Skip to main content
PLOS One logoLink to PLOS One
. 2021 May 10;16(5):e0250931. doi: 10.1371/journal.pone.0250931

Patient, hospital and country-level risk factors of all-cause mortality among patients with chronic heart failure: Prospective international cohort study

Benedetta Pongiglione 1,*, Aleksandra Torbica 1,2, Chris P Gale 3,4,5, Luigi Tavazzi 6, Panos Vardas 7,8, Aldo P Maggioni 6,9
Editor: Pasquale Abete10
PMCID: PMC8109791  PMID: 33970939

Abstract

Background

Although many studies have described patient-level risk factors for outcomes in heart failure (HF), health care structural determinants remain largely unexplored. This research reports patient-, hospital- and country-level characteristics associated with 1-year all-cause mortality among patients with chronic HF, and investigates geographic and hospital variation in mortality.

Methods and findings

We included 9,277 patients with chronic HF enrolled between May 2011 and November 2017 in the prospective cohort study European Society of Cardiology Heart Failure Long Term registry across 142 hospitals, located in 22 countries. Mean age of the selected outpatients was 65 years (sd 13.2) and 28% were female. The all-cause 1-year mortality rate per 100 person-years was 7.1 (95% confidence interval (CI) 6.6–7.7), and varied between countries (median 6.8, IQR 5.6–11.2) and hospitals (median 7.8, IQR 5.2–12.4). Mortality was associated with age (incidence rate ratio 1.03, 95% CI 1.02–1.04), diabetes mellitus (1.37, 1.15–1.63), peripheral artery disease (1.56, 1.27–1.92), New York Heart Association class III/IV (1.91, 1.60–2.30), treatment with angiotensin-converting enzyme inhibitor and angiotensin receptor antagonists (0.71, 0.57–0.87) and HF clinic (0.64, 0.46–0.89). No other hospital-level characteristics, and no country-level healthcare characteristics were associated with 1-year mortality, with case-mix standardised variance between countries being very low (1.83e-06) and higher for hospitals (0.372).

Conclusions

All-cause mortality at 1 year among outpatients with chronic HF varies between countries and hospitals, and is associated with patient characteristics and the availability of hospital HF clinics. After full adjustment for clinical, hospital and country variables, between-country variance was negligible while between-hospital variance was evident.

Introduction

Heart failure (HF) is characterized by a high rate of hospital admissions and death, significant functional compromise, reduced quality of life, and increased caregiver burden [1,2]. Remarkable progress in the treatment of HF has been made in the last few decades and included in the current International guidelines [3,4], with an improvement in survival of patients with chronic HF [5,6]. Several evidence-based trials have identified effective medical treatments for patients with HF and reduced ejection fraction; such treatments are currently recommended by current clinical guidelines and variably incorporated in clinical practice [5,6]. A study using data from the European Society of Cardiology’s (ESC) Heart Failure Long-Term Registry (HF-LT-Registry, version 2013) found heterogeneity of treatments, most ineffective on hard endpoints, for patients with acute HF, while drug treatments for patients with chronic HF can be considered adherent to recommendations of current guidelines, even if dosing often appears too parsimonious [7].

Research has highlighted the considerable differences in HF outcomes between different countries [8,9]. Risk factors for HF outcomes have been studied mostly considering patient’s clinical and socio-demographic characteristics. Age, medical history, comorbidities such as pulmonary, liver, and kidney disease, are generally known to be related with a higher risk of readmission [10] and mortality [11]. Other studies found socioeconomic factors, such as low health literacy [12] and poor social support [13], are associated with higher all-cause mortality among patients with HF.

Yet, hospital-level and country-level factors for HF outcomes remain largely unexplored. One of the few studies that considered hospital characteristics as a predictor of hospital re-admission found that discharge from hospitals with HF services is associated with lower readmission at both 7 days and 30 days [10]. Recent work [14] studied income inequalities within countries and HF outcomes, and found that greater inequality was associated with worse HF outcomes. The structure and organization of healthcare systems and hospitals may play an important role in the application of guideline recommendations in HF management and, as a consequence, in determining differences in patients’ outcomes [15]. There is a growing interest in studying the association between country-level inequality, such as income, and various population health measures, but only a few studies have considered cardiovascular diseases.

This work aimed to fill this gap. Combining an international prospective cohort study, the ESC Heart Failure Long Term (HF-LT) Registry, version 2016, and an international ESC Atlas of cardiology, we created a unique set of data that enabled us to consider patient, hospital and country characteristics at once and explore their association with the all-cause mortality of patients with chronic HF. More specifically, we aimed to i) investigate between-country and hospital variation in mortality rates among patients with chronic HF; ii) identify the characteristics of patients, hospitals and countries associated with 1-year mortality of patients with chronic HF.

Methods

Design and setting

We combined information independently collected by two ESC projects, the prospective cohort study called ESC HF-LT-Registry and the ESC Atlas of Cardiology, and created an enhanced dataset to assess the concurrent association of patient’, hospital’ and country’s characteristics with mortality in patients with chronic HF. Combining these databases, we were able to gather information at three levels hierarchically ordered: patient, hospital and country.

The ESC HF-LT-Registry was launched in May 2011 to describe the clinical epidemiology of outpatients and inpatients with HF and the diagnostic/therapeutic processes applied to these patients across European and Mediterranean countries. The ESC HF-LT Registry also includes a ‘Site Questionnaire’ where data on admission hospitals are collected, so providing information on both patients and hospitals. A detailed description of the dataset (version 2016) is available elsewhere [11].

The ESC Atlas of Cardiology is a collection of cardiovascular data across 57 countries managed by ESC to understand the structural determinants of cardiovascular disease outcomes. It utilizes multiple data sources, including for example the World Health Organization and the World Bank, to document risk factors, prevalence, and mortality of cardiovascular disease as well as national economic indicators. It also includes an ESC-sponsored survey data of health infrastructure and cardiovascular service provision provided by the national societies of the ESC member countries [16,17]. Two Atlas editions have been issued and include indicators collected between 2013 and 2017 [16,18]. We used both issues so to include a broader set of indicators, available in the years in which patient and hospital data were collected, spanning from 2013 to 2017.

This study complies with the Declaration of Helsinki. Participation in the ESC-HF-LT-R had been approved by each local institutional review board in accordance with its country’s legislation. National Coordinators were responsible for obtaining the approval of the local review boards for this registry, if necessary. The Scientific Secretariat and Data Management team distributed the relevant documents in English (protocol, case report form, consent form) to the National Coordinators, who were responsible thereafter for their translation and adaptation to local standards. The full names of the Institutions of each National Coordinator in which the protocol was approved is reported in the supplementary file S1.1. All participants provided written informed consent (see file S2). No data were collected before the patient received detailed information and gave signed informed consent. No ethical approval was needed for this specific retrospective analysis that was carried out under a signed agreement between the Centre for Research on Health and Social Care (CERGAS) Bocconi University and the European Society of Cardiology.

Study population

Outpatients aged over 18 years with chronic HF had been included in the HF LT Registry since May 2011. We considered for the analysis all participants who underwent the 12-months follow‐up visit, which was performed to collect information on morbidity and mortality.

