Earners 32.0% [25.4%, 

39.3%]

Note: i|j refers to the conditional probability of the father (son) being in latent group j conditional on the son (father) being in latent group i. Sigma 
is the estimated standard deviation of the residuals. Intercepts are forced into the model and not subject to model selection.

Psychol Methods. Author manuscript; available in PMC 2022 May 05.


	Abstract
	Introduction
	Review of the Group-Based Trajectory Model
	Model Specification
	Frequentist Estimation and Challenges
	Bayesian Approaches to Growth Mixture Models

	Bayesian Group-Based Trajectory Models
	A Brief Overview of Markov Chain Monte Carlo
	Single Trajectory Model
	Model Specification
	Estimating Trajectories
	Modeling Group Membership Probabilities

	Dual Trajectory Model
	Demonstration on Simulated Data

	Bayesian Model Averaging
	The Gibbs Sampler
	Selecting Sets of Covariates
	Demonstration on Simulated Data
	Application: Intergenerational Resemblance of Income Trajectories in the United States

	Conclusion
	APPENDIX
	Appendix Figure 1a:
	Appendix Figure 1b:
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1.
	Table 2.
	Table 3.
	Table 4.

