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Abstract

Background: The Monetary Incentive Delay task (MID) has been used extensively to probe 

anticipatory reward processes. However, individual differences evident during this task may relate 

to other constructs such as general arousal or valence processing (i.e., anticipation of negative 

versus positive outcomes). This investigation used a latent variable approach to parse activation 

patterns during the MID within a transdiagnostic clinical sample.

Methods: Participants were drawn from the first 500 individuals recruited for the Tulsa-1000 

(T1000), a naturalistic longitudinal study of 1000 participants aged 18-55 (n = 476 with MID 

data). We employed a multiview latent analysis method, group factor analysis, to characterize 

factors within and across variable sets consisting of: (1) region of interest (ROI)-based blood 

oxygenation level-dependent (BOLD) contrasts during reward and loss anticipation; and (2) self-

report measures of positive and negative valence and related constructs.

Results: Three factors comprised of ROI indicators emerged to accounted for >43% of variance 

and loaded on variables representing: (1) general arousal or general activation; (2) valence, with 

dissociable responses to anticipation of win versus loss; and (3) region-specific activation, with 

dissociable activation in salience versus perceptual brain networks. Two additional factors were 

comprised of self-report variables, which appeared to represent arousal and valence.

Conclusions: Results indicate that multiview techniques to identify latent variables offer a novel 

approach for differentiating brain activation patterns during task engagement. Such approaches 

may offer insight into neural processing patterns through dimension reduction, be useful for 

probing individual differences, and aid in the development of optimal explanatory or predictive 

frameworks.
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1. Introduction

Responding to motivationally salient appetitive and aversive stimuli is considered a 

fundamental process guiding human behavior. As such, much empirical work has been 

conducted on measuring reward and loss processing as well as positive and negative affect in 

both subjective experience (i.e., self-report)1,2 and in objective metrics (e.g., behavior, 

neuroimaging)3-7. This field of measurement has been instrumental in informing our 

understanding of human behavior in normative conditions5 as well as in the context of 

cognitive and emotional disorders8,9. In particular, the study of reward and loss processing 

has been widely used in studying addiction10, depression11, and anxiety12-14. Thus, refining 

metrics of reward and loss processing has wide ranging applications from understanding 

basic functioning to developing disease models and informing intervention and prevention 

efforts.

The Monetary Incentive Delay task (MID)4 is among the most common paradigms 

employed in neuroimaging research to examine reward and loss processing. Research using 

the task has had a large impact on our understanding of motivationally salient stimuli 

processing, decision making, and goal directed behavior. A key advantage of this paradigm 

is the ability to probe both anticipation and receipt of reward and loss5. The inclusion of gain 

and loss conditions enables direct comparison of opposing affective valance or 

reinforcement processing. Early MID research, in conjunction with functional magnetic 

resonance imaging (fMRI), focused particularly on reward anticipation and processing 

demonstrating that the nucleus accumbens (NAcc) is recruited during reward anticipation 

(even more so than during receipt of reward)4 and is sensitive to degree of reward15. Meta-

analytic work indicates that the striatum more broadly (both ventral and dorsal) is active 

during anticipation of reward and loss7 and whole-brain analyses have provided a more 

holistic understanding of the regions involved in reward and loss anticipation6. These 

findings suggest that a broader network of regions is involved in reward anticipation (i.e., 

right NAcc, middle frontal gyrus [MFG], inferior frontal gyrus [IFG], paracentral lobule, left 

occipital gyrus, and left parahippocampal gyrus; superior temporal gyrus [STG] and left 

angular gyrus) versus loss anticipation (i.e., parieto-occipital transition, right supramarginal 

gyrus, left hippocampus [l-HIPP], right fusiform gyrus, and left MFG), and some regions are 

involved in both (i.e., superior frontal gyrus. [SFG], caudate, putamen)6.

The simplicity of the MID makes this task a viable candidate to examine neural anticipatory 

reward processing impairments as a function of psychopathology as well as a useful tool to 

determine whether these differences can be used to predict clinically meaningful outcomes. 

The MID also demonstrates promising clinical utility in mental health research and has been 

especially informative in addiction10 and depression11, and with burgeoning research in 

anxiety12-14. Addiction has been associated with modulated (often attenuated) ventral 

striatum (VS) activation in anticipation of reward; however, the consistency and nature of the 

VS modulation is less clear due to variability in examination of state vs. trait drug 

influences, task design, and analytic differences (e.g., gain vs. loss contrast calculations)10. 

Major depressive disorder has also been associated with attenuated VS activation during 

reward anticipation, though this is not consistent across studies9. Instead, meta-analytic 
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analyses of monetary gain anticipation in depression suggests attenuated caudal response 

and heightened responding of the MFG11.