Clinical characteristics

At baseline visit, extensive information on patients’ characteristics were collected. We selected those variables known to be related with HF outcomes [11]. These included demographic characteristics (age and sex); information on cardiovascular risk factors collected at time of enrolment (body mass index (BMI) treated as a five-category variable (<20, 20–24, 25–29, 30–34, >35), systolic blood pressure); clinical history (HF history, documentation of ischemic heart disease, diabetes, atrial fibrillation, peripheral artery disease (PAD); chronic obstructive pulmonary disease (COPD), chronic kidney dysfunction, left ventricular ejection fraction); physical data included the New York Heart Association (NYHA) class, pulmonary rales, hepatomegaly, peripheral oedema and third heart sound (S3 Gallop); information on medications comprised the use of angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), beta blockers prior and/or during outpatient visit and device therapy.

Outcome

The vital status of patients was recorded in the follow-up visit, which was expected to take place approximately one year after the baseline visit. Owing to between‐country differences in the starting date of enrolment, there were varying follow‐up times in the entire study group. We considered all deaths recorded in the follow-up visit, and censored survival time at day 365 for those patients whose follow-up visit took place more than a year after their admission.

Hospital and country characteristics

The information on hospital’s characteristics that we extracted from the ESC-HF-LT Site Questionnaire consisted in indicators of hospital’s services for HF: whether there are catheterization and electrophysiological laboratories, cardiology services in site available 24 hours, units specifically dedicated to patients with HF and whether the hospital performs heart transplants.

The country characteristics selected from the ESC Atlas of Cardiology included indicators of socioeconomic status of a country: GDP per capita at purchasing price parity and the inequality Gini index, which ranges from 0 (perfect income equality), to 100 (perfect inequality); indicators of health care resources including health expenditure per capita and as percentage of GDP; life expectancy at birth and number of deaths for cardiovascular diseases per million inhabitants. We also classified countries based on their health care system and distinguished i) Beveridge-type (national health system) including Cyprus, Denmark, Greece, Italy, Portugal and Spain; ii) Bismarck-type (social health insurance) including Austria, Bosnia & Herzegovina, Bulgaria, Egypt, France, Israel, Lithuania, Serbia and Turkey, iii) Systems in transition (former Semaschko model) including Belarus, Czech Republic, Estonia, Hungary, Poland, Slovakia and Slovenia [19].

Statistical analysis

Baseline characteristics were described using numbers and percentages for categorical data and means and standard deviations for normally and nonnormally distributed continuous variables.

To measure the association between 1-year all-cause mortality and selected risk factors, we conducted a hierarchical analysis and selected piecewise exponential survival model (PWE) and discrete time survival model [20], incorporating cluster-specific random effects (random intercept) to account for within-cluster homogeneity in outcomes. In PWE model, the time scale is divided into intervals and the hazard function is assumed to be constant within each interval [21,22]. We split the survival time into four trimesters given that the hazard of death among outpatients with chronic HF is stable over time and homogeneous within such time segments [11]. From the PWE model we obtained Poisson regression coefficients, whose exponential gave the incidence rate ratios that express the rate ratio change in mortality.

We considered the PWE model as the main model and run a discrete time survival model as supplementary analysis (more details in the S1 Appendix). From the multilevel logistic model we assessed the degree of variation in mortality rates attributed to the country and hospital levels (and not explained by the model), using the intraclass correlation coefficient (ICC), as the calculation of the ICC from a multilevel Poisson model is not trivial [23,24].

We implemented several PWE model specifications in a stepwise fashion, considering the clinical model with only patient’s characteristics as baseline and then investigating the additive value of hospital and country characteristics adding each level-specific characteristics separately (i.e., only patient’s characteristics, patient’s and hospital’s characteristics, patient’s and country’s characteristics and full model). All statistical analyses were performed using Stata (version 16).

Multiple imputation by chained equations was used to produce 20 imputed data sets to minimize bias caused by missing data. Missing values were assumed to be random. Multiple imputation provides unbiased estimates in the presence of missing data under the missing at random assumption [25]. Details on the implementation of multiple imputation are provided in the S1.2 appendix in S1 Appendix. A complete case analysis was also conducted.

Finally, as additional sensitivity analysis, to limit noises at hospital level due to small sample size, we excluded from the sample hospitals with less than or up to 10 patients (37 hospitals corresponding to 179 observations) and replicated the PWE full model.

Results

Sample selection

In total, 14 742 patients with chronic HF were included in the HF-LT Registry from 247 hospitals, located in 37 countries, from 2011 to 2018, with most cases collected between 2011 and 2014. From this sample, we selected patients applying three criteria. First, we selected only patients whose country was included in the ATLAS registry and whose participating hospital submitted the ESC-HF-LT Site Questionnaire. Of the 37 nations included in the patient’s registry, 31 are included in ATLAS and 188 hospitals had site information available. Combining these restrictions together, in order to have patients with information on both hospital and country, we derived 11 347 observations collected from 165 hospitals across 27 countries. Second, only patients whose vital status at 12 months was known were included, thus dropping 2027 cases with a sample of 9320 patients in 147 hospitals and 26 countries. Third, we discharged observations from countries in which less than 30 patients were observed (thus dropping 43 patients, in 5 hospitals, in 4 countries). Thus, the analytical cohort corresponded to 9277 patients from 142 hospitals in 22 countries. Fig 1 illustrates the sample selection process through a STROBE flow chart and S1 Table in the S1 Appendix shows sample reduction by country.

Fig 1. STROBE flow chart.

Fig 1

Baseline characteristics

Tables 1 and 2 illustrate, respectively, the patient and hospital characteristics. S2 Table in the S1 Appendix illustrates descriptive statistics of patients for all available cases, before sample selection (N = 14 742), to show descriptively whether the selected sample presents remarkable differences compared to all patients enrolled. Selected cases presented very similar characteristics compared to the original cohort of patients included in the registry. Country’s characteristics are reported in S1.3 Table of the S1 Appendix.

Table 1. Baseline characteristics of the study population.

Variable Observed Missing values N (%)
Women 2613 (28.2) 1 (0.01)
Age in years. Mean (sd) 65 (13.2) 105 (1.1)
BMI, Kg/m2. Mean (sd) 28.1 (5.2) 125 (1.3)
    BMI <20 62 (0.7)
    BMI 20–24.9 2530 (27.3)
    BMI 25–29.9 3731 (40.2)
    BMI 30–34.9 1992 (21.5)
    BMI>35 837 (9.0)
Systolic blood pressure, mmHg. Mean (sd) 123.7 (20.9) 29 (0.3)
Ischemic aetiology (%) 3993 (43) 6 (0.06)
Atrial fibrillation (%) 3465 (37.4) 9 (0.1)
Diabetes mellitus (%) 2968 (32) 5 (0.05)
Peripheral artery disease (%) 1158 (12.5) 31 (0.3)
Chronic obstructive pulmonary disease (%) 1319 (14.2) 18 (0.2)
Chronic kidney dysfunction (%) 1790 (19.3) 10 (0.1)
Implantable cardioverter defibrillator therapy (%) 2621 (28.3) 25 (0.3)
Left ventricular ejection fraction (%)
<40 5304 (57.2) 599 (6.5)
40–49 1663 (17.9)
> = 50 1711 (18.4)
New York Heart Association (NYHA) class III/IV (%) 2377 (25.6) 11 (0.1)
Pulmonary rales/hepatomegaly/peripheral oedema (%) 2866 (30.9) 18 (0.2)
Third heart sound (%) 527 (5.7) 39 (0.4)
Moderate or severe aortic stenosis (%) 294 (3.2) 1 336 (14.4)
Angiotensin-converting enzyme (ACE)-inhibitors (%) 6189 (66.7) 11 (0.1)
Angiotensin receptor blocker (ARB) (%) 2350 (25.3) 3 (0.03)
ACE inhibitors and/or ARBs (%) 8225 (88.7) 11 (0.1)
Beta Blockers (%) 8273 (89.2) 3 (0.03)

% are based on total number of patients (n = 9 277).

