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SUMMARY

The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) 

disorders. Determining its mechanistic role in disease has been difficult due to apparent 

disconnects between animal and human studies and lack of an integrated multi-omics view of 

disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut 

microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel 

syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related 

variation in microbial composition and function. A subset of identified changes in microbial 

metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating 

multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway 

in IBS with translational potential. Our study highlights the importance of longitudinal sampling 

and integrating complementary multi-omics data to identify functional mechanisms that can serve 

as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases.

In Brief

Integrated and longitudinal multiomic analyses of patients with irritable bowel syndrome reveals a 

role for the gut microbiota in modulating purine metabolism and influencing host gastrointestinal 

function.

Graphical Abstract
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INTRODUCTION

Irritable bowel syndrome (IBS) is a globally prevalent disorder characterized by recurrent 

abdominal pain or discomfort. IBS is predominantly seen in females and is associated with 

changes in stool form or frequency and is based on the predominant stool form classified as 

constipation predominant (IBS-C), diarrhea predominant (IBS-D), or mixed (IBS-M).

IBS pathogenesis involves changes in gastrointestinal motility, intestinal secretion, visceral 

hypersensitivity, and intestinal permeability, all of which can be modified by the gut 

microbiome (Bhattarai et al., 2017a). In addition, IBS symptoms are affected by diet, host 

genetics, and environment, which are also known to modulate the human gut microbiome 

(Bhattarai et al., 2017a). Experimental evidence supporting a role for the gut microbiome in 

IBS is based on transplantation experiments, where transit time (De Palma et al., 2017; 

Touw et al., 2017), pain sensation thresholds (Crouzet et al., 2013), and intestinal 

permeability (Edogawa et al., 2020) differences associated with IBS-C and IBS-D were 

replicated in gnotobiotic mice following transplantation of fecal microbiota from patients. 

However, in the absence of robust animal models mimicking all aspects of IBS 

pathophysiology, human studies are needed to uncover the interaction of the gut microbiome 

with relevant human-specific disease pathways.

Human studies in IBS are limited by cross-sectional sampling and lack of subtype 

stratification, which is reflected in the lack of agreement in findings across the large number 
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of microbiome studies (Duan et al., 2019; Pittayanon et al., 2019). The latter further 

increases variability given the well-described influence of gastrointestinal transit on the gut 

microbiome (Kashyap et al., 2013; Roager et al., 2016). In addition, IBS, like other chronic 

gastrointestinal disorders, is characterized by periods of remission and exacerbation in 

symptoms, and cross-sectional samples thus fail to account for temporal variability in 

disease. Finally, inherent differences in host physiology between human and animal studies 

have been a barrier in advancing our understanding of mechanistic roles for the gut 

microbiome in IBS.

We performed a longitudinal study in subsets of IBS patients integrating multi-omic 

measurements including the microbial metagenome, host transcriptome, and methylome 

with assessment of host functions and identified IBS subtype-specific mechanisms driven by 

altered microbial metabolism, which corresponded with concurrent changes in host 

physiology.

RESULTS

This is a prospective observational study using longitudinal multi-omics sampling of 

microbiome and host samples with the goal of identifying microbial mediators driving 

subtype-specific phenotypes in IBS. This design allowed us to compare healthy controls 

(HCs) to patients with IBS-C or IBS-D (Rome III criteria). We matched study participants 

for gender, age, and body mass index (BMI); further inclusion and exclusion criteria are 

outlined in STAR Methods. A total of 77 participants provided stool samples for at least one 

time point, and 42 participants agreed to undergo flexible sigmoidoscopy allowing us to 

obtain colonic biopsies longitudinally. Sample types and demographics of study subjects, as 

well as extensive metadata including medication use, hospital anxiety and depression score, 

and IBS symptom severity score (SSS), are outlined in Figures 1A–1C and S1A and Table 

S1. Study subjects provided dietary recall (Table S1) and symptom severity at each visit. IBS 

patients were given the option to provide an additional stool sample and complete symptom 

severity questionnaire between regular visits at the time of a self-identified flare, which was 

defined as a substantial worsening of symptoms between visits. A total of 12 subjects 

provided the additional stool sample at the time of flare (6 each for IBS-C and IBS-D).

To identify microbial drivers of subtype-specific symptoms in IBS, we performed shotgun 

metagenomic sequencing and metabolomics on stool samples, metabolomics and cytokine 

measurements on serum samples, and 16S rRNA gene sequencing, metabolome, 

transcriptome, and methylome analyses on biopsy samples (Figure 1A; STAR Methods).

Longitudinal Sampling Overcomes Heterogeneity Seen in Cross-Sectional Microbiome 
Studies

A cross-sectional study of the gut microbiome in chronic GI conditions provides a snapshot 

of a highly dynamic ecosystem. In addition to the effects of diet, medication use, lifestyle, 

and other environmental factors, the variability in microbiome seen over time may also 

reflect changes in disease activity. We assessed the effect of longitudinal sampling on the 

identification of compositional changes compared to cross-sectional sampling by 

subsampling our longitudinal data, testing for significant taxa, and comparing the results at 
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single time points with results obtained on data that were averaged by subject across all time 

points.

Differences in taxa abundances between HC and disease groups observed in individual time-

points were highly inconsistent when comparing the different time points and did not 

overlap with changes observed in the averaged data (Figure S1B). When using averaged 

data, but not the single-time point data, we found a significantly higher abundance of 

multiple Streptococcus spp. individually in IBS-C and IBS-D as well as in the composite 

IBS group, compared to HC (log2(FC) ~1, at Mann-Whitney U test false discovery rate 

[FDR] <0.25) (Figure S1C; Table S2). In addition, we found a significantly lower abundance 

of the recently identified phylum Synergistetes in IBS-D compared to HC (log2(FC) −2.1, 

FDR 0.017; Figure S1D; Table S2). We also found that inter-individual variation dominates 

over intra-individual variation, which supports our approach of averaging the longitudinal 

data from each individual (STAR Methods, t test p < 0.0001). These findings highlight the 

need for longitudinal sampling in chronic diseases to reliably identify microbiota changes 

that may be missed using cross-sectional sampling. Hence, we primarily report findings 

from time-averaged data. This is further supported by a recent study showing that commonly 

used “omics” methods are more accurate when using averages over multiple sampling time 

points (Poyet et al., 2019).

PCoA-based on Bray-Curtis β diversity showed that stool microbiota composition in IBS 

clustered by subtype, and IBS-D and IBS-C displayed significantly different dispersion from 

HC samples as well as from each other (Figures 1D and 1E). To further confirm differences 

in β diversity, we calculated a Bray-Curtis dissimilarity (BCD)-based irregularity (BCDI) 

score (STAR Methods). BCDI scores for IBS-C were significantly elevated (linear mixed-

effect model correcting for subject; Figure 1F). When considering a sample to be irregular 

beyond the 90th percentile of the HC distribution, we found that more IBS-C samples are 

irregular than IBS-D (31.7% for IBS-C, 14.1% for IBS-D, equality-of-proportions test p < 

0.001).

Longitudinal Sampling Reveals Greater Variability in IBS-C Microbiota over Time

Stool microbiota composition exhibited greater variability over time in patients with IBS-C 

compared to HC and IBS-D subjects (Figure 1G). In addition, there was higher Shannon α 
diversity in averaged IBS-C stool samples compared to IBS-D samples (ANOVA with Tukey 

HSD p value 0.016).

We then tested for differences in luminal and mucosa-associated microbiota. These 

differences are relevant in IBS because disease subtypes, defined by differences in stool 

form, are partly the result of alteration in epithelial fluid secretion into the lumen. The 

microbial composition of the colonic mucosa was significantly different from the luminal 

microbiota in stool samples (Figure 1H). The mucosa-associated microbiota in IBS patients 

were characterized by significantly higher levels of Proteobacteria when compared to HC 

(Figure S1G). The mucosa-associated microbiota in patients with IBS-C were less similar to 

their respective luminal microbiota than those of IBS-D or HC (Figure 1I). This potentially 

reflects the longer transit time in IBS-C subjects, where there is more time for the 

communities to diverge. In addition, there was greater intra-individual variability in mucosa-
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associated microbiota in patients with IBS-C across time, similar to what we observed in the 

luminal microbiota (Figure 1J).

IBS Symptom Severity Is Associated with Functional Changes in the Gut Microbiota

The severity of IBS at a particular sampling point was reported using the IBS SSS (0–500), 

which is a cumulative metric of abdominal pain intensity, frequency, distension, 

dissatisfaction with bowel habits, and influence of IBS on life in general. We observed a 

higher relative abundance of more than 20 Lactobacillus spp. in severe IBS-D (SSS >300) 

compared to mild-moderate IBS-D (SSS <300; >10-fold, Mann-Whitney FDR <0.1, Table 

S2). This was not related to probiotic or dairy consumption by the subjects (Figures S2A–

S2C). When considering functional variation through Kyoto Encyclopedia of Genes and 

Genomes (KEGG) ontology (KO) term abundance in the stool metagenomics data, we found 

that 74 KO terms were associated with severe IBS-C, and 44 with severe IBS-D at an FDR 

<0.1 (STAR Methods; Table S3). KO terms for alcohol dehydrogenase (ADH) were found in 

both severe IBS-C and IBS-D compared to mild-moderate IBS (~0.6 log2(FC) higher in 

severe IBS). These ADH KO terms are positively correlated to Bifidobacterium sp. and 

Streptococcus sp. (Table S4). The considerable genetic diversity among ADH enzymes 

complicates constructing a link between this abundance and specific metabolic products. 

However, these data suggest that ADH activity may be related to abdominal pain, which is 

the primary symptom common to both IBS-C and IBS-D. In addition, we found that stool 

form recorded as Bristol stool scale and abdominal pain preceding bowel movements were 

associated with specific bacteria and metabolites (Table S4).