Theoretical models of emotional motivation posit that emotion is characterized by valence 

and arousal3 and numerous self-report measures have attempted to account for these 

factors2,16. It is less known if brain responses occur in terms of such dimensions or may be 

represented by different factors. It unclear from previous work whether the various regions 

recruited during MID anticipation reflect similar processing distinctions (e.g., arousal or 

general task activation) or if different regions contribute to distinct cognitive-emotional 

processing (e.g., valence processing, gain/loss discrimination). Multiview machine learning 

analytic frameworks provide an avenue for examining the influence of different modes of 

data in concert, so that each compliments the other and improves learning17. Such 

exploratory techniques (e.g., group factor analysis; GFA) may be helpful in delineating these 

relevant neural dimensions. Identifying such dimensions of neural response may be 

important for (1) enhancing our basic understanding of how the brain processes information; 

and (2) characterizing when functioning is awry in the case of neurological or psychiatric 

conditions. The current study aims to extend the utility of the MID through (1) identifying 

latent variables of regional brain activation during anticipation of reward and loss; and (2) 

determining whether neural factors relate to self-report factors of positive and negative 

valence. This will be accomplished using group factor analytic approaches of the MID and 

several relevant self-report measures within the first 500 individuals recruited for the 

Tulsa-1000 (T1000), a naturalistic longitudinal study of 1000 people, the majority treatment-

seekers for psychiatric disorders18. Factor analytic techniques offer a novel approach to 

indexing regional blood oxygenation level-dependent (BOLD) fMRI responses and 

disentangling latent variables of neural processing. Specifically, GFA is an unsupervised 

exploratory analysis extends traditional factor analytic techniques to reveal latent 

dependencies in data within and between groups in the data structure19. The current study 

examined activations corresponding to recent meta-analytic findings of MID anticipation6 

using Brainnetome atlas regions of interest (ROIs)20. Furthermore, we examined the 

potential for latent variables to explain variability across brain derived and self-report 

variables as well as their relationship to symptoms and/or diagnosis of substance use, 

depression, and anxiety disorders.

2. Materials and Methods

2.1. Participants

Participants included the first 500 participants to complete the baseline assessment in the 

Tulsa-1000 (T1000) study18, which recruited treatment seeking individuals with mood, 

anxiety, substance use and eating disorders, as well as healthy controls, aiming to identify 

brain, behavioral, self-report, physiology, and blood-based variables that can be linked to 

clinically useful treatment predictions. This parent project included participants 18-55 years 

screened for inclusion on the basis of the following scores: (1) Patient Health Questionnaire 

(PHQ-9)21 ≥10; (2) Overall Anxiety Symptom and Impairment Scale (OASIS)22 ≥8; (3) 

Drug Abuse Screening Test (DAST-10)23 ≥3 and/or (4) Eating Disorder Screening (SCOFF) 

≥2. Additionally, healthy controls with no psychiatric diagnoses or elevation in symptoms 
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were included. Exclusion criteria were positive urine drug screen; lifetime bipolar, 

schizophrenia spectrum, antisocial personality, or obsessive compulsive disorders; active 

suicidal ideation with intent or plan; moderate to severe traumatic brain injury; severe and or 

unstable medical concerns; changes in psychiatric medication dose in the last 6 weeks; and 

fMRI contraindications (e.g., metal in body). Full exclusion criteria can be found in the 

parent project protocol paper18. The protocol was approved by the Western Institutional 

Review Board. All participants provided written informed consent prior to participation, in 

accordance with the Declaration of Helsinki, and were compensated for participation. 

ClinicalTrials.gov identifier: #NCT02450240.

After exclusion criteria, the current investigation included 476 participants after removing 

those with unusable fMRI data (e.g., excessive motion, i.e., participants with average 

Euclidian norm values across all repetition time intervals (TRs) >0.3; or no MID data 

available). All participants were administered the MINI International Neuropsychiatric 

Interview (6.0 or 7.0)24,25 by study staff to evaluate lifetime mental disorders, defined by the 

Diagnostic and Statistical Manual of Mental Disorders (4th or 5th Edition)26,27. Sample 

demographic information, and screening measure scores are described in Table 1.

2.2 Procedure

General procedures comprised a clinical interview session and a neuroimaging session 

completed within two weeks on average18. Although the parent project (i.e., T100018) 

consisted of a broader range of protocols, only details relevant to the current study are 

presented here.

2.2.1 Clinical interview and measures.—Study staff administered the MINI clinical 

interview. During this session, participants also provided self-reported information on 

demographics (i.e., age, education, income, ethnicity, and race), anxiety, approach and 

avoidance motivation, depression, emotional processing, impulsivity, pleasure, substance 

use, and trauma. We identified the following measures as relevant to positive and negative 

affect (1) Toronto Alexithymia Scale (TAS)28; (2) Temporal Experiences of Pleasure Scale 

(TEPS)29; (3) Behavioral Activation (BAS) Scale30; (4) Positive and Negative Affect Scales, 

Expanded Form (PANAS-X)2; (5) UPPSP impulsive behavior scale31 (6) Patient Reported 

Outcomes Measurement System/Neurology Quality of Life Neuro positive affect and 

wellbeing (PROMIS/Neuro-QOL-PAW)1. We used the following scales as indices for 

relevant symptomatology: PHQ-921; DAST-1022; OASIS23.

