Skip to main content
. 2021 Apr 30;2021:5570870. doi: 10.1155/2021/5570870

Table 5.

Comparison of ELM/RELM with the traditional classifiers on the CK dataset.

Classifiers AlexNet DenseNet GoogleNet Inceptionv3 ResNet101
Accuracy Precision F1-score Accuracy Precision F1-score Accuracy Precision F1-score Accuracy Precision F1-score Accuracy Precision F1-score
RELM 0.82 0.80 0.83 0.83 0.85 0.82 0.78 0.75 0.78 0.78 0.69 0.74 0.82 0.84 0.82
ELM 0.83 0.79 0.82 0.73 0.75 0.74 0.72 0.76 0.70 0.78 0.79 0.79 0.56 0.46 0.52
SVM 0.80 0.80 0.81 0.77 0.75 0.77 0.80 0.80 0.80 0.77 0.75 0.77 0.82 0.82 0.80
Naïve Bayes 0.23 0.25 0.25 0.20 0.28 0.25 0.29 0.28 0.28 0.24 0.25 0.24 0.43 0.45 0.45
Random forest 0.45 0.49 0.46 0.76 0.79 0.75 0.53 0.48 0.52 0.52 0.53 0.52 0.70 0.77 0.75
K-nearest neighbors 0.57 0.59 0.56 0.60 0.68 0.69 0.60 0.60 0.61 0.53 0.54 0.59 0.79 0.79 0.77
Logistic regression 0.29 0.31 0.29 0.53 0.52 0.52 0.55 0.59 0.56 0.58 0.60 0.59 0.59 0.60 0.61
Random tree 0.26 0.28 0.25 0.53 0.55 0.50 0.75 0.75 0.73 0.57 0.57 0.57 0.55 0.53 0.57
Simple logistic 0.48 0.47 0.48 0.73 0.74 0.70 0.73 0.75 0.75 0.75 0.78 0.75 0.74 0.74 0.74
Decision table 0.23 0.20 0.23 0.48 0.45 0.46 0.74 0.70 0.74 0.43 0.45 0.40 0.42 0.42 0.42
Multiclass classifier 0.57 0.62 0.60 0.65 0.67 0.67 0.68 0.74 0.70 0.74 0.74 0.74 0.70 0.74 0.70
Multilayer perceptron 0.43 0.43 0.41 0.65 0.70 0.69 0.78 0.68 0.67 0.68 0.65 0.66 0.65 0.68 0.68