Skip to main content
. Author manuscript; available in PMC: 2022 May 5.
Published in final edited form as: Psychol Methods. 2020 Nov 5;27(3):347–372. doi: 10.1037/met0000359

Table 1.

Comparison of the Bayesian and Maximum Likelihood Estimation (MLE) of Simulated Dual Trajectory Data

True Parameter Estimate from MLE SE from MLE Estimated Median of the Posterior Distribution Estimated SD of the Posterior Distribution
Panel A: Estimate from Series A
Latent Group 1 Intercept 118 117.94 0.09 117.93 0.09
Age 3 3.01 0.04 3.02 0.04
Age^2 0.1 0.10 0.00 0.10 0.00
Latent Group 2 Intercept 110 110.01 0.07 110.01 0.07
Age 5 5.01 0.03 5.01 0.03
Age^2 −0.5 −0.50 0.00 −0.50 0.00
Latent Group 3 Intercept 111 110.95 0.10 110.93 0.10
Age −2 −1.98 0.05 −1.98 0.04
Age^2 0.1 0.10 0.00 0.10 0.00
Sigma 1.414 1.19 0.01 1.19 0.01
Panel B: Estimate from Series B
Latent Group 1 Intercept 112 112.10 0.18 112.06 0.18
Age 2 1.90 0.08 1.91 0.08
Age^2 0.7 0.71 0.01 0.71 0.01
Latent Group 2 Intercept 111 111.02 0.14 110.99 0.14
Age −3 −3.03 0.07 −3.02 0.06
Age^2 0.1 0.10 0.01 0.10 0.01
Latent Group 3 Intercept 110 109.76 0.12 109.75 0.12
Age 6 6.13 0.06 6.14 0.06
Age^2 −0.6 −0.61 0.01 −0.61 0.01
Sigma 2 2.03 0.02 2.03 0.02

Note: Maximum likelihood estimates are obtained from the package “traj” in Stata 16.