Metabolomics Integrated with Physiologic Measurements Provides Mechanistic Insight 
into the Effect of Gut Microbiota Metabolism on Gastrointestinal Function

To better understand the mechanisms by which the gut microbiota could drive symptom 

pathophysiology, we quantified the metabolic output of the microbiome reflected in the 

biochemical profiles of the luminal and mucosa-associated samples. We first focused on 

microbiota-derived metabolites previously reported to drive changes in gastrointestinal 

physiology. H1-nuclear magnetic resonance (NMR) spectroscopy showed the short-chain 

fatty acids (SCFAs) propionate, butyrate, and acetate to be significantly lower in the stool 

samples of patients with IBS-C compared to HC (Figure 2A, Figure S3A for averaged data). 

Consistent with the luminal metabolites, acetate (measured by gas chromatography-mass 

spectrometry [GC-MS]) was also significantly reduced in the colonic mucosal biopsy 

samples from the IBS-C group compared to the HC group (Figure 2B). Notably, these 

differences in SCFAs were independent of the overall intake of dietary fiber as this was not 

significantly different between the groups (Figure S2C).

We have previously described the role of SCFAs in modulating the serotonergic pathway in 

host GI tissue (Bhattarai et al., 2017b; Reigstad et al., 2015). To determine the physiologic 

relevance of lower SCFAs in stool and biopsies seen in IBS-C patients, we investigated the 

change in short circuit current (Isc; a measure of ionic flux across the epithelium reflecting 

intestinal secretion) in colonic epithelium in response to serotonin (5-HT) using an Ussing 

chamber (STAR Methods). Water secretion accompanies ionic flux, and decreased secretion 

thus results in lower water content of stool as seen in constipation. Conversely, increased 
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ionic flux can result in increased water secretion resulting in diarrhea. The secretory 

response of colonic biopsies from IBS-C patients to 5-HT was significantly lower than HC 

(Figure 2C), which is consistent with the stool form seen in IBS-C patients.

We recently found that the bacterially derived monoamine tryptamine (a tryptophan 

metabolite similar to serotonin) activates serotonin receptor-4 (5-HT4R) resulting in 

increased fluid secretion and decreased transit time in gnotobiotic mice (Bhattarai et al., 

2018), but its physiologic role in human disease has not yet been determined. Hence, we 

investigated changes in tryptamine and other tryptophan metabolites in stool samples using a 

targeted liquid chromatography-mass spectrometry (LC-MS) method. We found that both 

tryptophan and tryptamine were significantly increased in stool samples from IBS-D patients 

(Figure 2D; Figure S3B) and could thus in part be responsible for the increased water 

content of stools in IBS-D. We verified that these metabolite changes were not associated 

with dietary differences in protein intake (Figure S2).

To establish the capacity of tryptamine to stimulate fluid secretion in human tissue, we 

investigated the tryptamine-induced change in Isc in colonic biopsies from IBS subjects and 

HC, again using an Ussing chamber. We found that tryptamine significantly increased 

colonic secretion in all three groups, but there were no significant differences among the 

groups (Figure S3C). The lack of such differences indicates that the colonic epithelium of 

IBS patients and HCs is capable of tryptamine-induced fluid secretion, and observed 

changes could thus be due to changes in tryptamine abundance.

In humans, the primary bile acids (BAs) cholic acid (CA) and chenodeoxycholic acid 

(CDCA) are deconjugated from their glycine or taurine conjugate by microbial bile salt 

hydrolases (BSHs). These deconjugated primary BAs then serve as substrates for a diverse 

range of microbial modifications, including conversion to the secondary BAs deoxycholic 

acid (DCA) and lithocholic acid (LCA) and desulfation of DCA-S to DCA. Certain forms of 

BAs such as hydroxylated BAs have been found to increase intestinal fluid secretion in 

humans (Camilleri, 2014). We therefore examined whether there are differences in microbial 

biotransformation of BAs in IBS, which may contribute to altered intestinal secretion. We 

identified variation in BA signatures associated with IBS (measured with LC-MS/MS), with 

significantly higher amounts of unconjugated primary BAs in stool samples from patients 

with IBS-D and significantly lower amounts of unconjugated primary BAs in stool samples 

from IBS-C patients (Figure 2E) compared to HC. We also found higher amounts of 

individual primary conjugated and unconjugated BAs and DCA-S in IBS-D compared to HC 

and IBS-C subjects (Figures S3D–S3F). As hydroxylated primary BAs like CDCA may 

increase colonic secretion, we tested the effect of CDCA in colon mucosa-submucosa 

preparations from germ-free mice in an Ussing chamber. Indeed, we observed a significant 

increase in Isc in response to CDCA (Figure S3G), which supported a physiological role for 

the elevated CDCA levels in increasing the water content in stools from IBS-D patients.

To determine the physiologic relevance of differences in tryptamine and primary BA levels, 

we measured differences in Isc in colonic biopsies obtained from the three groups. As 

expected from our findings in gnotobiotic mice (Bhattarai et al., 2018), we found colonic 

biopsies from IBS-D patients also exhibited significantly higher baseline Isc (Figure 2F), 
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which is consistent with the secretory effect of tryptamine and primary BA that we have 

described above.

Integrated Microbiome-Metabolome Analysis Identifies a Novel Microbial Metabolic 
Pathway in IBS

In addition to the above targeted approach, we employed an untargeted metabolomics 

approach to identify novel microbial pathways that may be driving pathophysiologic 

changes in IBS. A projection to latent structures discriminant analysis (PLS-DA) model 

based on untargeted 1H-NMR spectral profiles identified metabolic variation between the 

IBS subgroups and HC stool samples (Figures S4A and S4B). Lysine, uracil, and 

hypoxanthine were all found to be significantly lower in stool samples from IBS-C patients 

compared to HC (Figures 3A–3C; Figures S4C–S4F). Hypoxanthine was also lower in IBS-

D patients albeit not at the same significance as in IBS-C. Hypoxanthine can serve as an 

energy source for intestinal epithelial cells and promotes intestinal cellular barrier 

development and recovery following injury or hypoxia (Lee et al., 2018; Lee et al., 2020). 

Lower fecal hypoxanthine levels could reflect decreased production or elevated breakdown 

of hypoxanthine by the microbiome in the gut of IBS patients.

To gain insights into possible microbial contributions to the fecal hypoxanthine pool, we 

interrogated metagenomics functional modules related to hypoxanthine in stool samples 

from patients with IBS and HC (Table S3). Among the KO terms, we found that xanthine 

dehydrogenase/oxidase (XO; 1.17.1.4) and xanthine phosphoribosyltransferase (XPRT; 

2.4.2.22) modules were elevated in IBS-C relative to HC (Figure 3D). XPRT liberates 

xanthine from xanthosine-monophosphate as an early step in purine salvage. Downstream, 

XO is an enzyme with low substrate specificity that acts on xanthine or hypoxanthine to 

produce uric acid. Higher levels of these XPRT and XO modules suggest increased purine 

breakdown by gut microbiota in IBS patients.

We inspected the metagenomic KO terms (Table S3) further to explore two aspects of 

hypoxanthine metabolism, namely, its role in modulating the epithelial energy state (Lee et 

al., 2020) and generation of H2O2 and superoxide anions given the putative role of oxidants 

in IBS (Mete et al., 2013). Four modules from the TCA cycle (L-lactate-, pyruvate-, and 

formate dehydrogenase, and fumarate hydratase) related to energy metabolism and 4 terms 

for alternative forms of respiration (sulfite reductase/ferredoxin, sulfite-, nitrite reductase, 

and cytochrome-C oxidase) were present at significantly higher abundance in IBS-C stools 

compared to HC (q < 0.1) (Figure 3D). Interestingly, the superoxide reductase (1.15.1.2) 

term was elevated in IBS-C, which could reflect increased capacity to deal with oxidative 

stress in the IBS-C gut microbiome. This might be necessary in situations of high XO 

activity. Together this suggests that the microbiome in IBS patients exhibits an increased 

capacity for hypoxanthine utilization and breakdown, which is congruent with the lower 

hypoxanthine levels in IBS-C stools.
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Microbial Gene-Region Analysis Corroborates Associations with Bile Acids, Butyrate, and 
Hypoxanthine Metabolism

To further elucidate the microbial contribution to differential metabolite abundances 

identified in IBS, we first performed direct multivariate correlation analysis based on linear 

models (Maaslin; http://huttenhower.sph.harvard.edumaaslin). This identified 60 significant 

metabolite-species correlations for HC samples, 28 for IBS-C, and 46 for IBS-D (Table S4). 

No correlations were present in all groups; 12 were present in HC and IBS-C or IBS-D. Two 

correlations were present in both IBS-C and IBS-D subgroups (Table S4).

While the above correlational approach allows us to identify potential microbial drivers of 

differences in fecal metabolites, it is unable to identify specific microbial genes that might 

be relevant for the differences in detected metabolites. We therefore tested for specific 

bacterial genomic regions that may be responsible for the variation in metabolic output 

between the groups using the recently described method that associates structurally variable 

genomic regions to metabolite abundances (SV association) (Zeevi et al., 2019). This 

analysis allows identification of microbial genes involved in the production or consumption 

of metabolites by either identifying deletion regions (DRs) that are completely missing from 

some microbiomes or variable regions (VRs), which display variable abundance in some 

microbiomes. We identified 16 DRs and 20 VRs that correlate with 9 and 8 metabolites, 

respectively, at q < 0.1 (Table S4). All DRs were from a single bacterium, Blautia wexlerae 
DSM19850. CDCA was the most frequently associated metabolite, as it covaried with 4 DRs 

and 7 VRs. This was followed by CA with 3 DRs and 7 VRs. The multitude of associations 

of microbial genomic regions with BAs could reflect presently unknown genes that are 

involved in modification of primary BAs.