Values are number (%) of total sample (N = 9277) unless stated otherwise.

Table 2. Hospitals’ baseline characteristics.

Variable Observed Missing N (%)
Catheterization laboratories (%) 101 (71.1) 18 (12.7)
Electrophysiological laboratories (%) 82 (57.8) 20 (14.1)
Cardiology Echocardiography service 24 hours on site (vs Regular hours) (%) 65 (47.8) 9 (6.3)
Cardiology Angiography/PCI service 24 hours on site (vs Regular hours) (%) 51 (35.9) 36 (25.4)
HF unit/clinic available for follow-up (%) 89 (62.7) 15 (10.6)
Heart transplant (%) 55 (38.7) 53 (37.3)

% are based on total number of hospitals (n = 142).

Values are number (%) of total sample (N = 142) unless stated otherwise.

Follow-up

Overall, the mean follow-up time was 342 days (sd 59.35, median 365, interquartile range (IQR) 356–365). 620 deaths were registered, with an all-cause mortality rate per 100 person-year equal to 7.1 (95% confidence interval (CI) 6.6–7.7). Fig 2 presents crude mortality rates and adjusted mortality rates with 95% CI for each country (we illustrate 95% CI of crude mortality rates in S1 Fig in S1 Appendix to avoid overcrowd the graph). When we look at the crude rates (green markers), remarkable differences in mortality rates across countries was observed, although confidence intervals were wide for some countries (see S1 Fig in S1 Appendix). Adjusted mortality rates were obtained from a Poisson model (using multiple imputation) adjusting for patient’s age and sex and country (red markers) and all clinical and hospital variables (blue markers). The adjusted rates were often not statistically different, with wide CIs for some countries.

Fig 2. Crude mortality rates and adjusted mortality rates with 95% CI (vertical blue lines), by country sorted by lowest to highest adjusted rate.

Fig 2

Fig 3 shows descriptively the variation in mortality rates observed across hospitals and countries. The units of analysis here are respectively hospitals (including only hospitals with at least 3 patients, to reduce outliers) (box plot on the left) and countries (box plot on the right). We observed a slightly larger variation in mortality rates between hospitals (median rate per 100-person year 7.8, IQR 5.2–12.4) compared to country (median 6.8, IQR 5.6–11.2). The same statistics were produced for adjusted mortality rates (not shown), and results were relatively similar for countries (median 7.0, IQR 5.7–8.8) and more variation was observed for hospitals (median 7.7, IQR 3.0–13.8).

Fig 3. Boxplot of the crude mortality rates per 100-person year across hospitals and countries.

Fig 3

Mortality risk factors

Table 3 shows results from the PWE survival models (corresponding results based on complete case analysis are available in S4 Table of the S1 Appendix). Results are reported as incidence rate ratios. Estimates of incidence ratios (fixed effects) are consistent across multiple imputation and complete case analysis. Patient’s characteristics are associated with 1-year mortality as expected: patients with older age (IRR = 1.03, 95% CI 1.02–1.04), suffering from diabetes mellitus (1.37, 1.15–1.63), PAD (1.56, 1.27–1.92), renal dysfunction (1.82, 1.52–2.18), with NYHA class III/IV (compared to I/II) (1.92, 1.60–2.30), having pulmonary or peripheral congestion (1.85, 1.54–2.23) have higher mortality rate at one year; other patient’s characteristics including left ventricular ejection fraction higher than 50 (0.78, 0.60–1.01), the use of ACE inhibitors or ARBs (0.71, 0.57–0.87) appeared to be associated with lower mortality rates at 1 year. Higher BMI (e.g. IRR for BMI between 25 and 30 vs BMI<20 equal to 0.45, 0.21–0.95) and higher systolic blood pressure (0.92, 0.90–0.95) also resulted associated with lower mortality, in line with previous findings [11]. In terms of hospital characteristics, only dedicated HF clinic was significantly associated with a lower mortality rate, by around 40% (0.64, 0.46–0.89). No other hospital characteristics were found to be related to 1-year mortality, neither the selected country characteristics.

Table 3. Factor associated with 1-year all-cause mortality for patients with chronic HF, PWE survival model, incidence rate ratios and 95% CI.