2.2.2 Neuroimaging session.—Participants engaged in 90 trials of the MID4 for 

approximately 19 minutes (i.e., two runs: 45 trials/run, 568s/run). Trials consisted of three 

visual stimuli: cue stimulus (2s) indicating potential gain (circle), loss (square), or neither 

(circle or square); a 2.25-3s delay; target (approximately 250ms, white triangle) requiring a 

button press; a response window (approximately 1.25s); and feedback (2s) indicating the 

outcome (i.e., gain, loss, or no change). Magnitude of potential gains and losses was 

indicated using the placement of a line presented in the cue: a line toward the bottom of the 

cue = no win or loss; a line in the middle of the cue = low win or loss (+/− $1); a line at the 

top of the cue = high win or loss (+/− $5). Text below the cue also indicated potential gains/
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losses (−5/−1/−0/+0/+1/+5). In order to obtain a gain or avoid a loss, participants were 

required to press a button as fast as possible following the target stimulus (Figure S1). Time 

range of responses needed for success were individually calibrated to each participant’s 

reaction time (RT) during a pre-scan practice session to a hit rate of 66%. On average 

participants earned $30 during the task, paid as a bonus in addition to their standard 

compensation.

fMRI images during the MID were acquired with two identical GE MR750 3T scanners 

consisting of contiguous echo-planar imaging (EPI) volumes (39 axial slices, TR/TE = 

2000/27ms, FOV/slice = 240/2.9mm, 128 x 128 matrix). Additionally, high-resolution 

structural images were obtained through a 3D axial T1-weighted magnetization-prepared 

rapid acquisition with gradient echo sequence (TR/TE = 5/2.0 12 ms, FOV/slice = 240 × 

192/0.9mm, 186 axial slices).

2.3. Neuroimaging Data Processing

Processing and analyses of neuroimaging data were conducted using Analysis of Functional 

Neuroimaging (AFNI, http://anfi.nimh.nih.gov) software32. The first three EPI volumes for 

each run were discarded to account for signal stabilization and noise adaptation. 

Subsequently, data were despiked, corrected for slice timing, co-registered to anatomical 

volumes, corrected for motion, smoothed (4 × 4 × 4 mm3 full width at half maximum), and 

normalized to Montreal Neurological Institute (MNI) standard space (resampled voxel size 2 

× 2 × 2 mm3). A general linear model was used to apply boxcar regressors, defined for 

single participant data, to the BOLD response during the anticipation phase of the MID. The 

boxcar regressors were 4s duration, made by convolving AFNI’s BLOCK function of width 

4s with the event times. The first 4 polynomial baseline terms were included, along with 6 

motion parameters (roll/pitch/yaw/x/y/z translation), and task conditions loss, gain, no loss, 

no gain. Model fits resulting from single subject general linear models (i.e., beta coefficients 

for condition contrasts gain minus no gain and loss minus no loss) were extracted for the 

GFA analyses (Figure S2). Data were then extracted for ROIs corresponding to recent meta 

analytic work on the anticipation phase of the MID (basal ganglia[BG], cingulate 

gyrus[CG], fusiform gyrus[FuG], hippocampus[Hipp],insula[INS], inferior parietal 

lobule[IPL], inferior temporal gyrus[ITG], lateral occipital cortex[LOcC], middle frontal 

gyrus[MFG], paracentral lobule[PCL], parahippocampal gyrus[PhG], superior frontal gyrus 

[SFG], and superior temporal gyrus [STG])6 using the Brainnetome Atlas (Fan et al., 2016; 

specific Brainnetome labels ROIs are reported in supplemental materials; Table S1) all 

regions were examined bilaterally for use in GFA. When extracting contrast for an ROI, only 

voxels with a temporal signal to noise ratio of greater than 50 were included.

2.4. Analytic Strategy

Analyses were conducted in R 3.6.133 using RStudio 1.146334 and RMarkdown35,36, 

employing the following packages: chemometrics37, DMwR38, GFA39, ggplot240, psych41 , 

and stats33. Missing questionnaire data were imputed using K nearest neighbor imputation 

for GFA. All R and R Markdown scripts are available as html documents in the 

supplemental materials and can be found on Open Science Framework (https://osf.io/

32kpn/).
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2.5. Group Factor Analysis

GFA19 was used as a multiview method to identify patterns of activation across different 

groups (i.e., views) of measures. Two groups were defined: 1) BOLD ROI contrasts (i.e., 

gain/loss anticipation); and 2)self-report measures. GFA employs Bayesian inference to 

assign automatic relevance determination priors on the factor solution, assuming low-rank 

representation of factor loadings42. Estimation in the current analysis employed a full rank 

approach19,39. The model included 248 ROI and 13 self-report predictors (subject to 

predictor ratio of 1.82). Previous simulation research utilizing Bayesian inference to prevent 

overfitting has demonstrated the adequate performance of GFA in subject to predictor ratios 

from 30:28 (1.07) up to 30:700 (0.04); thus the current ratio of 1.8 (476:261) is 

appropriate19. Furthermore, GFA results could depend on initial values of parameters so we 

replicated estimation 10 times and extracted robust factors that cohere across 10 replicates of 

the factor analysis. The specific matching procedure (the robustComponents function in the 

GFA package) was described as follows: (1) factor loadings of a factor from a replicate were 

correlated to loadings of all factors in another replicate, (2) the factor showing the strongest 

correlation across replicates, and for which the correlation exceeded a threshold (corThr) 

was considered “matched”; (3) repeat Steps (1) and (2) for all replicates and claim a factor 

“robust” if the proportion of “matched” across replicates exceeded a threshold (matchThr). 