Two regions from Blautia obeum ATCC 29174 were present at significantly lower levels in 

IBS-C samples, and these regions positively correlated with butyrate (Figures S4G–S4I). 

This is consistent with Blautia spp. being butyrate producers and the lower butyrate levels in 

IBS-C. These regions are 2676–2677, which contains a tetricoat peptide and 2704–2705, 

which is annotated as a type III ribonuclease.

The strongest observed correlation for the VRs was for a single region from 

Lachnospiraceae sp. 3_1_46FAA with hypoxanthine (Figures 4A and 4B). pBLAST analysis 

(Camacho et al., 2009) perfectly matched the coding sequence (CDS) with topoisomerase III 

(E = 0). As hypoxanthine is a precursor for energy metabolites and topoisomerase III is 

linked to DNA replication, this may indicate increased utilization of hypoxanthine for 

growth. These examples underscore the increased functional resolution that can be achieved 

using SV association analysis in guiding targeted experiments focused on specific microbial 

gene regions.

Microbial Metabolism Contributes to Luminal Hypoxanthine Levels

To get more insight into the role of the microbiome in reducing hypoxanthine levels, we 

selected 2 Lachnospiraceae strains based on genomic similarity to Lachnospiraceae sp. 

3_1_46FAA identified in the gene-region analysis presented above (Figures 4A and 4B). We 

confirmed the presence of the XO gene in these genomes using pBLAST. We included 
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Hungatella hathewayi as a positive control as it was highly correlated with the XO KEGG 

term (Table S4, K00087; Spearman rho 0.43, q < 0.005). All these strains belong to the 

Clostridiales order. Bifidobacterium longum ATCC 55813 was included as a negative control 

since it does not encode XO (as evidenced by pBLAST analysis). We found significant 

reductions in hypoxanthine levels in the growth medium from the 2 Lachnospiracea strains 

and H. hathewayi when compared with B. longum using LC-MS (Figure 4C).

To determine whether Lachnospiraceae also consume hypoxanthine in vivo, we mono-

colonized germ-free mice with either Lachnospiracea sp. 2_1_58FAA or B. longum and 

supplemented hypoxanthine in drinking water (Figure 4D). We found significantly lower 

hypoxanthine levels in cecal contents of mice colonized with Lachnospiraceae sp. 

2_1_58FAA as compared to B. longum colonized mice (Figure 4E). Since hypoxanthine 

levels increase upon conventionalization (Matsumoto et al., 2017), this shows that 

microbially determined hypoxanthine levels are a consequence of the balance between 

microbial production and consumption.

Alteration in Gut Microbiome and Microbial Metabolites Underlie Flares in IBS Patients

IBS is a chronic disease with temporal variability in symptom severity, where most patients 

will experience transient worsening of symptoms. Our longitudinal analysis above identified 

a potential link between the gut microbiome and symptom severity in IBS patients. To 

further confirm that there is a microbial basis for potential exacerbation in symptoms, we 

examined the additional stool samples collected at the time of self-reported worsening of 

symptoms (flare) in the subset of patients who provided the additional sample. The flare 

samples exhibited a higher BCDI compared to the non-flare baseline combined IBS samples 

(Figures 5A and 5B), and lower Shannon α-diversity when compared to the averaged 

samples from the respective IBS subgroup (Figure 5C). Specific bacterial taxa were 

significantly associated with flares, both when considering IBS patients as one group, as 

well as within IBS-D and IBS-C patients (168 species for combined IBS, 40 for IBS-C, and 

7 species for IBS-D at q <0.1 from Mann-Whitney U test compared to respective averaged 

baseline samples; Table S2). These significant species decreased in abundance almost 

universally during flare episodes. However, one species of Archaea, Halobiforma 
nitratireducens, was consistently elevated in the flare samples for both subtypes (Figure 5D). 

This Archaeon is capable of nitrate reduction, an alternative form of respiration that was 

identified above to be among the energy metabolism-related KO terms that were present at 

higher abundance in IBS-C.

Primary BAs were significantly elevated in flare samples of both IBS-C and IBS-D patients 

(Figures 5E and 5F) inviting speculation on their potential contribution to abdominal pain, 

which is common to both subtypes. We also investigated functional metagenomic KO 

modules that were associated with flares, with a focus on modules that were previously 

identified to be associated with symptom severity as well as the newly implicated 

hypoxanthine metabolic pathway. Of these, an alcohol dehydrogenase and XO module were 

found at higher abundance in IBS-D flares (log2(FC) 0.78, q value 0.147, p < 0.02; XO; 

log2(FC) 1.36, q value 0.147, p < 0.02), which again coincided with increases in TCA and 
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respiration terms identified above (Table S3). These observations are also consistent with the 

findings described above linking IBS symptom severity with the gut microbiome.

The heterogeneous nature of IBS suggests there are likely distinct changes that underlie 

symptoms in individual patients. Hence, we next performed time-course analysis of the 

microbiome in individual patients to identify individual-specific patterns underlying 

symptom flares. In a patient with IBS-C, time-course permutation analysis revealed an 

increase in BCDI over time with this trajectory culminating in a flare episode (Figure S5A). 

Several Streptococcus spp. were positively correlated with BCDI scores in a subset of 

subjects (3/6 subjects; Table S5). At the functional level, again we found that secretory 

metabolites including tryptamine, CA, and CDCA were elevated in subsets of IBS patients 

(6/11 for BA and 4/11 for tryptamine) at the time of flare. These observations highlight that 

unique microbial and metabolic features may underlie worsening symptoms in different 

patients.

Microbiome and Metabolome Data Integrated with Transcriptomic and Epigenetic 
Differences Reveal Novel Host-Microbiome Interactions in IBS

As for most chronic conditions, the pathophysiology of IBS is multifactorial with 

contributions from host pathways, microbial pathways, and host-microbial co-metabolism. 

To determine the effect of microbial metabolism on host function, we first compared 

transcriptional and epigenetic changes observed in colonic biopsy tissue (Figure S6; Table 

S6). We also used these data to identify putative host-microbial-metabolite interactions in an 

untargeted way by constructing cross-omics correlation networks that integrate 

transcriptome data with metabolite and microbiota abundances (Figure S7; Table S7).

We identified 82 and 78 differentially expressed (DE) genes when comparing IBS-C and HC 

or IBS-D and HC (>1 absolute log2(FC) change and p < 0.05), respectively, with 17 genes 

overlapping in both comparisons (Figures S6A–S6D; Table S6). A KEGG pathway 

enrichment analysis revealed that immune and inflammation-related pathways were enriched 

in IBS patients (Figure S6F). Enriched categories for IBS-C contained genes for 

prostaglandin D2 synthesis, which is involved in regulating smooth muscle contraction 

(PTGDS), B cell responses to antigen challenges (CD19 and CD22), and antigen 

presentation via the HLA class II molecule (HLA-DQA1 and HLA-DQB1). Notably, we 

found no significant changes in any of the pro-inflammatory cytokines that were previously 

implicated in IBS in either blood or colonic biopsy samples (Mendeley data VI, https://

doi.org/10.17632/29n2z5r5ph.3).

For epigenome analysis, we focused on differentially methylated regions (DMRs). We 

detected 54 DMRs when comparing IBS-C and HC, 75 DMRs when comparing IBS-D 

versus HC, and 39 DMRs comparing IBS-C and IBS-D (Figure S6E). We next inspected DE 

genes that belong to a DMR and identified two genes important for intestinal secretion, 

KCNE4 and AQP1, which were expressed at lower levels in IBS-D (Table S6). KCNE4 is a 

voltage-gated potassium (Kv) channel that is involved in neuronal excitability, epithelial 

electrolyte transport, and smooth muscle contraction (Jepps et al., 2009). AQP1 encodes an 

aquaporin, which are integral membrane proteins that facilitate the transport of water across 

biological membranes.
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KEGG pathway enrichment analysis on the DMR genes showed that the antigen processing 
and presentation pathway was enriched in both IBS subtypes (Figure S6F; Table S6). The 

same pathway was also enriched in DE genes from IBS-C samples. This enrichment is due 

to human leukocyte antigen (HLA) class II genes. HLA genes are particularly interesting for 

IBS as the presence of celiac disease-related HLA-DQ-2/8 variants were found to be 

predictive of a favorable response to gluten-free diet in patients with IBS (Vazquez-Roque et 

al., 2012).

To better understand the implications of the HLA pathway in IBS-C, we inspected the 

underlying HLA class II genes in more detail and looked for correlations of these genes with 

the other omics. HLA class II complexes are present on antigen-presenting cells (APCs) but 

also on epithelial cells of the gastrointestinal tract and play a central role in the immune 

system by presenting peptides derived from extracellular proteins. We found a 4-fold higher 

expression of HLA-DQA1 and HLA-DQB1, which encode the α and β chains from the 

HLA class II molecule, respectively, in the IBS-C biopsy tissue compared to HC biopsies 

(Table S6). In addition, HLA-DQB1 is preceded by a DMR suggesting that its expression 

could be due to differential methylation in IBS-C. We found a correlation between HLA-
DQA1 and Bacteroides vulgatus in our luminal cross-dataset correlation network (Figure 

S7B; Table S7) inviting speculation on the potential role of (bacterial) antigens in IBS-C.