  Patient’s characteristics Patient + Hospital characteristics Patient + Country characteristics Patient + Hospital + Country characteristics
IRR (95% CI) IRR (95% CI) IRR (95% CI) IRR (95% CI)
Clinical variables
Males (vs females) 1.23** (1.01–1.51) 1.24** (1.02–1.52) 1.23** (1.01–1.51) 1.24** (1.01–1.52)
Age in years 1.03*** (1.02–1.04) 1.0*** (1.02–1.04) 1.0*** (1.02–1.04) 1.03*** (1.02–1.04)
BMI (Kg/m2) (20–24.9) vs BMI<20 0.70 (0.335–1.47) 0.69 (0.33–1.45) 0.71 (0.34–1.48) 0.71 (0.34–1.48)
BMI (Kg/m2) (25–29.9) vs BMI<20 0.45** (0.21–0.94) 0.44** (0.21–0.92) 0.45** (0.21–0.95) 0.45** (0.21–0.95)
BMI (Kg/m2) (30–34.9) vs BMI<20 0.43** (0.20–0.92) 0.42** (0.20–0.89) 0.44** (0.20–0.93) 0.43** (0.20–0.93)
BMI (Kg/m2) (> = 35) vs BMI<20 0.43** (0.19–0.95) 0.42** (0.19–0.94) 0.44** (0.20–0.97) 0.44** (0.20–0.98)
Systolic blood pressure, mmHg 0.93*** (0.91–0.95) 0.92*** (0.90–0.95) 0.93*** (0.91–0.95) 0.92*** (0.90–0.95)
Ischemic etiology 1.10 (0.92–1.31) 1.11 (0.93–1.32) 1.10 (0.92–1.31) 1.11 (0.93–1.33)
Atrial Fibrillation history 1.10 (0.93–1.30) 1.11 (0.93–1.31) 1.10 (0.93–1.31) 1.11 (0.94–1.31)
Diabetes history 1.35*** (1.14–1.61) 1.36*** (1.14–1.62) 1.36*** (1.15–1.62) 1.37*** (1.15–1.63)
Peripheral artery disease 1.54*** (1.25–1.89) 1.56*** (1.27–1.91) 1.55*** (1.26–1.91) 1.56*** (1.27–1.92)
Chronic obstructive pulmonary disease 1.20* (0.98–1.47) 1.20* (0.98–1.46) 1.20* (0.98–1.47) 1.19* (0.98–1.46)
Chronic kidney dysfunction 1.80*** (1.50–2.15) 1.80*** (1.50–2.15) 1.81*** (1.52–2.17) 1.82*** (1.52–2.18)
Implantable cardioverter defibrillator therapy 0.96 (0.79–1.17) 0.97 (0.80–1.18) 0.99 (0.81–1.21) 0.99 (0.81–1.21)
New York Heart Association (NYHA) (III/IV vs I/II) 1.90*** (1.59–2.28) 1.90*** (1.59–2.28) 1.91*** (1.59–2.29) 1.92*** (1.60–2.30)
Peripheral oedema/pulmonary rale 1.87*** (1.56–2.24) 1.84*** (1.53–2.21) 1.84*** (1.53–2.22) 1.85*** (1.54–2.23)
s3gallop 1.22 (0.91–1.65) 1.19 (0.88–1.60) 1.17 (0.87–1.58) 1.17 (0.86–1.58)
Medication Angiotensin-converting enzyme (ACE)/Angiotensin receptor blocker (ARB) 0.71*** (0.58–0.88) 0.71*** (0.57–0.88) 0.70*** (0.57–0.87) 0.71*** (0.57–0.87)
Medication beta blocker 0.82* (0.64–1.03) 0.83 (0.66–1.06) 0.84 (0.66–1.07) 0.85 (0.67–1.08)
Left ventricular ejection fraction (EF) 40–49 (vs EF<40) 0.83 (0.65–1.06) 0.83 (0.65–1.06) 0.83 (0.65–1.06) 0.83 (0.65–1.06)
EF> = 50 (vs EF<40) 0.76** (0.59–0.98) 0.77** (0.60–0.99) 0.77** (0.60–0.99) 0.78* (0.60–1.01)
Interval 90–180 days 1.16 (0.93–1.46) 1.16 (0.93–1.46) 1.16 (0.93–1.46) 1.17 (0.93–1.46)
180–270 days 1.26** (1.01–1.58) 1.26** (1.01–1.58) 1.26** (1.01–1.58) 1.26** (1.007–1.58)
270–365 days 1.30** (1.03–1.63) 1.30** (1.03–1.63) 1.29** (1.03–1.63) 1.30** (1.03–1.63)
Hospital’s characteristics
Catheterisation lab 1.30 (0.86–1.98) 1.37 (0.88–2.13)
Electrophysiological lab 0.96 (0.66–1.40) 0.94 (0.64–1.40)
Cardiology Echocardiography service 24 hrs on site (vs Regular hours) 1.01 (0.76–1.34) 0.98 (0.72–1.33)
Cardiology Angiography/PCI service 24 hrs on site (vs Regular hours) 0.93 (0.69–1.26) 0.95 (0.70–1.31)
Heart failure unit 0.62*** (0.46–0.83) 0.64*** (0.46–0.89)
Heart transplantation 0.87 (0.64–1.18) 0.84 (0.61–1.16)
Country’s characteristics
Gross Domestic Product (GDP) (in thousands $) 0.99 (0.93–1.05) 1.00 (0.94–1.07)
Life Expectancy at birth (years) 0.93 (0.77–1.13) 0.94 (0.77–1.14)
Total health expenditure (% of GDP) 1.10 (0.94–1.27) 1.11 (0.94–1.30)
Gini Index 3.33 (0.001–12,146.57) 17.83 (0.01–59,194.69)
Health expenditure per capita (PPP) (in thousands $) 1.112 (0.719–1.722) 1.12 (0.72–1.74)
Cardiovascular disease deaths per million inhabitants (in thousands per year) 0.997 (0.803–1.238) 1.053 (0.849–1.307)
Health system Bismarck (vs Beveridge) 1.213 (0.548–2.682) 1.138 (0.515–2.516)
Health system Semashko (vs Beveridge) 1.090 (0.424–2.804) 0.883 (0.349–2.232)
Random Effects        
Country variance (s.e.)§ (95% CI) 2.28e-06 (.03769) (0.000 -.) 5.42e07 (.3467) (0.000 -.) 4.97e-07 (.0752) (0.000 -.) 1.83e-06 (.5788) (0.000 -.)
Hospital variance (95% CI) 0.456 (0.322–0.646) 0.393 (0.263–0.586) 0.406 (0.278–0.594) 0.372 (0.247–0.561)
Observations 35,812 35,812 35,812 35,812
Number of hospitals 142 142 142 142
Number of countries 22 22 22 22

IRR = incidence rate ratio; CI = confidence interval

*** p<0.01

** p<0.05

* p<0.1.

§ s.e. reported given 95% CI was not computable.

Looking at the variance component (random effects, bottom of Table 3), variation in mortality due to differences between countries was negligible across all model specifications (1.83e-06 in the model adjusted for all selected variables), and variation between hospitals was evident in each model specification, and it reduced by about 20% following adjustment for hospital-level and country-level variables (0.456 when accounting only for patient’s characteristics, 0.372 adjusting for all-level variables).

Comparing these results with those obtained from complete case analysis (S4 Table in S1 Appendix), we observed that between-hospital variance was smaller in complete case analysis (0.030, 95% CI 4.95E-06–12.622 in the model adjusted for all-level variables) compared to results obtained using multiple imputation, where more observations (patients, hospitals, countries) were included in the model. This may suggest a selection of more homogeneous hospitals in the complete case analysis and a consequent reduction of variation between centres. Between-country variance was unstable across model specifications in complete case analysis and generally lower than between-hospital variance.

Results were replicated within a discrete time survival model (see S1 Appendix), for both multiple imputation and complete case analysis (S5 Table in S1 Appendix). Estimates are reported as odds ratios and hence not directly comparable, but significance, direction and magnitude of results are consistent across model specifications, comparing multiple imputation and complete case analyses respectively. From the multilevel logistic regression model, we found that after case mix adjustment the mortality risk of patients in the same country was basically uncorrelated (ICC 9.156e-07), whilst mortality risk for patients within the same hospital had a higher correlation (ICC = 0.084).

Discussion

Principal findings

In this international cohort of 9277 participants from 22 countries which pooled retrospective data from a bespoke patient and hospital datasets and ATLAS of cardiology, there was evidence that clinical variables, shown by different studies to be associated with mortality of patients with chronic HF, have a significant role in the association with HF outcomes also after adjustment for hospital and country variables.

The 1-year all-cause mortality rate per 100 person-year was equal to 7.1 (95% CI 6.6–7.7), largely varying across countries and hospitals. We identified factors related to hospital and country variations and accounting for these variables, we found almost null between-country variance and higher between-hospital variance. We explored the additive value of hospital and country characteristics to clinical characteristics and it emerged that the presence of dedicated HF clinics was the strongest predictor of all country and hospital specific variables. This represents a key contribution of this work, as discussed below.

Comparison with other studies

Our study supports the set of prognostic clinical variables already emerged as statistically significant in other studies, [2630] but with the uniqueness to have included in the adjusted model hospital and country variables. This observation reinforces the relevance of the clinical characteristics of the patients to be considered for prognostic purposes, irrespective of both borders and typology of hospitals.

Among hospital characteristics, the availability of a dedicated HF clinic appeared to be independently associated with a lower risk of all-cause death. The complexity of the management of patients with HF, generally old, with multiple comorbidities, with the need to assume daily several drugs needs the activity and the expertise of several health professional. The ideal setting for establishing all the diagnostic and therapeutic strategies recommended for these complex patients seems to be the HF clinic where the possibility to have an easy access to nurses and physicians with expertise in HF and in the treatment of the most frequent comorbidities can be assured [31]. The multi-professional model of care provided by a dedicated HF clinic was demonstrated to be able to improve adherence to treatments recommended by current guidelines and to significantly reduce the need of hospital admissions and mortality [3235]. Our study confirms the relevant role of these HF dedicated hospital structures in a multinational setting and even after the adjustment for the clinical, hospital and country characteristics.