With this matching procedure, we obtained a number of robust factors for a given pair of 

threshold parameters. However, different threshold parameters might lead to different 

numbers of robust factors. We thus conducted a 7 x 7 grid search on values of 0.1, 0.3, 0.5, 

0.6, 0.7, 0.8, and 0.9 for the (corTh, matchThr) pairs. For each parameter pair, we 

reconstructed the data by multiplying the robust factor loadings and scores, which were 

compared to the observed data by mean-square-error (MSE). The optimal threshold 

parameter pair was then chosen by the one that gave the fewest robust factors with MSE 

within 1 standard error of the minimal MSE across all pairs. GFA enables the examination of 

variance within a group of variables, but also covariance between the sets. Thus, the 

advantages for this particular study are two-fold: (1) characterizing factors related to both 

BOLD signal contrasts and self-report measures of interest; and (2) determining if factors 

have relationships to both neural activation and self-report measures. Factors presented here 

were chosen based on either accounting for at least 3% percent of overall model variance or 

10% of variance within a set of variables (i.e., BOLD ROIs, self-report).

2.6 General Linear Models (GLM)

We conducted follow-up GLM analyses to explore the potential clinical significance of 

identified factors. Participants were grouped by diagnosis as determined by the MINI24,25, 

including major depressive disorder only (‘MDD’), anxiety disorders only (‘ANX’; social 

anxiety, generalized anxiety, panic, or posttraumatic stress disorder), comorbid MDD and 

anxiety disorders (‘MDD+ANX’), substance use disorders (‘SUD’; recreational drugs, 

excluding alcohol or nicotine; with or without comorbid ANX/MDD), eating disorders 

(‘ED’; with or without comorbid MDD, ANX, or SUDs), and healthy comparisons with no 

psychiatric diagnoses (‘HC’) as in43. We conducted separate one-way ANOVAs to examine 

mean differences on each of the five factor scores extracted (criteria detailed above) 

according to diagnosis (6 levels; HC, ANX, MDD, MDD+ANX, SUD, ED). Bonferroni 

correction performed for multiple comparison in post-hoc analyses when relevant. Similarly, 
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regression models were employed to examine relationships between symptoms of depression 

(PHQ-9), anxiety (OASIS), and substance use (DAST-10) and each of the factor scores.

2.7 Behavioral and demographic analyses.

We also examined Spearman’s correlations between factor scores and MID RT by conditions 

(high magnitude gains/losses, neutral outcome). Furthermore, we examined the relationship 

of the factor scores with sex, age, and education level using Welch’s independent sample t-
test, linear regression, and one-way ANOVA respectively.

3. Results

GFA output from R along with full resolution images of the factor loading plots for latent 

variables of interest can be found on Open Science Framework https://osf.io/32kpn/.

3.1 Demographics and sample characteristics

Table 1 presents the demographic information of the current sample as well as descriptive 

statistics regarding self-report measures of symptoms and positive and negative valence.

3.2 GFA examining BOLD signal response and self-reported positive/negative valence

Distribution and correlations of factor scores can be found in the supplement demonstrating 

the assumption of orthogonality was met (Figures S3 and S4). Twenty-nine factors were 

extracted, together accounting for 63.6% of the total variance. This included three factors 

accounting for >3% of the total variance across both the brain imaging and self-report 

variable sets; and two additional factors that explained >10% variance within the self-report 

variable set (no additional factors were identified that accounted for >10% in the brain 

imaging variable set). These five factors accounted for 49.42% of the overall variance. 

Notably the two factors specific to the self-report variables accounted for only 2.37% of the 

variance in the total model due to there being a much larger number of ROI contrast 

variables (n = 248) in the model relative to self-report variables (n = 13). Combined the two 

self-report factors extracted accounted for 42.65% of variance within the self-report 

variables. Thus, these five factors were interpreted and used for further analysis. Median 

strongest correlation values of the robust factors across the 10 replicates conducted in the 

GFA indicated that the robust factors were reliable (all r’s > 0.8; Figure 1). The first three 

factors identified only included ROI contrast variables, with no significant loadings observed 

for self-report variables. The first factor (F1; arousal/general task activation factor) 

accounted for 24.61% of the overall variance in the model. All loadings were positive across 

conditions (i.e., gain, loss), indicating that F1 represented an overall activation, or valence-

independent general activation (Figure 2). The second (F2; valence/condition discrimination 

factor) accounted for 19.24% of the overall variance. Indicators from the gain anticipation 

condition loaded positively and the loss anticipation condition negatively, indicating that F2 

may represent differentiation of activation according to valence (Figure 3). The third factor 

(F3; region specific factor) accounted for 3.2% of the overall variance. The loadings on this 

factor seemed to differentiate according to brain region, with higher loadings for gain 

conditions. Strong positive loadings were observed for subcortical (i.e., striatum, insula, 

hippocampus, basal ganglia), cingulate, and superior temporal regions, whereas strong 
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negative loadings were observed for inferior parietal, inferior temporal, middle frontal, and 

occipital cortical regions (Figure 4).

