4.
基于朴素贝叶斯分类器方法的CINV风险预测模型与其他研究结果对比
Comparison of CINV prediction model based on machine learning method with other research models
Model | AUC | Sensitivity | Specificity |
Prediction model of acute CINV based on machine learning | 0.72±0.04 (95%CI: 0.69-0.75) | 0.83±0.04 (95%CI: 0.80-0.86) | 0.45±0.03 (95%CI: 0.42-0.47) |
Prediction model of delay CINV based on machine learning | 0.74±0.02 (95%CI: 0.72-0.77) | 0.84±0.01 (95%CI: 0.83-0.86) | 0.48±0.03 (95%CI: 0.45-0.52) |
Prediction model of acute CINV from George team | 0.69 (95%CI: 0.59-0.79) | 0.72 | 0.52 |
Prediction model of delay CINV from George team | 0.70 (95%CI: 0.60-0.80) | 0.76 | 0.50 |
Prediction model of CINV from Molassiotis team | - | 0.79 | 0.50 |