To interpret the lack of association between country level factors and mortality among patients with chronic HF as well as the low country variation, it is useful to put the results in a global perspective. Among European high-income countries, that compose the majority of our sample, the socio-economical differences may not be strong enough to impact measurably on survival. By contrast in the low and low-middle income countries, it has been found that two third of attributable risk is carried by socio-economic factors [36,37]. A study focused on low-middle income countries found marked regional differences in mortality in patients with HF that persisted even after multivariable adjustment for cardiac and non-cardiac factors [8]; while a research that considered both middle and high income countries, found that after accounting for clinical characteristics of patients only Latin America and Pacific Asia presented higher mortality rates compared to the other sub-continents [9].

The results of our work shed further light in the literature on geographic variation in HF outcomes, because it focuses on European and non-European Mediterranean countries considered individually (rather than as subcontinental clusters) and especially because it considers also risk factors measured at hospital and country level, not only clinical variables.

Strengths and limitations of study

The main strength of this research comes from the use of multisource linked data that allowed us to explore the concurrent role of clinical conditions of participants and hospital’s and country’s characteristics on the outcomes of patients with chronic HF. The determinants of outcomes of patients with HF have been evaluated by several groups but, in most cases, only considering clinical variables. This study built on existing literature and expanded current knowledge by taking into consideration other relevant aspects that could affect the clinical course of this population of patients, the hospital characteristics and some variables describing the health care and socioeconomic context in which patients live and received treatments.

The fact that the study design had a mandatory follow-up visit at 12 months to collect information on morbidity and mortality represented a strength and unique opportunity to study survival with a relatively uniform follow-up time across countries. At the same time, however, we had no information on the time course of patients’ HF over this period. Not being able to monitor the HF progress, little we know on possible precipitating factors that may lead to decompensation during the follow-up, and that are known to be different in young and older patients [38]. Nevertheless, we accounted for patients’ clinical and medical history, partly accounting for those factors that may act as precipitators in the HF time course.

This study suffers from some specific limitations that should be mentioned. The first one concerns sample selection and generalizability of our findings. The National Cardiac Societies which participated in the ESC registry were requested to appoint a national coordinator responsible for creating a network of centres and to manage it in connection with the EORP team. However, while a central data quality control was systematic and accurate, a systematic peripheral auditing was not possible, thereby the compliance to the protocol recommendations was not individually verified. This implies a threefold limitation: not all countries contributed to the questionnaire equally in terms of i) number of patients submitted, ii) type of patients i.e. case severity mix and iii) types of participating hospitals. Moreover, the fact that the selection of hospitals was made by ESC guarantees a recognized quality of participating hospitals, but at the same time entails a possible selection bias. This altered how representative a country’s contribution was to the registry and therefore when we referred to each country, we in fact referred to its contribution to the registry. This contribution varied between countries leading to uneven representation of countries.

Several observations were discharged because no information on the participating hospital characteristics was available affecting the generalizability of results. Within the sample selected, item nonresponse was addressed using multiple imputation. Compared to complete case analysis, fixed effects results (coefficients estimate) were similar, while the random part, capturing the country and hospital variation, revealed higher between-hospital variability when using all selected observations. This warns on the risk of selection bias, as highlighted among the study limitations, because responding centres might represent a subsample of homogeneous hospitals, hence not representative of all enrolled centres. Such limitation must be carefully considered to interpret the key finding of this study on the protective effect of the presence of a HF clinic: for 30% of the centres that took part to the registry, information on HF clinics (n = 76 out of 247) was missing; among those selected for this study 10% did not report this information (15 out of 142), but we were able to impute it and the evidence of a strong association with mortality was found both using multiple imputation and complete case analysis. Further research is needed to confirm the generalizability of our findings. Finally, we also performed a sensitivity analysis dropping observations from hospitals with less than or up to 10 patients to reduce noises due to small sample size of clusters and obtained results (S6 Table in S1 Appendix) very similar to those presented in Table 3 (column 4).

Conclusions and policy implications

A unique contribution of this study is that it considered risk factors for HF outcomes acting at three levels simultaneously: clinical, hospital and country. Results confirmed that the clinical variables known to be associated with outcomes of patients with HF remained significantly associated with mortality even after adjustment for hospital and country characteristics. The finding that the presence, at hospital level, of dedicated HF clinics was significantly associated with a lower mortality rate suggests that this type of health care service can probably assure a more appropriate treatment of patients and a higher adherence to the recommendations of the current ESC guidelines, which recommend that patients with HF are enrolled in a multidisciplinary care management programmes. [3] Such an approach has been found reducing HF hospitalization and mortality in patients discharged from the hospital. [32,33] Our work contributes to this discussion providing empirical evidence on the protective effect of HF clinics to support this statement and may be used to strengthen this statement in future guidelines.

The ESC guidelines suggest that “content and structure of HF management programmes may vary in different countries and health care settings”. Due to the data limitations we cannot provide further insight on country variability in this matter, and further research is needed to intersect the role of hospital facilities with country’s health care settings.

The other contribution of this research pertains to the assessment of country and hospital variation in mortality. The finding that after the full adjustment for clinical, hospital and country variables, there appeared to be some variation only at hospital level suggests that, in a cardiology setting of ESC member countries, presumably there remain a certain level of variability in the adoption of guideline recommendations, contributing to inequalities in patients’ outcomes. The timely and full adherence to clinical practice guidelines is fundamental for assuring high level of care. Efforts should be placed to guarantee their applications across and within ESC member countries and enforce a close monitoring.

Supporting information

S1 Appendix

(DOCX)

S1 File. Patient consent form.

(PDF)

S2 File. Case report form of the Long-Term Registry on patients with heart failure.

(PDF)

Data Availability

This study involves third-party data that the authors do not have the rights to share. Data cannot be shared publicly because of confidentiality. Data are available from the European Society of Cardiology for researchers who meet the criteria for access to confidential data. To apply to get access to the dataset used for this analysis, the Heart Failure Long-Term Registry Patient Characteristics, please contact the European Society of Cardiology (Route des Colles, Les Templiers — CS 80179 Biot, 06093 Sophia Antipolis Cedex, France; email: eorp@escardio.org) indicating the relevant variables as reported in the case report form attached as supplementary file S3 in S1 Appendix.

Funding Statement

The author(s) received no specific funding for this work.