Factor 22 (F22) and factor 26 (F26) are interpreted here given that they accounted for a 

significant amount of variance in the self-report variable block. F22 (self-report valence 

factor) accounted for 29.4% of the variance among self-report variables (1.47% overall). 

Importantly the amount of variance accounted for among all predictors was low likely due to 

the large number of ROI predictors in the model resulting in high factor numbers (22 and 

26). However, they do predict a large amount of variance within their particular group (view; 

i.e. self-report) and demonstrated high coherence across replicates (see: Figure 1). The 

pattern of loadings indicated that positive affect, pleasure, and approach motivation variables 

loaded positively, and negative affect, alexithymia, and impulsivity loaded negatively, 

(Figure 5). F26 (arousal/response intensity factor) accounted for 13.25% of the variance in 

the self-report variables (0.9% overall) and all self-report indicators loaded significantly in 

the same direction, with the exception of PANAS-X positive affect and PROMIS wellbeing, 

which did not load significantly (Figure 6). In addition to self-report loadings, some ROI 

indicators loaded onto F26; however, these loadings were not interpreted, as the general 

pattern of standard errors included zero with the exception of the parahippocampal gyrus in 

the gain condition. Notably, F26 accounted for only 0.23% of variance among the ROI 

contrast variable set. Notably, no identified factor is related to dependencies between ROI 

and self-report variable groups.

3.3 GLMs

ANOVA models indicated that no factor score means differed across diagnostic groups (p’s 

= 0.16-0.67), with the exception of the self-report valence factor (F(5,460) = 2.35, p 
= .0402) . Pairwise comparisons indicated that HC had a higher mean score (M = 0.24) 

relative to individuals with MDD only (M = −0.23; d = 0.53, CI95 [0.18-0.89]), indicative of 

higher positive and lower negative affect. It is important to note that the omnibus effect 

would not survive correction for multiple comparisons. Regression analyses were also non-

significant for all factors and symptom measure scales (p-values = 0.06-0.95) with the 

exception of the OASIS score relating negatively to the self-report valence factor (β =−0.09, 

p = 0.039, R2
adj = 0.007).

3.4 Demographic and behavioral data results

Independent samples t-tests indicated that no factor scores differed by sex (p’s = 0.13-0.71) 

with the exception of the valence/condition discrimination factor, t(375.98) = −1.99, p = 

0.046, d = 0.21, such that males (M = 0.12) had higher scores than females (M = −0.06), 

indicative of greater differential activation during gain anticipation as compared to loss 

anticipation. Regression models indicated that age did not predict any factor scores (p’s = 

0.06-0.94) with the exception of the region specific factor (β =0.11, p = 0.015, R2
adj = 0.01) 

indicating that older participants demonstrated larger differentiation between subcortical, 

superior temporal, and cingulate regions as compared to inferior parietal, inferior temporal, 

middle frontal, and occipital cortical regions. Though significant, effect sizes of these 

findings were small, accounting for approximately 1% of the variance. ANOVA also 

revealed that education did not predict any of the factor scores (p’s = 0.38-0.97). 
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Correlations indicated that there were no significant associations between RT in any MID 

condition and factor scores (Figure S3).

4. Discussion

The current study applied a multi-view method, group factor analysis (GFA), to fMRI 

BOLD signal contrasts elicited by anticipation of high magnitude gain and loss outcomes 

relative to neutral outcomes during the MID task and relevant self-report indicators of 

positive and negative affect. Factors of interest were examined for their relationship with 

psychopathology diagnoses and symptoms. Results indicate that GFA identified factors 

corresponding to BOLD signal activity indexing: general task activation, discrimination of 

gain/loss anticipation, and region-specific activity. Separate factors distinguished patterns of 

self-report responses associated with arousal and valence. No factor significantly predicted 

variance across brain-derived and self-report indicators.