In addition to the correlation networks highlighted above, we employed a powerful machine 

learning-based integration approach by applying a Lasso penalized regression model and 

used this to identify additional gene-microbe and gene-metabolite associations (Figure 6; 

Table S7). In this network, a hub is present around acetate and the PGLYRP1 and KIFC3 
genes (Figure 6B). This could be relevant because acetate is a metabolite that is present at 

lower abundance both in stool and biopsy samples for IBS-C. PGLYRP1 is pattern receptor 

that binds to murein peptidoglycans (PGN) of Gram-positive bacteria and can result in 

bactericidal activity through interference with peptidoglycan biosynthesis. Indeed, the gene 

is negatively correlated with the broad family of Gram-positive bacteria 

Peptostreptococcaceae. KIFC3 is a minus-end microtubule-dependent motor protein 

required for zonula adherens maintenance and thus implicated in barrier function. This 

illustrates that the use of various omics integration approaches generates a wealth of 

hypotheses that can be used to contextualize the observed changes across omics data layers 

(Figure 6; Figure S7; Table S7).

Multi-omics Integration Identifies Purine Starvation in Colonic Epithelium as a Potential 
Novel Mechanism Underlying IBS

Above we identified significantly lower fecal hypoxanthine abundance in IBS-C and IBS-D, 

established that microbial hypoxanthine degradation leads to lower intestinal hypoxanthine 

levels, and identified functional changes that point to increased purine degradation by the 

microbiome in IBS-C stools (Figures 3 and 7). However, since hypoxanthine is a host-

microbial co-metabolite, its pool can be affected by both microbial and host metabolism. To 

determine the host response to the reduced hypoxanthine pool, we examined changes in 

purine metabolism gene expression in colonic biopsies. Gene expression of human xanthine 

oxidase (encoded by the XDH gene) was elevated in colonic biopsies of both IBS subtypes 
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when compared to HC and this was consistent in both time points with a log2 (FC) ranging 

between 0.26 and 0.65 (Figure 7B; Table S6). This suggests that depletion of the 

hypoxanthine pool may be the result of increased XO activity from both the microbiome and 

the host.

Intestinal epithelial cells have limited capacity for de novo synthesis of purines and instead 

predominantly rely on salvage pathways for adenylate biosynthesis (Figure 7C) (Biaggioni 

et al., 2015; Grimble, 1994). Hence, to identify secondary effects in the host resulting from 

depletion of the hypoxanthine pool, we inspected possible transcriptional changes in the 

purine salvage pathway. Purine nucleoside phosphorylase (PNP), the first gene in the purine 

salvage pathway, was expressed ~2-fold higher in both IBS-C and IBS-D (Figure 7A; Table 

S6), and within IBS patients PNP expression displayed a negative correlation with 

hypoxanthine levels (Figure 7D). Importantly, variation in host genetics is not responsible 

for these differences in gene expression as Illumina global screening arrays revealed that 

single nucleotide polymorphisms (SNPs) in XDH and PNP were not differentially 

distributed between IBS subgroups and HCs. Together, these findings suggest a model where 

elevated degradation of purine nucleotides by the microbiota and the host induces metabolic 

stress in colonic tissue. In turn, this may lead to a compensatory response by increasing 

purine salvage. Using this multiomics view, we suggest that low levels of purine nucleotides 

may result in lower epithelial energy state and capacity for mucosal repair, which may in 

part underlie the pathophysiology of IBS.

DISCUSSION

In this study, we describe findings from an integrated longitudinal multi-omics analysis of 

the gut microbiome, metabolome, host epigenome, and transcriptome in the context of host 

physiology in patients with different subtypes of IBS. Several multiomics integration tools 

enhanced our ability to focus on a specific set of pathways with potential biological 

significance in IBS.

Baseline colonic secretion was increased in IBS-D patient biopsies, which would suggest 

either an inherent change in epithelial transport or an increase in metabolites that promote 

fluid secretion. The observed increases in secretagogues such as the primary BA CDCA and 

bacterial metabolite tryptamine suggest that higher levels of microbiota-related secretory 

compounds likely drives increased secretion in IBS-D. This is further supported by the lack 

of significant differences in secretory response to tryptamine among colonic biopsies from 

the three groups, which would be expected if there were inherent defects in the colonic 

epithelium.

Previous studies have suggested that BA malabsorption drives increased intestinal secretion 

in IBS-D, but the lack of a concurrent increase in secondary BA along with primary BAs in 

our study, suggests decreased microbial biotransformation of primary BA may at least in 

part be driving this effect.

Through further targeted integration of multiple host and microbiome data layers, we 

identified the host-microbial pathway of purine metabolism, which may play an important 
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role in the pathophysiology of IBS. This is the first time that hypoxanthine has been 

implicated in IBS pathogenesis, including prior gnotobiotic studies on animal models. This 

illustrates the relevance of employing multi-omics measurements in humans to identify 

potential disease mechanisms that may depend on human-specific responses in gene 

expression. Hypoxanthine is an appealing drug target given the availability of the xanthine 

oxidase inhibitor allopurinol, which is used to treat gout (Becker et al., 2009), and 

thiopurines, which are used to optimize inflammatory bowel disease therapy (Moreau et al., 

2017). There are also multiple drugs in development with more specific activity against 

xanthine oxidase, which may be relevant in the future.

Our study provides multiple new therapeutic targets for future investigation. The apparent 

decreased microbial biotransformation of BA in IBS-D patients may be treated using defined 

microbial consortia with a high capacity of conversion of CDCA to LCA. Similarly, in IBS-

C patients, increased production of bacterial SCFAs and/or tryptamine may be viable 

therapeutic strategies. Finally, stimulating microbial hypoxanthine production or inhibition 

of xanthine oxidase locally in the gut would be a novel approach to increase the amount of 

luminal hypoxanthine without systemic effects and may be beneficial in IBS independent of 

disease subtype. Another interesting focus is the reported effect of liver BA signaling on XO 

activity, as it is unclear whether this relationship also exists in the digestive tract (Kanemitsu 

et al., 2017).

In summary, our integrated longitudinal multi-omics study highlights how we can leverage 

human studies to advance our understanding of diseases with both host and microbial 

components to identify targets for improved treatment.

Limitations of Study

We acknowledge that our study has some limitations. We realize that our findings are not a 

proof of causation even though we primarily focused on biologically plausible mechanisms. 

In order to increase rigor and confidence in our findings, we integrated multiple data types 

and primarily reported pathways that were identified across different data types. We focused 

primarily on the colonic microbiome, but we are aware that the small intestine likely plays 

an important role in generation of IBS symptoms (Saffouri et al., 2019). Longitudinal studies 

dedicated to the small intestinal microbiome are needed to complement our findings and 

advance our understanding of IBS. In addition, longitudinal multi-omics data like presented 

in this study could help in moving away from phenotype-based to mechanism-based IBS 

subtyping.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Purna Kashyap, MBBS 

(kashyap.purna@mayo.edu).

Materials Availability—This study did not generate new unique reagents.
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Data and Code Availability—Processed data for metagenomics, metabolomics, and 

cytokine measurements is available as a Mendeley dataset (https://doi.org/

10.17632/29n2z5r5ph.3). RNaseq and methylome data was deposited at the Gene 

Expression Omnibus (GEO) (GSE146853). Microbiome sequencing reads are deposited at 

the European Nucleotide Archive (ENA) (PRJEB37924). Raw data from metabolomics 

measurements are deposited at the MetaboLights repository (MTBLS1396). Code used for 

metagenome and metabolome data analysis is available at https://gitlab.com/rubenmars/ibs-

multi-omics-code. Code used for correlation networks can be found at https://github.com/

mhoutti/ibs_network.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Recruitment and exclusion criteria—Mayo Clinic Rochester was the only medical 

center participating in the study. Participants were recruited through Mayo Clinic 

Institutional Review Board (IRB)-approved advertisements (newspaper advertisement, Mayo 

Clinic classifieds, “Volunteers Sought” flyers posted on campus, pamphlets given to IBS 

patients, letters mailed to home, word of mouth, clinicaltrials.gov, and Mayo research 

website). Healthy subjects and IBS-C and IBS-D patients between 18–65 years old who 

expressed interest were invited to undergo screening to assess eligibility. Participants were 

given the option of undergoing two flexible sigmoidoscopies. All IBS-C and IBS-D subjects 

fulfilled Rome III criteria. Recruitment of healthy subjects was matched with IBS subjects 

for age, sex and BMI.

Volunteers with prior history of abdominal surgeries (except appendectomy and 

cholecystectomy), diagnosis of inflammatory bowel disease, microscopic colitis, celiac 

disease, or other inflammatory conditions, antibiotic use within the past 4 weeks, bleeding 

risk or taking medication that increases bleeding risk (only for those who chose to undergo 

the flexible sigmoidoscopies), bowel prep for colonoscopy in the past week, pregnancy, plan 

to become pregnant during study, being a vulnerable adult, and age below 18 or over 65 

were excluded. In addition, people were excluded with other diseases, conditions, or habits 

that would interfere with study completion, increased risks with flexible sigmoidoscopies (if 

chosen), or that in judgment of the investigator would potentially interfere with compliance 

to study or adversely affect outcomes.

Regulatory compliance—The study was approved and reviewed yearly through the IRB 

of Mayo Clinic Rochester. All participants provided written informed consent before any 

study-related activities were completed.

Participant and sample metadata—Additional info on study subjects was collected at 

the first visit after study consent for IBS and healthy volunteers. This included recording of 

medical history and a limited exam by the study physician where height, weight, BMI and 

vital signs were noted. Furthermore, study subjects underwent a dietitian consult where 

explanation on Food Frequency Questionnaires (FFQ) and 24-hour dietary recall 

questionnaire training was given. Additional questionnaires at the first visit were Rome III 

criteria for IBS diagnosis, IBS symptom severity (also completed monthly for IBS 

participants), microbiome health, bowel disease questionnaire (BDQ-6), Hospital Anxiety 

Mars et al. Page 15

Cell. Author manuscript; available in PMC 2021 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gitlab.com/rubenmars/ibs-multi-omics-code
https://gitlab.com/rubenmars/ibs-multi-omics-code
https://github.com/mhoutti/ibs_network
https://github.com/mhoutti/ibs_network
https://clinicaltrials.gov


and Depression, IBS Quality of Life, and a 7-day Bowel Diary (also completed monthly for 

all participants).