References

  • 1.Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nature Reviews Cardiology. 2011;8(1):30. 10.1038/nrcardio.2010.165 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Jhund PS, MacIntyre K, Simpson CR, Lewsey JD, Stewart S, Redpath A, et al. Long-Term Trends in First Hospitalization for Heart Failure and Subsequent Survival Between 1986 and 2003. Circulation. 2009;119(4):515–23. 10.1161/CIRCULATIONAHA.108.812172 [DOI] [PubMed] [Google Scholar]
  • 3.Ponikowski P, Voors A, Anker S, Bueno H, Cleland J, Coats A, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European heart journal 2016;37(27):2129–2200. 10.1093/eurheartj/ehw128 [DOI] [PubMed] [Google Scholar]
  • 4.Yancy CW, Januzzi JL, Allen LA, Butler J, Davis LL, Fonarow GC, et al. 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: answers to 10 pivotal issues about heart failure with reduced ejection fraction: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. Journal of the American College of Cardiology. 2018;71(2):201–30. 10.1016/j.jacc.2017.11.025 [DOI] [PubMed] [Google Scholar]
  • 5.Parén P, Schaufelberger M, Björck L, Lappas G, Fu M, Rosengren A. Trends in prevalence from 1990 to 2007 of patients hospitalized with heart failure in Sweden. European journal of heart failure. 2014;16(7):737–42. 10.1002/ejhf.109 [DOI] [PubMed] [Google Scholar]
  • 6.Schmidt M, Ulrichsen SP, Pedersen L, Bøtker HE, Sørensen HT. Thirty‐year trends in heart failure hospitalization and mortality rates and the prognostic impact of co‐morbidity: a Danish nationwide cohort study. European journal of heart failure. 2016;18(5):490–9. 10.1002/ejhf.486 [DOI] [PubMed] [Google Scholar]
  • 7.Maggioni AP, Anker SD, Dahlström U, Filippatos G, Ponikowski P, Zannad F, et al. Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12 440 patients of the ESC Heart Failure Long‐Term Registry. European journal of heart failure. 2013;15(10):1173–84. 10.1093/eurjhf/hft134 [DOI] [PubMed] [Google Scholar]
  • 8.Dokainish H, Teo K, Zhu J, Roy A, AlHabib KF, ElSayed A, et al. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. The Lancet Global Health. 2017;5(7):e665–e72. 10.1016/S2214-109X(17)30196-1 [DOI] [PubMed] [Google Scholar]
  • 9.Kristensen SL, Martinez F, Jhund PS, Arango JL, Bĕlohlávek J, Boytsov S, et al. Geographic variations in the PARADIGM-HF heart failure trial. European heart journal. 2016;37(41):3167–74. 10.1093/eurheartj/ehw226 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Eastwood CA, Howlett JG, King-Shier KM, McAlister FA, Ezekowitz JA, Quan H. Determinants of early readmission after hospitalization for heart failure. Canadian Journal of Cardiology. 2014;30(6):612–8. 10.1016/j.cjca.2014.02.017 [DOI] [PubMed] [Google Scholar]
  • 11.Crespo‐Leiro MG, Anker SD, Maggioni AP, Coats AJ, Filippatos G, Ruschitzka F, et al. European Society of Cardiology Heart Failure Long‐Term Registry (ESC‐HF‐LT): 1‐year follow‐up outcomes and differences across regions. European journal of heart failure. 2016;18(6):613–25. 10.1002/ejhf.566 [DOI] [PubMed] [Google Scholar]
  • 12.Peterson PN, Shetterly SM, Clarke CL, Bekelman DB, Chan PS, Allen LA, et al. Health literacy and outcomes among patients with heart failure. Jama. 2011;305(16):1695–701. 10.1001/jama.2011.512 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Luttik ML, Jaarsma T, Moser D, Sanderman R, van Veldhuisen DJ. The importance and impact of social support on outcomes in patients with heart failure: an overview of the literature. Journal of Cardiovascular Nursing. 2005;20(3):162–9. 10.1097/00005082-200505000-00007 [DOI] [PubMed] [Google Scholar]
  • 14.Dewan P, Rørth R, Jhund PS, Ferreira JP, Zannad F, Shen L, et al. Income Inequality and Outcomes in Heart Failure: A Global Between-Country Analysis. JACC: Heart Failure. 2019;7(4):336–46. 10.1016/j.jchf.2018.11.005 [DOI] [PubMed] [Google Scholar]
  • 15.Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, et al. Heart failure: preventing disease and death worldwide. ESC heart failure. 2014;1(1):4–25. 10.1002/ehf2.12005 [DOI] [PubMed] [Google Scholar]
  • 16.Timmis A, Townsend N, Gale C, Grobbee R, Maniadakis N, Flather M, et al. European Society of Cardiology: cardiovascular disease statistics 2017. European heart journal. 2017;39(7):508–79. [DOI] [PubMed] [Google Scholar]
  • 17.Vardas P, Maniadakis N, Bardinet I, Pinto F. The European Society of Cardiology Atlas of Cardiology: rational, objectives, and methods. European Heart Journal–Quality of Care and Clinical Outcomes. 2015;2(1):6–15. [DOI] [PubMed] [Google Scholar]
  • 18.Timmis A, Townsend N, Gale C, Torbica A, Lettino M, Petersen SE et al. European Society of Cardiology: cardiovascular disease statistics 2019. European heart journal, 2019;41(1):12–85. [DOI] [PubMed] [Google Scholar]
  • 19.Torbica A, Fornaro G, Tarricone R, Drummond MF. Do social values and institutional context shape the use of economic evaluation in reimbursement decisions? An empirical analysis. Value in Health. 2020; 23(1):17–24. 10.1016/j.jval.2019.11.001 [DOI] [PubMed] [Google Scholar]
  • 20.Austin PC. A tutorial on multilevel survival analysis: methods, models and applications. International Statistical Review. 2017;85(2):185–203. 10.1111/insr.12214 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Rodriguez G. Lecture Notes for WWS509: Princeton University; 2009. [9 September 2020]. Available from: https://data.princeton.edu/wws509/notes/c7s4. [Google Scholar]
  • 22.Allison P. Survival Analysis Using SAS®: A Practical Guide Second. SAS Institute. 2010. [Google Scholar]
  • 23.Hall M, Laut K, Dondo TB, Alabas OA, Brogan RA, Gutacker N, et al. Patient and hospital determinants of primary percutaneous coronary intervention in England, 2003–2013. Heart. 2016. Feb 15;102(4):313–319. 10.1136/heartjnl-2015-308616 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Goldstein H, Browne W, Rasbash J. Partitioning Variation in Multilevel Models. Understanding Statistics. 2002;1(4): 223–231, 10.1207/S15328031US0104_02 [DOI] [Google Scholar]
  • 25.Little RJ, Rubin DB. The analysis of social science data with missing values. Sociological Methods & Research. 1989;18(2–3):292–326. [Google Scholar]
  • 26.Barlera S, Tavazzi L, Franzosi MG, Marchioli R, Raimondi E, Masson S, et al. Predictors of mortality in 6975 patients with chronic heart failure in the Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico-Heart Failure trial: proposal for a nomogram. Circulation Heart failure 2013;6:31–9. 10.1161/CIRCHEARTFAILURE.112.967828 [DOI] [PubMed] [Google Scholar]
  • 27.Canepa M, Fonseca C, Chioncel O, Laroche C, Crespo-Leiro MG, Coats AJ, et al. Performance of Prognostic Risk Scores in Chronic Heart Failure Patients Enrolled in the European Society of Cardiology Heart Failure Long-Term Registry. JACC Heart Fail 2018;6:452–462. 10.1016/j.jchf.2018.02.001 [DOI] [PubMed] [Google Scholar]
  • 28.Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Køber L, Squire IB, et al. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. European heart journal 2013;34:1404–13. 10.1093/eurheartj/ehs337 [DOI] [PubMed] [Google Scholar]
  • 29.Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 2006;113:1424–33. 10.1161/CIRCULATIONAHA.105.584102 [DOI] [PubMed] [Google Scholar]
  • 30.Pocock SJ, Wang D, Pfeffer MA, et al. Predictors of mortality and morbidity in patients with chronic heart failure. European ehart journal 2006;27:65–75. 10.1093/eurheartj/ehi555 [DOI] [PubMed] [Google Scholar]
  • 31.McDonagh TA, Blue L, Clark AL, Yusuf S, McMurray JJ, Swedberg KB, et al. European Society of Cardiology Heart Failure Association Standards for delivering heart failure care. European journal of heart failure. 2011;13(3):235–241. 10.1093/eurjhf/hfq221 [DOI] [PubMed] [Google Scholar]
  • 32.Stromberg A, Martensson J, Fridlund B, Levin LA, Karlsson JE, Dahlstrom U. Nurse-led heart failure clinics improve survival and self-care behaviour in patients with heart failure: results from a prospective, randomised trial. European heart journal 2003; 24:1014–1023. 10.1016/s0195-668x(03)00112-x [DOI] [PubMed] [Google Scholar]
  • 33.Rich MW, Beckham V, Wittenberg C, Leven CL, Freedland KE, Carney RM. A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. New England journal of medicine 1995;333:1190–1195. 10.1056/NEJM199511023331806 [DOI] [PubMed] [Google Scholar]
  • 34.McAlister FA, Stewart S, Ferrua S, McMurray JJ. Multidisciplinary strategies for the management of heart failure patients at high risk for admission: a systematic review of randomized trials. Journal of the American College of Cardiology. 2004. August 18;44(4):810–9. 10.1016/j.jacc.2004.05.055 [DOI] [PubMed] [Google Scholar]
  • 35.Feltner C, Jones CD, Cené CW, Zheng ZJ, Sueta CA, Coker-Schwimmer EJ, et al. Transitional care interventions to prevent readmissions for persons with heart failure: a systematic review and meta-analysis. Annals of internal medicine. 2014. June 3;160(11):774–84. 10.7326/M14-0083 [DOI] [PubMed] [Google Scholar]
  • 36.Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. The Lancet. 2017;390(10107):2050–62. 10.1016/S0140-6736(17)32252-3 [DOI] [PubMed] [Google Scholar]
  • 37.Callender T, Woodward M, Roth G, Farzadfar F, Lemarie J-C, Gicquel S, et al. Heart failure care in low-and middle-income countries: a systematic review and meta-analysis. PLoS medicine. 2014;11(8). 10.1371/journal.pmed.1001699 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Testa G, Della‐Morte D, Cacciatore F, Gargiulo G, D’Ambrosio D, Galizia G, et al. Precipitating factors in younger and older adults with decompensated chronic heart failure: are they different?. Journal of the American Geriatrics Society. 2013. October;61(10):1827–8. 10.1111/jgs.12475 [DOI] [PubMed] [Google Scholar]