4.1 fMRI BOLD signal activation contrasts

The factors accounting for the greatest amount of variance in the overall model (i.e., arousal/

general task activation, valence/condition discrimination, region specific factors) had 

significant loadings from the ROI indicators and no loadings from self-report data. The 

arousal/general task activation factor had loadings with consistent directionality across 

regions and conditions, suggesting that this factor may represent overall arousal or 

attentional processes. Alternatively, this factor may reflect a global BOLD signal influenced 

by physiological differences impacting the BOLD signal. However, if primarily due to 

physiological differences (i.e., in cerebral vasculature), one might expect the factor to 

significantly correlate with age – which it did not. It will be useful for future work to 

identify whether similar factors can be identified across a variety of tasks and whether the 

factor is modulated by experimental manipulation of blood flow or arousal. For example, 

many factors influence the BOLD response in addition in neural metabolic processes, 

including a wide range of autoregulatory processes, making cautious interpretation of BOLD 

signal responding critical44. Regardless, a factor analytic approach like used here could be 

useful for controlling variance associated with arousal or global signal to allow for more 

specific focus on activation relevant to conditions of interest.

Results suggest that the valence/condition discrimination factor demonstrate patters of 

loadings representing distinctions between positive and negative valence or between positive 

and negative reinforcement (i.e., avoiding loss vs. obtaining gain). The identification of such 

a factor provides further evidence that such distinction in neural processing exists across a 

range of brain regions that have been previously identified as activated during the MID task. 

Future research could be useful to determine whether additional regions other than those 

focused on here would also load on a valence-specific factor, and whether similar valence-

specific factors could be identified for tasks other than the MID.

The region-specific factor may characterize relative activation in circuits associated with 

salience processing (e.g., striatum, insula) as compared to executive processing (occipital 

cortex, inferior parietal lobule, inferior temporal gyrus). The pattern of relative inverse factor 

loadings of activation in these regions (i.e., salience vs. executive) may indicate that 
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individuals down regulate basic attentional processing regions in favor of increasing 

activation of salience processing during MID anticipation. Importantly, the direction of 

factor loading (i.e., positive/negative) is not indicative of brain activation or deactivation; 

thus, inverse loadings do not imply a particular directionality of brain activity and the 

alternative hypothesis that these factor loadings represents down regulation in salience 

processing in favor of executive function regions cannot be ruled out.

Overall these findings are consistent with theoretical assertions that anticipatory affect 

comprises both arousal and valence5. Importantly, the current results suggest that brain 

regions active during reward and loss anticipation are involved in both general salience 

processing and in discerning potential gain versus loss. However, these data do not preclude 

the interpretation that the arousal/general task activation represent a global signal that may 

not be specific to the MID. As such future GFA work is needed within other fMRI tasks to 

determine if region specific factors in other tasks relate to previously reports specific effects. 

Results also extend recent research suggesting that particular brain regions are sensitive to 

anticipated outcomes in the MID (i.e., gain/loss)6,15,45.Importantly, this previous empirical 

work has often been relegated to circumscribed regions such as Nacc15 and VS45, which has 

been noted as a limitation of this body of literature7. Current results support the idea that 

numerous brain regions likely respond as part of a broader network during MID anticipation, 

consistent with recent meta-analytic data,6 and extend this literature demonstrating that 

factors discern arousal and valence in gain and loss anticipation across brain regions. 

Moreover, ROIs in the current study loaded on both the arousal factor and valence factor; 

whereas traditional fMRI analytic approaches may have difficulty discerning these 

responses, the GFA approach provides an avenue for distinguishing the two.

4.2 Self-report indicators

Two factors examined from the GFA represented a significant amount of variance within 

self-report indicators (i.e., self-report valence factor, self-report arousal/response intensity; 

Figures 5 & 6). Notably, these factors did not account for much variance in the overall model 

due to the relatively fewer predictors as compared to ROI variables. The self-report valence 

factor displayed pattern of loadings suggesting that it represents discernment of valence 

across questionnaire indicators. Positive affect variables, pleasure, approach motivation, and 

well-being loaded positively, whereas impulsivity, alexithymia, and negative affect loaded 

negatively. The self-report arousal/response intensity factor comprised loadings from self-

report variables all in a consistent direction, indicating this factor may represent response 

intensity (i.e., arousal). The pattern of the self-report factors findings is analogous to the 

valence and arousal findings in the ROI valence/condition discrimination and arousal/

general task activation factors. Furthermore, the distinction between valence and arousal in 

the self-report factors is consistent with previous self-report literature2,16. However, PANAS-

X positive affect did not load significantly and PROMIS/Neuro-QOL-PAW loaded slightly 

opposite of the rest of the significant loadings on the self-report arousal/response intensity 

factor. This may indicate that constructs captured on the PANAS-X2 and PROMIS/Neuro-

QOL-PAW (items such as: “proud”, “interested, “inspired”; and feeling “at ease”, “relaxed”, 

“peaceful” respectively), while positive, may not be as intense or arousing as what is 

measured by other scales.
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4.3 Clinical relevance

With respect to psychiatric diagnoses and symptoms, there were no mean differences 

between diagnostic groups on the arousal/general task activation or valence/condition 

discrimination factor scores. These factors also did not relate to dimensional 

psychopathology symptoms. This is inconsistent with research reporting modulated VS 

activation in addiction10, as well as attenuated VS9, reduced dorsal striatum, and increased 