Animal experiments—Mouse experiments were performed on female mice born and 

maintained in the Mayo Clinic Germ-Free Mouse Facility as previously described (Reigstad 

et al., 2015). Experiments complied with Institutional Animal Care and Use Committee 

guidelines (IACUC protocol no. A00003920–18).

METHOD DETAILS

Specimen collection and data generation—Stool specimens were completed via 

home collection kits at the earliest convenience after the initial visit and then monthly for six 

months. Sample tubes were returned on frozen gel packs overnight using FedEx or dropped 

off at the clinical core facility of Mayo Clinic Center for Cell Signaling where samples were 

stored at −80°C.

Blood samples (plasma, serum, whole blood) were collected at the initial visit only and 

stored at −80°C upon further processing.

Biopsies were obtained through flexible sigmoidoscopy from the sigmoid colon 20–30 cm 

from the anal verge essentially as described previously (Bhattarai et al., 2018; Peters et al., 

2017). Up to two tap water enemas were given to cleanse colon for each procedure. All 

endoscopic procedures were performed by a single endoscopist (P.C.K.) and up to twelve 

colonic biopsies were collected using a large-capacity (2.8 mm) biopsy forceps without pin. 

Depending on downstream processing the biopsies were placed in RNAlater stabilization 

solution (Invitrogen), directly frozen in liquid nitrogen, or placed in glucose Krebs solution 

on ice (composition in mM: 11.5 D-glucose, 120.3 NaCl, 15.5 NaHCO3, 5.9 KCl, 1.2 

NaH2PO4, 2.5 CaCl2.2H2O, and 1.2 MgCl2; pH 7.3–7.4) and immediately transported to the 

laboratory for experiments.

Ussing chamber experiments—Colonic mucosal secretory responses were assessed 

using Ussing chamber setups. Biopsies were mounted within 45 min of collection in 4 mL 

Ussing chambers (Physiologic instruments, San Diego, USA) with an aperture of 0.31 cm2. 

The basolateral side of the chamber was bathed with 4 mL of glucose Krebs solution while 

the apical side was bathed with 4 mL of Krebs Mannitol solution (composition in mM: 11.5 

D-mannitol, 120.3 NaCl, 15.5 NaHCO3, 5.9 KCl, 1.2 NaH2PO4, 2.5 CaCl2.2H2O, and 1.2 

MgCl2; pH 7.3–7.4). The chamber was bubbled with a 97% O2 and 3% CO2 gas mixture. 

Tissue viability was confirmed by using concentration response measurements to 

acetylcholine (1 mM–3 mM) added on the submucosal side prior to the start of experiments. 

Short circuit current (Isc) was continuously recorded using Acquire and Analyze software 

(Physiologic instruments, San Diego, USA). ΔIsc values were calculated using Isc 

measurements before and after application of compounds to the basolateral side and 

normalized to the tissue area. Tryptamine and serotonin were added at 11 cumulatively 

increasing concentrations from 0.003 μM to 300 μM. Imax is the maximal Isc value 

achieved at any of the concentrations.
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Microbiome DNA sequencing and alignment—DNA extraction and sequencing was 

performed at the University of Minnesota Genomics Center (UMGC). DNA was extracted 

from stool and biopsy sections using the QIAGEN PowerSoil kit (QIAGEN, Germantown, 

MD, USA) and was quantified using a NanoDrop8000 UV-Vis Spectrophotometer (Thermo 

Scientific, Wilmington, DE, USA) and PicoGreen assays. Shotgun metagenomic sequencing 

library preparation for stool samples was completed using a modified NexteraXT protocol 

followed by sequencing on a HiSeq 2500 (Rapid Mode) with 100 bp single-end reads 

(1×100) or on a NextSeq with 150 bp single-end reads (1×150). To minimize sequencing 

batch effects samples from the three cohorts were assigned randomly to two sequencing 

runs. Shotgun reads were trimmed to a maximum of 100 bp prior to alignment. Shotgun 

sequences were aligned to the RefSeq representative prokaryotic genome collection (release 

86) at 97% identity with BURST using default settings (Al-Ghalith et al., https://zenodo.org/

record/806850). The generated alignment table was filtered by dropping samples with low 

depth (< 10,000 reads per sample). Functional profiling of the shotgun sequencing data was 

completed using the KEGG Orthology group annotations for RefSeq-derived genes from 

direct alignment. KEGG Orthology profiles were also predicted from reference genomes and 

the predicted profiles were augmented to improve the estimates of low-abundance genes 

using SHOGUN (https://github.com/knights-lab/SHOGUN).

Biopsy samples were sequenced via amplification of the V4 region of the 16S ribosomal 

RNA gene (Gohl et al., 2016), followed by paired-end 2×250 bp sequencing on an Illumina 

MiSeq. Adapters were trimmed and low-quality reads (< 25 Q-score) were dropped using 

Shi7 (Al-Ghalith et al., 2018). Amplicon reads were stitched also using Shi7 (Al-Ghalith et 

al., 2018). Amplicon sequences were aligned to the 16S rRNA genes from the same bacterial 

genomes in the shotgun sequencing approach using BURST (Al-Ghalith et al., 2018, https://

zenodo.org/record/806850) with the same setting as above.

Microbiome data analysis—Downstream analysis of taxa and KEGG Orthology tables 

was performed in R (R Foundation for Statistical Computing, Vienna, Austria). Computing 

PERMANOVA, Shannon diversity, and Bray Curtis dissimilarity was done using adonis, 

diversity(x, index = “shannon”), and vegdist (x, method = “bray”) functions from the vegan 
package. Before testing for taxa differences between the subgroups, taxa were removed that 

were absent in 90% of the subjects (averaged data excluding flares). To identify 

differentially abundant features an FDR cutoff of < 0.25 was used. In specified cases this 

was cutoff was made more rigorous post hoc to display only top features due to the great 

number of significant changes at FDR < 0.25.

Inter-individual variation was compared to intra-individual variation by comparing the mean 

of microbiome distances between samples from different individuals with the mean of the 

distances between samples from each individual.

Bray-Curtis dissimilarity (BCD)-based irregularity (BCDI) was computed by extracting the 

pairwise dissimilarities between all healthy control (HC) and HC or IBS samples, and the 

median of these dissimilarities was stored. The 90th percentile of the HC values was used as 

a cutoff for identifying microbiome samples that were different compared to those of HC. 

For this analysis samples from one HC subject (10007557) were removed since the median 
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of these samples was above the 90th percentile of the HC BCDI scores. A sensitivity analysis 

of the 90th percentile cutoff values was performed by randomly drawing one sample per HC 

subject and identifying the BCDI within these samples 500 times. In addition, the 90th 

percentile cutoffs from averaged HC microbiome abundances were computed. Using the 

average did not change the 90th percentile cutoff (0.63).

Time course permutation analysis of BCDI scores was performed by fitting 3rd order 

polynomial splines to BCDI scores for every subject. Sum of squares (SS) from the original 

fit were compared to an ensemble of SS from 999 time-point perturbations.

Metabolomics
1H NMR metabolome profiling of serum and stool samples: Aliquoted stool samples 

(~100 mg) were randomized in order and transferred to a screw-cap tube containing 50 mg 

1.0 mm Zirconia beads (BioSpec). Metabolites were extracted by addition of 400 μL of 

acetonitrile:H2O (approximate volumetric ratio of 1:3) and homogenized for 30 s in a 

Biospec beat beater at maximum speed. The homogenized samples were then centrifuged for 

20 minutes at 16000 × g, after which the supernatant was transferred to Spin-X 0.22μm spin 

filter tubes (COSTAR®) and centrifuged for 30 minutes at 16000 × g. 80 μL of the filtered 

samples was aliquoted into 96 well plates, and 10 μL was kept separately for downstream 

quality control purposes. Samples were dried under nitrogen flow before reconstituting in 

540 μL of D2O and 60 μL of NMR buffer, all in 96 well deep well plates (COSTAR®). The 

plate was then placed on an Eppendorf MixMate plate shaker at 1300 rpm for 5 minutes. 

The reconstituted fecal water and buffer mixture was transferred to 5 mm NMR tubes. 

Plasma buffer with 1.5 M KH2PO4 was prepared by dissolving 20.4g of KH2PO4 in 80mL 

of D2O. 6 mL of D2O containing 100 mg of 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid 

sodium salt (TSP) (Millipore-Sigma) and 13 mg of NaN3 was added and mixed by shaking 

and sonication. The pH was adjusted to pH 7.4 with NaOH pellets. Total volume was 

adjusted with D2O.

Serum samples were thawed and centrifuged at 4°C at 12000 × g for 5 minutes. All samples 

were kept at −40°C or colder until analyzed. 90 μL of the supernatant was mixed with 90 μL 

of plasma buffer before being transferred to a 3 mm NMR tube. Plasma buffer with 0.075 M 

NaH2PO4 was prepared by dissolving 1.064 g of NaH2PO4 in 80 mL of D2O. 4mL of D2O 

containing 80 mg of 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP) 

(Millipore-Sigma) and 40 mg of NaN3 was added and mixed by shaking and sonication. The 

pH was adjusted to pH 7.4 with NaOH pellets. Total volume was adjusted with D2O.