Decision Letter 0

Pasquale Abete

Transfer Alert

This paper was transferred from another journal. As a result, its full editorial history (including decision letters, peer reviews and author responses) may not be present.

9 Mar 2021

PONE-D-21-03871

Patient, hospital and country-level risk factors of all-cause mortality among patients with chronic heart failure: Prospective international cohort study

PLOS ONE

Dear Dr. PONGIGLIONE,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Please submit your revised manuscript by Apr 23 2021 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

We look forward to receiving your revised manuscript.

Kind regards,

Pasquale Abete

Academic Editor

PLOS ONE

Additional Editor Comments:

The manuscript is very interesting and topic. However I have only a concern about the importance of HF-related precipitating factors. Please see and discuss Testa G et al. Precipitating factors in younger and older adults with decompensated chronic heart failure: are they different? J Am Geriatr Soc. 2013 Oct;61(10):1827-8.

Journal Requirements:

Please review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the rebuttal letter that accompanies your revised manuscript. If you need to cite a retracted article, indicate the article’s retracted status in the References list and also include a citation and full reference for the retraction notice.

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. Thank you for including your ethics statement:  "This study complies with the Declaration of Helsinki. Participation in the ESC-HF-LT-R had been approved by each local institutional review board in accordance with its country’s legislation. All participants provided written informed consent. No data were collected before the patient received detailed information and gave signed informed consent.".   

Please amend your current ethics statement to include the full name of the ethics committee that approved your specific study.

For additional information about PLOS ONE submissions requirements for ethics oversight of animal work, please refer to http://journals.plos.org/plosone/s/submission-guidelines#loc-animal-research  

Once you have amended this/these statement(s) in the Methods section of the manuscript, please add the same text to the “Ethics Statement” field of the submission form (via “Edit Submission”).

3.  We note that you have indicated that data from this study are available upon request. PLOS only allows data to be available upon request if there are legal or ethical restrictions on sharing data publicly. For information on unacceptable data access restrictions, please see http://journals.plos.org/plosone/s/data-availability#loc-unacceptable-data-access-restrictions.

In your revised cover letter, please address the following prompts:

a) If there are ethical or legal restrictions on sharing a de-identified data set, please explain them in detail (e.g., data contain potentially identifying or sensitive patient information) and who has imposed them (e.g., an ethics committee). Please also provide contact information for a data access committee, ethics committee, or other institutional body to which data requests may be sent.

b) If there are no restrictions, please upload the minimal anonymized data set necessary to replicate your study findings as either Supporting Information files or to a stable, public repository and provide us with the relevant URLs, DOIs, or accession numbers. Please see http://www.bmj.com/content/340/bmj.c181.long for guidelines on how to de-identify and prepare clinical data for publication. For a list of acceptable repositories, please see http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories.

We will update your Data Availability statement on your behalf to reflect the information you provide.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: No

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: In the manuscript entitled Patient, hospital and country-level risk factors of all-cause mortality among patients with chronic heart failure: Prospective international cohort study, Pongiglione and co-authors report on patient-, hospital- and country-level characteristics associated with 1-year all-cause mortality among patients with chronic HF including geographic and hospital variation in mortality. On 9,277 patients with chronic HF in the prospective cohort study European Society of Cardiology Heart Failure Long Term, the Authors report an all-cause 1-year mortality rate, across 142 hospitals located in 22 countries, of 7.1% which varied between countries and hospitals. These mortality rates were directly associated with increasing age, diabetes, peripheral artery disease, higher NYHA class. Conversely, treatment with angiotensin-converting enzyme inhibitor and angiotensin receptor antagonists and being managed in an HF clinic were found protective against mortality. Interestingly, no other hospital-level characteristics, and no country-level healthcare characteristics were associated with 1-year mortality, suggesting that between-hospital variance might be crucial for HF patients’ outcomes.

Overall, this is a very interesting manuscript on a crucial topic in HF management. The aim is clear, data analysis is well conducted and reported, and results are well discussed. I consider the manuscript acceptable for publication as it stands.