MFG activation in depression11. However, these studies focused on specific regional 

activations, not latent variables of neural activation. The current results indicate that both 

neural activation during MID and self-report variables were associated with analogous but 

distinct pairs of factors characterizing general activation (e.g., arousal) and condition 

discernment (e.g., valence). Based on these findings, some readers may be tempted to call 

into question the legitimacy of either the MID or self-report measures as legitimate probes of 

arousal or valence discernment. However, we would argue that both likely measure 

legitimate aspects of these constructs but tap into very different features of underlying 

processes. Given the lack of relationships to self-reported affect, we hypothesize that the 

brain derived factors may represent general neural response functioning which may not 

involve conscious awareness, whereas self-report derived factors are representative of an 

individual’s conscious experience of emotions. In other words, if the identified factors are 

robust ways in which the human brain responds to salient stimuli, they may not be as 

dynamic as one’s state level of arousal or valence and represent more trait-like measures. 

Thus, perhaps intermediate or more subtle, region-specific neural responses (not detected via 

GFA) may drive the affect actually experienced by individuals from one state to another. 

One possibility to be tested in future work would be that the brain-derived factors identified 

here may be more likely to relate to more trait-like or “hard-wired” levels of measurement 

(e.g., genetics) whereas the self-report derived factors may be more likely to relate to 

functional levels of analyses (i.e., psychiatric symptoms, diagnoses). Accordingly, the only 

factor which showed any relationship to our psychiatric measures was the self-report derived 

valence factor. Results indicate that healthy individuals endorsed significantly higher self-

report valence discernment scores than individuals with depression. Examination of 

dimensional symptom measures indicate self-report valence discrimination was only 

associated with anxiety symptoms, such that higher anxiety related to lower valence 

discernment. These results are consistent with prior work demonstrating blunted emotional 

valence responding in depression and anxiety46-49

Results also indicated that men had higher levels of differential brain activation between 

anticipation of gains as compared to losses. These findings extend literature indicating 

differential reward processing between males and females50, in which animal models 

indicate that females exhibit stimulus directed, as opposed to goal-directed reward 

behavior51. Event-related potential analysis indicated that adolescent males had increased 

responding to rewards and punishment than adolescent females52. Furthermore, results 

indicated that there was a significant association of age and F3, which may reflect 

differential impacts of age on regional brain volume across the ROIs or distinct patterns of 

network-based activation during gain and loss anticipation. Although the size of these effects 

were small, this is consistent with recent work effect sizes from more traditional ROI based 

analyses conducted in large samples designed to reduce false-positive results53.
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4.3 Limitations

A key limitation to the current study is the cross-sectional nature of the design, precluding 

interpretation of causal influences and directionality in identified relationships. The current 

analysis only considered anticipation during high magnitude trials from the MID. Although 

this enabled inclusion of a broad range of brain regions implicated in MID anticipation in 

previous meta analytic work6, it is possible that inclusion of different magnitudes could alter 

the underlying factor structure. We chose to focus on the set of brain regions and contrasts 

that we did in order to minimize the number of variables included in the GFA, in a way that 

was optimally informed by previous work with the MID. We also chose to focus on mean 

percent signal change across the anticipation phase of the task, within predefined regions of 

interest, as one way of using factor analytic approaches to identify more parsimonious 

dimensions of interest. We recognize that there are numerous approaches that can be used to 

reduce dimensionality of fMRI data, such as using latent class analysis to identify different 

temporal trajectories of activation throughout the task or the use of voxel-based pattern 

analysis. The approach taken here provides one strategy that maintains similarity to more 

traditional, ROI-based approaches to analysis, which thus supports interpretation of findings 

in relation to that previous literature.

Additionally, the goal of the T1000 study was longitudinal investigation of dimensional 

characteristics of a transdiagnostic clinical sample consistent with RDoC 

recommendations18; thus, the clinical categories examined in the current study did not 

account for comorbidity in the sample or heterogeneity within the SUD group (e.g., alcohol 

use disorder). Notably, the sample consisted primarily of individuals with mood, anxiety, 

and substance disorders. This may impact the generalizability of the current findings. Future 

work clarifying the relationship between the identified factor scores and psychopathology 

would benefit from nuanced consideration of comorbidity and or explorations of factor 

structures within various clinical groups. Finally, dimensional indicators of psychopathology 

symptoms employed in the current study were self-reported, not clinician rated. However, 

self-report measures have been reported to converge with clinician-administered scales54,55. 

Moreover, results were consistently null regarding clinician administered interview (MIN) 

and self-reported symptom variables.

4.4. Conclusions

The current analyses provide novel evidence that neural activity during gain and loss 

anticipation is associated with factors which differentiate general task activation and 

condition specificity. An important next step in this line of work is to determine if these 

factors are reproducible and reliable over time56,57. The current study did not demonstrate 

strong evidence for the relationship between factors and clinically relevant variables but did 

demonstrate greater differentiation between gain and loss anticipation among males 

compared to females. Also, age was associated with greater distinction between salience and 

executive function regions. Thus, aforementioned reliability work may support the 

hypothesis that functional circuitry indexed during the MID demonstrates integrity in the 

context of psychopathology under experimental conditions and clinical disruption may be 

more nuanced. It would be beneficial for future studies to: 1) examine factors related to 

various magnitudes of outcomes: and 2) to manipulate the experimental context during MID 

White et al. Page 12

Neuroimage. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(e.g., cognitive load, level of arousal, modulation of blood flow). Overall, current results 

indicate that a factor analytic approach may be informative alongside more traditional fMRI 

analyses to serve as a general assessment of arousal and valence processing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Median correlation values of the robust factors across all 10 replicates of the GFA. Values 

indicate good to excellent reliability.
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Figure 2. 
Factor loadings for the F1 (i.e., arousal/genera task activation) resulting from GFA. Median 

factor loadings and 95% confidence interval are presented for each Brainnetome ROI and 

were drawn from the GFA W matrix. ROIs are grouped into anatomical regions by condition 

using brackets and color coding. Labels for ROI variables include Brainnetome id and 

anatomical descriptor (r=right; l=left). Individual ROI predictors are grouped into broader 

regional descriptors: BG=basal ganglia, CG=cingulate gyrus, FuG=fusiform gyrus, 

Hip=hippocampus, INS=insula, IPL=inferior parietal lobule, ITG=inferior temporal gyrus, 

LOcC=lateral occipital cortex, MFG=middle frontal gyrus, PCL=paracentral lobule, 

PhG=Parahippocampal gyrus, SFG=superior frontal gyrus, STG= superior temporal gyrus. 

SR = self-report variables. MID conditions are organized such that gain (+) is on the left half 

of the plot and loss (−) is on the right with corresponding anatomical regions directly across 

the circle.
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Figure 3. 
Factor loadings for the second factor (i.e., valence/condition discrimination) resulting from 

group factor analysis. Factor loadings presentation and labels are consistent with Figure 2.
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Figure 4. 
Factor loadings for the third factor (i.e., region specific) resulting from group factor analysis. 

Factor loadings presentation and labels are consistent with Figure 2.
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Figure 5. 
Factor loadings for the fourth factor (i.e., self-report valence) resulting from group factor 

analysis. Factor loadings presentation and labels are consistent with Figure 2.
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Figure 6. 
Factor loadings for the fifth factor (i.e., self-report arousal/response intensity) resulting from 

group factor analysis. Factor loadings presentation and labels are consistent with Figure 2.
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Table 1.

Descriptive statistics (n = 476) for all demographic and self-report variables.

Mean (SD) Range Skew Kurtosis

Age 34.42(10.57) 18-55 0.58 −1.67

Education 5.94(1.88) 1-11 0.39 −0.96

PHQ-9 9.27(6.57) 0-27 −0.42 −0.17

OASIS 7.50(4.75) 0-20 0.26 −0.80

DAST-10 2.75(3.63) 0-10 −0.07 −0.95

BAS-Drive 10.98(2.71) 4-16 0.90 −0.87

BAS-Fun seeking 11.68(2.54) 5-16 −0.16 −0.41

BAS-Reward 17.19(2.16) 9-20 −0.38 −0.49

PANASX-Negative 20.66(7.90) 10-45 −0.82 0.80

PANASX-Positive 28.64(8.63) 10-50 0.59 −0.28

PROMIS/Neuro-QOL PAW 49.81(7.46) 32-68 0.12 −0.57

TAS- Difficulty 16.87(3.55) 7-33 0.36 −0.11

TAS- External Thinking 26.09(10.35) 8-40 0.21 −0.74

TAS- total 57.44(10.35) 20-96 −0.40 1.89

TEPS-Anticipatory 43.17(8.59) 14-60 0.01 0.27

TEPS-Consummatory 38.47(6.38) 16-48 −0.55 0.06

UPPSP-Negative 30.24(7.71) 12-47 −0.78 0.26

UPPSP-Positive 26.70(9.81) 14-56 −0.26 −0.59

Sex: Female (n = 304; 63.9%); Male (n = 172; 36.1%)

Diagnosis: HC (n = 58), ANX( n = 17), MDD (n = 70), MDD+ANX (n = 164), SUD (n = 149), ED (n = 18)

Note: PHQ-9 = Patient Health Questionnaire; DAST-10 = ; OASIS = ; BAS = Behavioral Activation Scale; PANAS-X = Positive and Negative 
Affect Scales, Expanded Form; PROMIS/Neuro-QOL-PAW = Patient Reported Outcomes Measurement System/ Neurology Quality of Life Neuro 
positive affect and wellbeing; TAS= Toronto Alexithymia Scale; TEPS = Temporal Experiences of Pleasure Scale; UPPSP = Urgency, 
Premeditation, Perseverance, Sensation seeking, and Positive Urgency; HC = Healthy Control, ANX = anxiety only, MDD = depression only, MDD
+ANX = comorbid anxiety and depression, SUD = substance use disorder, ED = eating disorder
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