Metabolic profiles were recorded essentially as described previously (Dona et al., 2014) on a 

Bruker 600 MHz spectrometer (Bruker Biospin) set at a constant temperature of 300K for 

fecal samples and 310K for plasma samples. A 1D nuclear Overhauser enhancement 

spectroscopy (NOSEY) experiment and a 2D J-resolved experiment was performed for each 

fecal and serum sample. A total of 32 scans were acquired with an acquisition time of 4 

minutes and 3 s per fecal sample following 4 dummy scans and the spectral data was 

collected into 64K data points. Automatic phasing, baseline correction and spectral 

calibration to TSP (0 ppm) was performed in Topspin 3.1 (Bruker Biospin).
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The pre-processed spectral data was imported into MATLAB (Version 8.3.0.532 R2014a, 

Mathworks Inc, Natick, MA, USA). A series of in-house scripts were used for the following 

executions. The spectra were manually aligned to correct for subtle alterations in the 

chemical shifts of the peaks due to variation in pH. To account for the difference in sample 

concentration, probabilistic quotient normalization (PQN) was applied to the spectral data. A 

projection to latent structures-discriminant analysis (PLS-DA) model based on the Monte 

Carlo cross-validation (MCCV) method was constructed on the complete spectral profiles to 

identify discriminatory features in relevant comparisons (Garcia-Perez et al., 2017; Posma et 

al., 2018). A total of 1,000 MCCV models with 25 bootstrap rounds in each model was used 

to assess model robustness and to calculate the mean prediction (Tpred) of each sample. 

Discriminatory spectral features were annotated using statistical total correlation 

spectroscopy (STOCSY) (Cloarec et al., 2005) and a combination of in-house and online 

databases (https://hmdb.ca/). An in-house developed peak integration script was applied to 

calculate the integral of spectral peaks of interest.

Bile acid profiling through LC-MS/MS—Metabolites were extracted as detailed above 

for 1H NMR. Samples were analyzed on an ACQUITY ultraperformance liquid-

chromatography (UPLC) system (Waters Ltd., UK) coupled to a Xevo G2-S quadrupole time 

of flight (Q-TOF) mass spectrometer (Waters Ltd.). A reversed-phase column ACQUITY 

BEH C8 column (1.7 μm, 100 mm × 2.1 mm) was used at an operating temperature of 60°C. 

The aqueous part of the mobile phase consisted of 1 mM ammonia acetate in ultrapure 

water, pH 4.15. The organic mobile phase was 1:1 isopropanol acetonitrile. For detailed 

description of the experimental methods see Sarafian et al. (2015).

Data files were imported into MassLynx (Waters Ltd.) where peaks were automatically 

integrated. Manual inspection on each processed sample file was carried out to ensure that 

the spectra had been correctly integrated. The extracted peak integral was then normalized to 

the total ion current (TIC) of each sample.

SCFA quantification with GC-MS/MS—Colonic biopsies were stored below −40°C 

until extraction. Biopsy tissues were transferred to a screw-cap tube and weighed, after 

which 5 1.0 mm Zirconia beads and 100 μL of ultrapure water were added. The tissue was 

homogenized in a Biospec bead-beater using two 30 s cycles at max speed. An eleven-point 

calibration curve and a pooled QC sample was constructed using genuine SCFA standards. 

Metabolites were then extracted using methyl tert-butyl ether (MTBE) (Millipore-Sigma) 

and derivatized with N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide with 1% tert-

butyldimethylchloro-silane (MTBSTF + 1% TBDMSCI). Samples were analyzed on a 

7000D Triple-Quadrupole Gas chromatography-mass spectrometer (GC-MS) (Agilent 

Technologies Ltd.).

Data files were imported and analyzed in MassHunter Workstation Software Quantitation 

Analysis for QQQ version B.07.01 (Agilent Technologies Ltd.). The resulting SCFA 

concentration were corrected for dilution factor and normalized by sample weight.

Tryptophan quantification with LC-MS/MS—Stool was weighed on an analytical 

balance (sample weights ~50 mg) after which 1 mL of −20°C extraction solvent with 
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internal standards was added to each sample, and sample mixed by vortexing at max speed 

for 3–5 s. Extraction solvent contained 200 ng/mL tryptamine-d4, 500 ng/mL L-tryptophan-

d3, 1000 ng/mL 3-methylindole-d3, 200 ng/mL indole-3-acetic acid-d5, 200 ng/mL 

serotonin-d4 in 80% methanol. Samples were sonicated in a sonication bath at RT for 10 

minutes and vortexed. Samples were placed at −80°C for 1 hour to facilitate protein 

precipitation. Extracts were cleared of debris via centrifugation at 18,000 × g, for 20 minutes 

at 4°C, and the resulting supernatant was transferred to a new microfuge tube. A quality 

control sample was prepared by pooling 10 μL of every sample. 100 μL of the sample was 

transferred to a glass autosampler vial and remaining extracts were stored at −80°C. 

Standard curves were prepared in 80% methanol in a dilution series from 1000 ng/mL to 0.1 

ng/mL.

LC-MS/MS was performed on a Waters Acquity UPLC with T3 C18 stationary phase (1 × 

50 mm, 1.7 μM) column coupled to a Waters Xevo TQ-S triple quadrupole mass 

spectrometer. Mobile phases were 100% methanol (B) and water with 0.1% formic acid (A). 

The analytical gradient was: 0 min, 5% B; 0.5 min, 5% B; 2.5 min, 95% B; 3.5 min, 95% B; 

3.55 min, 5% B; 5 min, 5% B. Flow rate was 350 μL/min with an injection volume of 2.5 

μL. Samples were held at 4°C in the autosampler, and the column was operated at 45°C. The 

MS was operated in selected reaction monitoring (SRM) mode. Product ions, collision 

energies, and cone voltages were optimized for each analyte by direct injection of individual 

synthetic standards. Inter-channel delay was set to 3 ms. The MS was operated in positive 

ionization mode with capillary voltage set to 3.2 kV. Source temperature was 150°C and 

desolvation temperature at 550°C. Desolvation gas flow was 1000 L/h, cone gas flow was 

150 L/h, and argon collision gas flow was 0.2 mL/min. Nebulizer pressure (nitrogen) was set 

to 7 Bar.

Raw data files were imported into Skyline software (MacLean et al., 2010). Each target 

analyte was manually inspected for retention time and peak area integration. Peak areas were 

extracted for target compounds detected in biological samples and normalized to the peak 

area of the appropriate internal standard or surrogate in each sample. Normalized peak areas 

were exported to Microsoft excel where concentrations were obtained using the linear 

regression formulas generated from the calibration curve. Limits of detection (LOD) and 

limits of quantification (LOQ) were calculated as 3× or 10× the standard deviation of the 

blank divided by the slope of the calibration curve respectively (Broccardo et al., 2013; 

Shrivastava and Gupta, 2011). One compound, 3-methyl-indole did not produce a linear 

response and only raw peak areas are reported for this compound (relative quantification 

only).

Metabolomics data analysis—Metabolomics data was log10 transformed (with pseudo 

count 1 for zero values) and tested for significance in R with linear mixed-effect models 

correcting for subject using the lmer function from the lmerTest package with formula 

lmer(data ~cohort + (1|subject_id). Comparison contrasts were extracted using the 

get_contrasts function from the psycho package version 0.4–91, and nominal p values were 

adjusted per contrast table using the p.adjust(, method = “fdr”) function. Significance of by 

subject-averaged data was tested using Mann-Whitney tests using the wilcox.test function.
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Time-series analysis on NMR data was carried out using the santaR version 1.0 package in 

R. The analysis was based on 1,000 bootstrap rounds (95% confidence interval), 1,000 

permutation rounds and 4 degrees of freedom.

Cytokine measurements—Multiplexed Luminex according to manufacturer’s 

instructions was used for quantification of IL-8, IFNγ, IL-10, Il-18, IL-22, Leptin, VEGF, 

MIG, IL-1β, IL-17A, IL-1RA, IL-6 & TNFα. The beads were recorded on a Bioplex 200 

Luminex instrument. Samples were tested in duplicate and values were quantified by 

interpolation from a 5 point standard curves. TGFβ−1 was quantified using enzyme-linked 

immunosorbent assay (ELISA) according to manufacturer’s instructions (R&D Systems, 

Minneapolis MN). Absorbance was measured on a Bio-Rad 550 microtiter plate reader. 

Samples were assayed in duplicate and values were interpolated from log-log fitted standard 

curves.

RNA sequencing and analysis—mRNA was extracted from biopsy samples and used 

for RNA-Seq library preparation following instructions in the Illumina TruSeq RNA Library 

Prep Kit v2. Sequencing was run on an Illumina High Seq-2000 in the Mayo Clinic 

Sequencing Core with 101bp paired end reads. Gene expression counts were obtained using 

the MAP-RSeq v.2.0.0 workflow (Kalari et al., 2014) which is part of the Mayo 

Bioinformatics Core pipeline. MAP-RSeq consists of alignment with TopHat 2.0.12 (Kim et 

al., 2013) against the human hg19 genome build and gene counts with the Subread package 

1.4.4 (Liao et al., 2019). Gene annotation files were obtained from Ensemble version 75. 

Gene counts were normalized using RPKM (Reads Per Kilobase per million Mapped reads). 

Differential expression analysis was performed using edgeR 2.6.2 (Robinson et al., 2010). 

Pathway enrichment analyses were performed using R package RITAN (Rapid Integration of 

Term Annotation and Network resources, https://www.bioconductor.org/packages/release/

bioc/html/RITAN.html).

Methylome sequencing and analysis—Illumina Infinium MethylationEPIC 

BeadChips with ~850K CpG sites were used to assess genome-wide methylation in genomic 

DNA isolated from biopsy samples. For data pre-processing the raw data (.idat) files were 

loaded into R package ChAMP version 2.9.10 (Tian et al., 2017). Probes that had detection p 

value > 0.01, bead count < 3, overlapped with SNP sites, or with multiple alignments in the 

human genome were removed, which resulted in 773,789 CpG sites for downstream 

analyses. Potential batch effects were corrected by the Combat method (Johnson et al., 2007; 

Sun et al., 2011). Differentially methylated CpG sites were detected using the limma 
function with Benjamini-Hochberg (BH) multiple testing correction. CpG sites with 

between-group differential p value < 0.01 and methylation difference greater than 5% were 

considered as differentially methylated CpGs (DMCs). Clusters within these DMCs 

(differentially methylated regions (DMRs)) were identified using the Bumphunter algorithm 

(Jaffe et al., 2012) and defined as a minimum of 4 probes in the region with adjusted DMR p 

value < 0.05 through permutation test. Genes associated with DMCs or DMRs were used for 

pathway enrichment analysis with the R package RITAN.
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To correct for differences in gender and small numbers of male samples only biopsy samples 

from female subjects were included for interpretation. We focused our analysis on samples 

from the first biopsy time point and used time point 2 samples as a verification cohort.

Multi-omics data integration—Association between stool microbial features and stool 

metabolites was investigated using the Maaslin2 package in R (http://

huttenhower.sph.harvard.edumaaslin). Maaslin2 was ran using minimum abundance and 

minimum prevalence for microbial features were set at 0.0001 and 0.5 respectively. 

Threshold for FDR corrected q-value was set at 0.25. Linear mixed effects models were 

applied to the association with subject set as random-effect.

Identification of structural deletion and variable regions and subsequent association with 

significant metabolite features was performed as reported in the methods paper (Zeevi et al., 

2019). Due to low number of male samples only data from females was included.

Before running correlations, all taxa abundance data was adjusted for compositionality with 

centered log ratio (CLR) transformation from the robCompositions package in R. For 

correlation networks, species were removed that had a mean per-sample abundance under 

0.001%, data was adjusted for compositionality, and each set of significant Spearman 

correlations were assembled into a network using igraph and plotted using ggraph in R.

Lasso penalized regression machine learning was performed using a model for 

regularization and feature selection to integrate host gene expression with microbiome and 

metabolomics data. Host biopsy gene expression from time point 1, collapsed fecal 

microbiome abundance and collapsed fecal metabolite data were subject-matched resulting 

in a subset of 25 IBS patients and 13 healthy controls. The biomaRt R package was used to 

remove non-protein-coding genes, lowly expressed genes (expressed in less than half of the 

samples), and genes with low variance, resulting in 12132 unique genes. A variance 

stabilizing transformation was performed on the filtered gene expression data using the 

DESeq2 R package. For the microbiome data, the counts taxa matrix was summarized at 

species, genus, family, and phylum taxonomic levels, and only taxa found at 0.01% relative 

abundance in at least 20% of the samples were kept. This filtered taxon matrix was CLR 

transformed. The fecal metabolomic data, NMR metabolites, bile acids, and tryptophan 

panel data was concatenated, and log2 transformed.

The Lasso regression model was fit separately in order to identify gene-microbiome and 

gene-metabolite associations. The gene-wise model uses gene expression for each gene as 

response and microbiome abundance or metabolite concentrations as predictors. The effect 

of gender and IBS-subtype was controlled for by including them as binary covariates in our 

predictor matrix. Leave-one-out cross validation was used for tuning the penalty parameters 

in the Lasso model fits using the R package glmnet. Inference for Lasso models was 

performed using regularized projections to obtain significance and confidence interval for 

each variable associated with a given gene. Multiple hypothesis testing was corrected for 

using the Benjamini-Hochberg method. Since the Lasso model is sensitive to small 

variations of the predictor, we used stability selection to select robust variables associated 

with the host genes. Intersects of outputs from Lasso and stability selection models were 
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inspected and filtered at FDR < 0.25. Host gene-gender and host gene-IBS subtype 

associations were removed.

In vitro and in vivo hypoxanthine consumption experiments—Bacteria were 

cultivated in Mega medium (Romano et al., 2015). After overnight growth, hypoxanthine 

levels in the culture supernatant were determined using LC-MS. Hypoxanthine identity was 

verified through matching of accurate mass and retention time of an authentic standard 

(Sigma-Aldrich).

Monocolonization experiments were performed on 6-week old germ-free Swiss Webster 

mice. Three female mice were orally gav-aged with ~2*106 CFU of overnight bacterial 

culture grown in BHI medium + 0.01% cysteine and co-housed for the duration of the 

experiment. Hypoxanthine (Sigma-Aldrich) was supplied at 100 μM in filter sterilized 

NANOpure water. Water consumption was monitored and not different between the groups. 

On day 4 after gavage mice were sacrificed and cecal contents were collected.

The combined hypoxanthine and xanthine concentration was determined in cecal contents 

using Amplex Red Xanthine/Xanthine Oxidase Assay Kit (Thermo Fisher). Sample weights 

were normalized by addition of H2O and samples were homogenized by beat beating. 

Metabolites were extracted by addition of 19 volumes of 80°C ultrapure H2O and incubation 

at 80°C for 3 minutes while shaking at 800 rpm in a heating block. The supernatant after 

centrifugation for 10 minutes at 4°C served as the metabolite sample. Samples were 

analyzed in duplicate for 30 minutes and normalized based on parallel reactions without XO 

enzyme to correct for baseline levels of H2O2 in the sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details on statistical tests, n numbers, and significance cutoffs can be found in the figure 

legends. When relevant, further details are found in the method details for the specific 

measurement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Longitudinal sampling limits heterogeneity seen in cross-sectional 

microbiome studies

• Alteration in the gut microbiome and microbial metabolites underlie IBS and 

symptom flares

• Data integration reveals effect of microbial metabolites on gastrointestinal 

function

• Purine starvation is identified as a possible therapeutic target in IBS
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Figure 1. Gut Microbiota Composition of IBS-C Patients Is More Distinct and Variable
(A) Outline of sample collection.

(B) Number of subjects and distribution of biological sex by cohort.

(C) Total number of samples per subject collected longitudinally.

(D) Bray Curtis β-diversity ordination of samples from IBS-C, IBS-D, and HC considering 

all samples from all subjects (n = 474 stool samples, no. of samples per subject 1–7).

(E) Same as (D) considering by-subject averaged data (statistics in inset from 

PERMANOVA on group membership). IBS-C and IBS-D versus HC, p = < 0.05, IBS-C 

versus IBS-D, p value = 0.001, dispersion around centroids via pairwise PERMANOVA (n = 

22, 29, and 24 averaged gut microbiome profiles for IBS-C, IBS-D, and HC, respectively).
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(F) Bray-Curtis dissimilarity (BCD)-based irregularity (BCDI) showing distribution of the 

three groups linear mixed-effect model correcting for subject HC versus IBS-C p = < 0.011 

(n = 142, 170, and 143 stool samples for IBS-C, IBS-D, and HC, respectively).

(G) Community variability determined by the mean within-subject Bray Curtis distance 

(within-IBS-D versus within-IBS-C, p = < 0.005, ANOVA Tukey, n = 22, 46, 24, 53, and 29, 

Bray-Curtis distances between stool samples of the same subject for within-IBS-C, Healthy 

versus IBS-C, within-Healthy, Healthy versus IBS-D, and within-IBS-D, respectively).

(H) Bray Curtis β-diversity ordination of biopsy and stool samples (statistics in inset from 

PERMANOVA on group membership. n = 72, 12, and 462 stool samples for biopsy, flare, 

stool, respectively).

(I) Difference in mucosa associated and luminal microbiota composition based on Bray-

Curtis distance (HC versus IBS-C, IBS-D versus IBS-C p = < 0.001, ANOVA Tukey HSD; n 

= 20, 22, and 19 paired mucosal-stool microbiome samples for IBS-C, IBS-D, and HC, 

respectively).

(J) Community variability within each group based on mean Bray Curtis Distance (HC 

versus IBS-C, p value = 0.02, ANOVA Tukey HSD, n = 10, 11, and 9 mucosal microbiome 

samples for IBS-C, IBS-D, and HC, respectively).

Boxplot center represents median and box interquartile range (IQR). Whiskers extend to 

most extreme data point <1.5 × IQR. C: IBS-C, D: IBS-D, H: HC. Symbols indicate 

significance (*p = < 0.05).

See also Figures S1 and S2 and Tables S1 and S2.
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Figure 2. Metabolomics Integrated with Physiologic Measurements Provides Mechanistic Insight 
into the Effect of Gut Microbiota Metabolism on Gastrointestinal Function
(A) Relative abundance of propionate, butyrate, and acetate in stool samples determined 

with 1H NMR (linear mixed-effect models on log10-transformed data correcting for subject, 

FDR corrected, n = 136, 170, and 146 metabolite profiles for IBS-C, IBS-D, and HC, 

respectively).

(B) Absolute abundance of acetate in colonic biopsies determined with GC-MS (linear 

mixed-effect models on log10-transformed abundance correcting for subject, FDR corrected, 

n = 28, 23, and 23 averaged metabolomes for IBS-C, IBS-D, and HC, respectively).

(C) Maximal ΔIsc (Imax) following application of increasing concentrations of serotonin (5-

HT) basolaterally in colonic biopsies from time-point 1 (ANOVA Tukey HSD, n = 13, 12, 

and 10 colonic biopsies for IBS-C, IBS-D, and HC, respectively).

(D) Absolute abundance of tryptophan and tryptamine in a subset of the stool samples 

determined with LC-MS/MS (ng/mg stool) (linear mixed-effect models on log10-
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transformed data correcting for subject, FDR adjusted, n = 84, 91, and 103 metabolite 

profiles for IBS-C, IBS-D, and HC, respectively).

(E) Relative abundance of primary unconjugated bile acids in stool samples determined with 

LC-MS/MS. Data shown are the sum of cholic acid and chenodeoxycholic acid relative 

abundances (linear mixed-effect models on log10-transformed data correcting for subject, n 

= 136, 170, and 146 metabolite profiles for IBS-C, IBS-D, and HC, respectively).

(F) Baseline Isc (ANOVA Tukey HSD, n = 16, 12, and 13 colonic biopsies for IBS-C, IBS-

D, and HC, respectively).

Boxplot center represents median and box IQR. Whiskers extend to most extreme data point 

<1.5 × IQR. Symbols indicate significance (***p = < 0.001, **p = < 0.01, *p = < 0.05, ^p = 

< 0.10).
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Figure 3. Integrated Microbiome-Metabolome Analysis Identifies a Novel Microbial Metabolic 
Pathway in IBS
(A–C) Relative abundance of (A) lysine, (B) uracil, and (C) hypoxanthine in stool samples 

determined with 1H NMR (linear mixed-effect models on log10-transformed data correcting 

for subject, FDR adjusted, n = 136, 170, and 146 metabolite profiles for IBS-C, IBS-D, and 

HC, respectively). Boxplot center represents median and box IQR. Whiskers extend to most 

extreme data point <1.5 × IQR. Symbols indicate significance (***p = < 0.001, **p = < 

0.01, *p = < 0.05).

(D) Selected hypoxanthine-related gut metagenome KO term abundance in stools from IBS-

C subjects compared to the median abundance of the healthy control (HC) subjects. By-

subject averaged data (FDR <0.1, Mann-Whitney test; except for K00769, which had q value 

0.12). The maximal log2(FC) of the either of the xanthine dehydrogenase (XDH)/oxidase 

modules is 0.73, p = < 0.005, q value 0.09 for IBS-C, and log2(FC) 0.49, p = < 0.07 for IBS-

D. Error bars show SD and middle line indicates median (IBS-C n = 22 averaged 

microbiome compositions). All KO term associations can be found in Table S3.

See also Figures S3 and S4 and Table S3.
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Figure 4. Hypoxanthine Consumption by Specific Gut Microbiome Members as Suggested by 
Microbial Gene Region Associations
(A) Scatterplot of metabolite intensities and standardized region coverage for SV association 

result for Lachnospiraceae sp. 3_1_46FAA genomic region positively correlated to 

hypoxanthine (Spearman correlation inset, n = 13, 13, and 5 averaged microbiome 

abundances with Lachnospiraceae bacterium 3–146FAA present above threshold for IBS-C, 

IBS-D, and HC, respectively).

(B) Genomic context of region from (A) with relevant gene highlighted in red.

(C) 3 Clostridiales strains and B. longum were grown in Mega medium. Hypoxanthine levels 

in the culture supernatant after overnight growth were determined with LC-MS (ANOVA 

Tukey HSD on log2(FC), n = 3 cultures per strain). hx: hypoxanthine

(D) Outline of monocolonization mouse experiment verifying in vivo hypoxanthine 

consumption. 3 female GF Swiss Webster mice were oral gavaged with ~2*106 colony-

forming units (CFUs) of either B. longum or Lachnospiraceae sp. 2_1_58FAA and co-

housed for the duration of the experiment. Hypoxanthine was supplied in drinking water to 

mimic exogenous production by the microbiome. On day 4 after, gavage mice were 

sacrificed and cecal contents were collected.

(E) Hypoxanthine and xanthine pool size was determined in cecal contents using enzyme 

assays. Samples were corrected for baseline levels of H2O2 in the sample based on parallel 
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reactions without XO enzyme (Welch t test on averaged duplicate samples, n = 3 cecal 

contents from 3 mice per colonization status).

Error bars indicate standard error of the mean (SEM). Symbols indicate significance (**p = 

< 0.01, *p = < 0.05).

See also Figure S4 and Table S4.
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Figure 5. Alteration in Gut Microbiome and Microbial Metabolites Underlie Flares in IBS 
Patients
(A) BCDI showing distribution of IBS flare and all non-flare IBS samples (linear mixed-

effect model correcting for subject, IBS non-flare versus IBS flare p = < 0.01, n = 312, 12 

gut microbiome profiles for IBS non-flare, IBS flare, respectively).

(B) Within-disease comparisons of BCDI score (p values from linear mixed-effect model 

correcting for subject, n = 142, 6, 170, and 6 gut microbiome profiles for IBS-C non-flare, 

IBS-C flare, IBS-D non-flare, and IBS-D flare, respectively).

(C) Within-disease comparisons of α-diversity in flare samples compared to by-subject 

averaged baseline data (Shannon diversity at species level, p values from Mann-Whitney U 

test, n = 22, 6, 29, and 6 averaged gut microbiome profiles for IBS-C non-flare, IBS-C flare, 

IBS-D non-flare, and IBS-D flare, respectively).

(D) Relative abundance of Halobiforma nitratireducens in flare and non-flare IBS samples (q 

< 0.001, Mann-Whitney U test, n = 51, 12 averaged gut microbiome profiles for IBS non-

flare, IBS flare, respectively).
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(E) Relative abundance of cholic acid in stool samples determined with LC-MS/MS (linear 

mixed-effect models on log10-transformed data correcting for subject, FDR adjusted, n = 

136, 6, 170, and 6 metabolite profiles for IBS-C non-flare, IBS-C flare, IBS-D non-flare, and 

IBS-D flare, respectively).

(F) Same as in (E) for chenodeoxycholic acid.

Boxplot center represents median and box IQR. Whiskers extend to most extreme data point 

<1.5 × IQR. Symbols indicate significance (***p = < 0.001, **p = < 0.01, *p = < 0.05).

See also Figure S5 and Table S5.
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Figure 6. Multi-omics Integration Results from Lasso Penalized Regression
(A) Network representing significant and stability-selected correlations of host genes (gray 

nodes) with fecal microbial taxa (blue nodes) and fecal metabolites (yellow nodes) at FDR 

<0.25. Purple edges indicate positive correlation and red edges indicate negative correlation, 

and edge width indicates the strength of correlation (Lasso regression using 25 IBS patients 

and 13 matched HC datasets).

(B) Lasso correlation plots between acetate with PGLYPR1 (FDR <0.001) and acetate (FDR 

<0.05) from network shown in A). Orange and blue points represent IBS-C and IBS-D 

subjects, respectively.

(C) Same as (B) for KIFC3.

See also Figure S7 and Table S7.
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Figure 7. An Integrated Multi-omics View of IBS Points to Microbiome-Host Interactions in the 
Purine Salvage Pathway
(A) Purine nucleoside phosphorylase (PNP) expression in colonic biopsy tissue (for A and 

B, ANOVA Tukey HSD, n = 15, 8, and 8 time-point-averaged female biopsy transcriptomes 

for IBS-C, IBS-D, and HC, respectively). For full statistical results split by time point, see 

Table S6 (p = < 0.001 for IBS-C and IBS-D versus HC for biopsies from first time point 

(IBS-D versus HC FDR 0.018), from generalized binomial test).

(B) Gene expression of human XDH in colonic biopsy tissue. For full statistical results split 

by time point, see Table S6 (p value 0.022 for IBS-C and 0.101 for IBS-D in time point 1 

and <0.005 for time point 2 (with IBS-C versus HC FDR <0.05), from generalized binomial 

test).

(C) Simplified human-microbiome purine nucleotides degradation pathway with identified 

IBS-relevant changes indicated. Black arrows indicate metabolic steps, and yellow and blue 

up arrows indicate elevated expression or abundance in IBS.

(D) Lasso correlation plot between hypoxanthine and PNP (FDR <0.001). Orange and blue 

points represent IBS-C and IBS-D subjects, respectively.

(E) Metagenomic xanthine oxidase module abundance for all groups (also shown in Figure 

3D for IBS-C; IBS-C versus HC FDR <0.1, Mann-Whitney U test. n = 22, 29, and 24 

averaged gut microbiome profiles for IBS-C, IBS-D, and HC, respectively).

Boxplot center represents median and box IQR. Whiskers extend to most extreme data point 

<1.5 × IQR. Symbols indicate significance (*p = < 0.05, ^p = < 0.1, ^p = < 0.2).

See also Figure S6 and Table S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Bifidobacterium longum ATCC ATCC 55813

Lachnospiraceae sp. 2_1_58FAA BEI Resources HM-161, HMP ID 0991

Lachnospiraceae sp. 1_4_56FAA BEI Resources HM-154, HMP ID 0988

Hungatella hathewayi DSM DSM 13479

Chemicals, Peptides, and Recombinant Proteins

RNAlater stabilization solution Invitrogen AM7020

Tryptamine hydrochloride Millipore Sigma CAS# 343–94-2

Hypoxanthine Millipore Sigma CAS# 68–94-0

Critical Commercial Assays

Amplex Red Xanthine/Xanthine Oxidase Assay Kit Thermo Fisher A22182

Deposited Data

Mendeley dataset, supplemental data I-VI This paper https://doi.org/10.17632/29n2z5r5ph.3

Microbiome data This paper European Nucleotide Archive, PRJEB37924

Metabolomics data This paper MetaboLights repository, MTBLS1396

Transcriptome and methylome data This paper Gene Expression Omnibus, GSE146853

Experimental Models: Organisms/Strains

Germ-free mice Taconic Farms Swiss Webster

Software and Algorithms

Maaslin2 Huttenhower lab http://huttenhower.sph.harvard.edumaaslin

BURST Knights lab https://zenodo.org/record/806850

SHOGUN Knights lab https://github.com/knights-lab/SHOGUN

Other

Code used for metagenome and metabolome data analysis This study https://gitlab.com/rubenmars/ibs-multi-omics-code

Code used for correlation networks This study https://github.com/mhoutti/ibs_network
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