Reviewer #2: The Authors explored hospital and country-level characteristics associated with 1-year all-cause mortality among patients with chronic HF and investigates geographic and hospital variation in mortality. They studied 9,277 patients with chronic HF enrolled between May 2011 and November 2017 in the prospective cohort study European Society of Cardiology Heart Failure Long Term registry across 142 hospitals, located in 22 countries. The mean age of the selected outpatients was 65 years and the all-cause 1- year mortality rate per 100 person-years was 7.1 and varied between countries (median 6.8, IQR 5.6-11.2) and hospitals (median 7.8, IQR 5.2-12.4). Mortality was associated with age (incidence rate ratio 1.03, 95% CI 1.02-1.04), diabetes mellitus (1.37, 1.15-1.63), peripheral artery disease (1.56, 1.27- 1.92), New York Heart Association class III/IV (1.91, 1.60-2.30), treatment with angiotensin-converting enzyme inhibitor and angiotensin receptor antagonists (0.71, 0.57-0.87) and HF clinic (0.64, 0.46-0.89). No other hospital-level characteristics, and no country-level healthcare characteristics were associated with 1-year mortality, with case-mix standardised variance between countries being very low and higher for hospitals (0.372).

I find the study of great interest, data support conclusion even if I suppose a possible role of a selection bias due to the selection made by European Society of Cardiology in the selection of hospital. The involved hospital are of recognize high quality and specifically devoted to cardiovascular disease. This reflect the great Job made the ESC in the diffusion of cardiovascular knowledge all over the Europe.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: Yes: Francesco CACCIATORE

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2021 May 10;16(5):e0250931. doi: 10.1371/journal.pone.0250931.r002

Author response to Decision Letter 0


29 Mar 2021

Additional Editor Comments:

The manuscript is very interesting and topic. However I have only a concern about the importance of HF-related precipitating factors. Please see and discuss Testa G et al. Precipitating factors in younger and older adults with decompensated chronic heart failure: are they different? J Am Geriatr Soc. 2013 Oct;61(10):1827-8.

Authors: We thank the Associate Editor for this comment. We discussed the importance of HF-related precipitating factors in the discussion and discussed the suggested paper by Testa et al. The paragraph that we added is the following

“The fact that the study design had a mandatory follow-up visit at 12 months to collect information on morbidity and mortality represented a strength and unique opportunity to study survival with a relatively uniform follow-up time across countries. At the same time, however, we had no information on the time course of patients’ HF over this period. Not being able to monitor the HF progress, little we know on possible precipitating factors that may lead to decompensation during the follow-up, and are known to be different in young and older patients (Testa et al., 2013). Nevertheless, we accounted for patients’ clinical and medical history, partly accounting for those factors that may act as precipitators in the HF time course.”

Review Comments to the Author:

Reviewer #1: In the manuscript entitled Patient, hospital and country-level risk factors of all-cause mortality among patients with chronic heart failure: Prospective international cohort study, Pongiglione and co-authors report on patient-, hospital- and country-level characteristics associated with 1-year all-cause mortality among patients with chronic HF including geographic and hospital variation in mortality. On 9,277 patients with chronic HF in the prospective cohort study European Society of Cardiology Heart Failure Long Term, the Authors report an all-cause 1-year mortality rate, across 142 hospitals located in 22 countries, of 7.1% which varied between countries and hospitals. These mortality rates were directly associated with increasing age, diabetes, peripheral artery disease, higher NYHA class. Conversely, treatment with angiotensin-converting enzyme inhibitor and angiotensin receptor antagonists and being managed in an HF clinic were found protective against mortality. Interestingly, no other hospital-level characteristics, and no country-level healthcare characteristics were associated with 1-year mortality, suggesting that between-hospital variance might be crucial for HF patients’ outcomes.

Overall, this is a very interesting manuscript on a crucial topic in HF management. The aim is clear, data analysis is well conducted and reported, and results are well discussed. I consider the manuscript acceptable for publication as it stands.

Authors: We thank the reviewer very much for her/his positive and supportive feedback.

Reviewer #2: The Authors explored hospital and country-level characteristics associated with 1-year all-cause mortality among patients with chronic HF and investigates geographic and hospital variation in mortality. They studied 9,277 patients with chronic HF enrolled between May 2011 and November 2017 in the prospective cohort study European Society of Cardiology Heart Failure Long Term registry across 142 hospitals, located in 22 countries. The mean age of the selected outpatients was 65 years and the all-cause 1- year mortality rate per 100 person-years was 7.1 and varied between countries (median 6.8, IQR 5.6-11.2) and hospitals (median 7.8, IQR 5.2-12.4). Mortality was associated with age (incidence rate ratio 1.03, 95% CI 1.02-1.04), diabetes mellitus (1.37, 1.15-1.63), peripheral artery disease (1.56, 1.27- 1.92), New York Heart Association class III/IV (1.91, 1.60-2.30), treatment with angiotensin-converting enzyme inhibitor and angiotensin receptor antagonists (0.71, 0.57-0.87) and HF clinic (0.64, 0.46-0.89). No other hospital-level characteristics, and no country-level healthcare characteristics were associated with 1-year mortality, with case-mix standardised variance between countries being very low and higher for hospitals (0.372).

I find the study of great interest, data support conclusion even if I suppose a possible role of a selection bias due to the selection made by European Society of Cardiology in the selection of hospital. The involved hospital are of recognize high quality and specifically devoted to cardiovascular disease. This reflect the great Job made the ESC in the diffusion of cardiovascular knowledge all over the Europe.

Authors: We thank the reviewer very much for her/his positive feedback. We included the comment on the ESC role in selecting hospitals in the discussion in the following paragraph:

(..) Moreover, the fact that the selection of hospitals was made by ESC guarantees a recognized quality of participating hospitals, but at the same time entails a possible selection bias.

References:

Authors: We added the reference

Testa G, Della‐Morte D, Cacciatore F, Gargiulo G, D'Ambrosio D, Galizia G, et al. Precipitating factors in younger and older adults with decompensated chronic heart failure: are they different?. Journal of the American Geriatrics Society. 2013 Oct;61(10):1827-8.

And amended those not compliant with Vancouver form as described in Plos submission guidelines

Attachment

Submitted filename: Rebuttal letter.docx

Decision Letter 1

Pasquale Abete

19 Apr 2021

Patient, hospital and country-level risk factors of all-cause mortality among patients with chronic heart failure: Prospective international cohort study

PONE-D-21-03871R1

Dear Dr. PONGIGLIONE,

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Pasquale Abete

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

No further comments.

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #1: All comments have been addressed

Reviewer #2: All comments have been addressed

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: The Authors addressed all the comments form the reviewers. I confirm that the manuscript is acceptable for publication as it stands.

Reviewer #2: (No Response)

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

Acceptance letter

Pasquale Abete

26 Apr 2021

PONE-D-21-03871R1

Patient, hospital and country-level risk factors of all-cause mortality among patients with chronic heart failure: Prospective international cohort study

Dear Dr. Pongiglione:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at plosone@plos.org.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Prof. Pasquale Abete

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Appendix

    (DOCX)

    S1 File. Patient consent form.

    (PDF)

    S2 File. Case report form of the Long-Term Registry on patients with heart failure.

    (PDF)

    Attachment

    Submitted filename: Rebuttal letter.docx

    Data Availability Statement

    This study involves third-party data that the authors do not have the rights to share. Data cannot be shared publicly because of confidentiality. Data are available from the European Society of Cardiology for researchers who meet the criteria for access to confidential data. To apply to get access to the dataset used for this analysis, the Heart Failure Long-Term Registry Patient Characteristics, please contact the European Society of Cardiology (Route des Colles, Les Templiers — CS 80179 Biot, 06093 Sophia Antipolis Cedex, France; email: eorp@escardio.org) indicating the relevant variables as reported in the case report form attached as supplementary file S3 in S1 Appendix.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES