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The colonization of the seafloor is one of the most important 
events in evolutionary history, which led to an explosive radia-
tion and large-scale morphological diversification of marine 

phyla1,2. Flatfishes are one of the most successful groups of seafloor 
colonizers and have evolved a specialized morphology that is unique 
in teleosts. Such morphological innovations include a flat and thin 
body plan that facilitates embedding into substrates3, an asymmetri-
cal body axis, mostly represented by one eye migrating to the con-
tralateral side of the skull for gaining binocular vision, which ensures 
improved success of preying4, and modified median and paired fins 
that coordinate together to enable flexible over-substrate ‘fin-feet’ 
walking5,6. The body plan exhibited by flatfishes reflects morpho-
logical trade-offs to facilitate embedding, predation and maneuver-
ing behaviors adapted to their over-substrate dwelling lifestyle4,6. 
However, the genetic basis of such morphological adaptations in 
flatfishes has remained largely unknown since the time of Darwin7,8.

Some progress has been made concerning the evolution-
ary origin and the morphological adaptations of flatfishes in 
recent years. Current views support the origin of flatfishes among 
basally diverging percoids9–11. Despite this progress, there is still 
disagreement regarding when and how flatfishes diverged from 
their ancestors. An unanswered question is whether the flatfishes 
(particularly Pleuronectoidei and Psettodoidei, the only two sub-
orders of Pleuronectiformes) share a monophyletic origin9,12–14. 
This has been difficult to address due to limitations in providing a 
solid evolutionary framework for understanding the genetic basis 
of the morphological adaptations of flatfishes; largely because the 

supposed polyphyletic origin may predict differed genetic mecha-
nisms for their morphological adaptations. The early exploration of 
the genetic origin of the specialized morphology of flatfishes was 
started by Inui et al.15, and continued by Hashimoto et al.16,17 and 
Suzuki et al.18, but the results varied from either a NODAL or thy-
roid hormone (TH) regulation of their asymmetrical body plan. 
Shao et al.19 were the first to elaborate on this topic by applying a 
genomic framework and providing evidence for retinoic acid (RA) 
and TH involvement in the regulation of body plan asymmetry of 
flatfishes. However, all these studies mainly focused on the asym-
metric body plan in flatfishes under the framework of only one or 
two flatfish species, while the genetic basis of a wider spectrum of 
morphological adaptations (for example, body-plan flatness, body 
and eye asymmetry and fin modification) in the whole flatfish group 
remains to be explored from a systematic evolutionary perspective.

In the present study, we assembled genomes of eight species 
de novo (Trinectes maculatus, Chascanopsetta lugubris, Brachirus ori-
entalis, Paraplagusia blochii, Colistium nudipinnis, Pseudorhombus 
dupliocellatus, Platichthys stellatus and Psettodes erumei) represent-
ing most of the major extant clades (8 of 14 families, including the 
sole family in Psettodoidei and 7 families in Pleuronectoidei) of 
Pleuronectiformes and two closely related species of Perciformes 
with regular body plans (Toxotes chatareus and Polydactylus sex-
tarius). Combined with three previously published genomes of flat-
fish species, which added one more family, and 80 transcriptomes 
(including 72 from three tissues of Paralichthys olivaceus; 4 from 
two tissues of Platichthys stellatus; 2 from two tissues of Toxotes 
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chatareus and 2 from two tissues of Polydactylus sextarius) that we 
generated, we systematically studied: (1) the phylogeny of flatfishes, 
which provides an evolutionary framework for better understand-
ing the genetic adaptation of flatfishes; and (2) genes that experi-
enced significant alterations, to gain insights into the genetic basis 
underlying the unusual body plan of flatfishes.

Results
Genome assembly and annotation. Using whole-genome sequenc-
ing strategies, we generated more than two terabytes (Tb) of sequenc-
ing data (Supplementary Tables 1–13 and Supplementary Notes 1–5) 
and de novo-assembled genomes of the ten species indicated above 
(Fig. 1a, Supplementary Tables 14–23 and Supplementary Notes 6 
and 7). Among them, three species with controversial phylogenetic 
status, including Psettodes erumei (Pleuronectiformes), Toxotes 
chatareus (Perciformes) and Polydactylus sextarius (Perciformes), 
were sequenced using a Nanopore platform (Supplementary Tables 1 
and 12 and Supplementary Notes 1, 3 and 4). Hi-C data analysis sup-
ported the generation of chromosome-level genome assemblies for 
three species: Platichthys stellatus, Toxotes chatareus and Polydactylus 
sextarius (Fig. 1b–d, Supplementary Tables 24–29, Supplementary 
Figs. 1–3 and Supplementary Note 8). All ten assembled genomes 
possess high continuity and accuracy as indicated by the N50 
length (64.40 kilobases (kb)–25.10 megabases (Mb); Supplementary 
Tables 14–26 and Supplementary Notes 6–8), genome integrity 
(Supplementary Table 30, Supplementary Fig. 4 and Supplementary 
Note 9), BUSCO scores (93.6–99.1%; Supplementary Tables 31–40 
and Supplementary Note 10), read mapping ratios (94.64–99.87%; 
Supplementary Table 41 and Supplementary Note 10) and tran-
script mapping ratios (95.06–99.32%; Supplementary Tables 42–47 
and Supplementary Note 10). The quality of the chromosome-level 
assemblies was also demonstrated by the good genome synteny 
(Fig. 1e, Supplementary Figs. 5–9 and Supplementary Note 11). The 
assembled genome sizes range from 399.64 Mb (Pseudorhombus 
dupliocellatus) to 643.91 Mb (Paralichthys olivaceus) (Fig. 1f, 
Supplementary Tables 14–30 and Supplementary Notes 6–9). 
After masking repetitive sequences (Supplementary Tables 48–68, 
Supplementary Fig. 10 and Supplementary Notes 12 and 13), these 
genomes were predicted to contain ~20,000 protein-coding genes 
(Supplementary Tables 69–79 and Supplementary Notes 14 and 
15), which share similar gene structures to the published genomes 
(Extended Data Fig. 1 and Supplementary Note 14).

Polyphyletic origin of flatfishes. By combining our ten 
de novo-assembled genomes with eight published genome 
sequences from teleost species of Cynoglossus semilaevis, 
Paralichthys olivaceus, Scophthalmus maximus, Larimichthys cro-
cea, Labrus bergylta, Oreochromis niloticus, Oryzias latipes and 
Danio rerio (see Supplementary Note 16), we reconstructed the 
phylogeny of flatfishes using concatenated sequences of coding 
sequence (CDS) (codon1 + 2 + 3, GTRGAMMA model; codon1 + 2, 
GTRGAMMA model) and 4dTV (fourfold degenerate synonymous 
site, GTRGAMMA model) derived from 1,693 single-copy genes 
(Supplementary Figs. 11–15 and Supplementary Notes 16 and 
17). We further constructed the species tree under the coalescent 
model20,21. Our results consistently show that Psettodes erumei of 

suborder Psettodoidei forms one clade with the two Perciformes 
species with regular body plan, Toxotes chatareus and Polydactylus 
sextarius, and species of suborder Pleuronectoidei form its sister 
clade (Fig. 2a, Supplementary Figs. 16 and 17 and Supplementary 
Note 17). The observation that, in both gene trees and species 
trees, Psettodes erumei is clustered with nonflatfish Perciformes 
rather than with Pleuronectoidei species provides strong support 
for the independent origins of Pleuronectoidei and Psettodoidei. 
Alternatively, it is also possible that they had a monophyletic origin 
but secondarily lost their traits independently, in Toxotes chatareus 
and Polydactylus sextarius. However, considering that Psettodes eru-
mei has also been observed to show affinity to Sphyraena argentea, 
Centropomus armatus, Coryphaena hippurus, Nematistius pectoralis 
and many other perciforme species rather than Pleuronectoidei in 
multiple previous phylogenetic studies22,23, this scenario is less likely, 
because multiple independent losses in many species along a lineage 
are less likely according to the parsimony principle of evolution24. 
We also analyzed mutations in body-plan-related genes, and con-
clude that many reverse mutations would need to have arisen if we 
assume secondary losses in Toxotes chatareus and Polydactylus sex-
tarius (Supplementary Table 80 and Supplementary Note 17), which 
is less likely in molecular evolution25. Furthermore, reconstruction 
of ancestral chromosomes for the Pleuronectoidei and Psettodoidei 
lineages also shows that Psettodes erumei shares specific chromo-
some rearrangements with Toxotes chatareus and Polydactylus sex-
tarius, rather than with Pleuronectoidei species, further supporting 
a polyphyletic origin for these two lineages (see Supplementary Note 
17). Indeed, the morphological resemblance between Psettodoidei 
and percoids has long been noticed by several ichthyologists26–28, 
and Psettodoidei were even once regarded as ‘simply an asymmetric 
percoid’9,26. The morphological differentiation of Psettodoidei from 
Pleuronectoidei includes: (1) lack of skin folds around the eyes29; 
(2) posterior insertion of the dorsal fin30; (3) less extensive cranial 
asymmetry14; (4) presence of spinous rays in fins31; and (5) larger 
mouths with specialized teeth31. These phenotypical observations, 
combined with our results, provide strong support for a polyphy-
letic origin of flatfishes, with Psettodoidei and Pleuronectoidei, 
respectively, arising from two independent evolutionary events. 
To capture real evolutionary signals, we therefore split the previ-
ously known Pleuronectiformes into ‘real flatfish Pleuronectoidei’ 
(RFP) and ‘flatfish-like Psettodoidei’ (FLP) lineages in the following 
analyses.

Fast evolution in flatfishes. With fossil calibration, we estimated 
the emergence of RFP and FLP to be approximately 76.1 and 80.0 
million years ago (Ma), respectively, in the late Cretaceous (Fig. 2a). 
Our time estimates are consistent with the calibration in a previ-
ous study using multiple nuclear loci9, which is earlier than other 
estimations using mitochondrial or few nuclear loci12,32. The late 
Mesozoic to early Cenozoic period, which includes the Cretaceous, 
is known as the ‘second age of fishes’, marking the onset of major 
diversifications and morphological diversification of teleosts33,34. 
Guinot and Cavin35 attributed such radiations to the combined 
effects of exceptionally high seawater temperatures, increasing sea 
levels and widespread epicontinental seas during the period36,37. The 
period of 80–75 Ma during the late Cretaceous experienced a peak of 

Fig. 1 | Genome assembly and gene annotation of ten species. a, Geographical distribution of the species sequenced in this study. The dark green areas  
on the maps represent the global distribution regions of each species, which were acquired from the open source FishBase database (www.fishbase.se).  
The L, R and LR represent sequenced species that have left-side eyes, right-side eyes or one eye on each side of the body, respectively. b–d, Circos plot 
of distribution of the genomic elements in the species Polydactylus sextarius (b), Toxotes chatareus (c) and Platichthys stellatus (d). From outer to inner 
ring are the distributions of protein-coding genes, tandem repeats (TRP), long terminal repeats (LTR), short interspersed nuclear elements (SINE), long 
interspersed nuclear elements (LINE) and GC content, respectively. e, Genomic colinearity of three chromosome-level genomes. The number in the circles 
represents the chromosome identity for each species. f, Genome size statistics of these species. Diagram indicates the size of each type of element, 
including the coding regions, DNA elements, LINE, SINE, LTR and other genomic regions, in each species.

Nature Genetics | VOL 53 | May 2021 | 742–751 | www.nature.com/naturegenetics 743

http://www.fishbase.se
http://www.nature.com/naturegenetics


Articles NaTurE GEnETics

such global change37. We hypothesize that such fast seafloor spread-
ing and the resulting explosion of epicontinental habitat may have 
facilitated the seafloor colonization and eventual origin of flatfishes. 

Such a scenario also predicts selection pressure and faster evolu-
tionary rate in RFP and FLP, since they experienced radical habitat 
transition from water column to seafloor. To test this hypothesis, 
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we calculated the relative evolutionary rates in RFP, FLP and closely 
related Perciformes species using single-copy orthologous genes. 
Our results revealed a much higher relative evolutionary rate in RFP 
than in Perciformes species (Fig. 2b, Supplementary Tables 81 and 
82 and Supplementary Note 18). The relative evolutionary rate of 
FLP is also slightly higher than that for Perciformes species (Fig. 
2b and Supplementary Tables 81 and 82), which may explain why 
they exhibit a ‘simply an asymmetric percoid’ phenotype compared 
to RFP. The higher relative evolutionary rates in both RFP and 
FLP indicate the possible selection pressure that they experienced, 
although other factors, such as limited population size and rapid 
drift, could not be excluded38.

Genes undergoing significant alterations in flatfishes. The fast 
evolution in both RFP and FLP may predict marked changes in their 
genomes, which had facilitated evolution of their new body plan after 
seafloor colonization. To test this hypothesis, we performed compre-
hensive comparisons on genomic elements among RFP, FLP and 
other nonflatfish outgroup species (Larimichthys crocea, Labrus ber-
gylta, Oreochromis niloticus, Oryzias latipes and Danio rerio). We first 
analyzed gene families that changed rapidly in gene number during 
the evolution process (see Supplementary Note 19), and identified 
some expanded and contracted gene families (P < 0.05) in RFP and 
FLP, respectively (Supplementary Tables 82–89 and Supplementary 
Note 19). However, none of these gene families includes those cur-
rently known to mediate body plan development (Extended Data 
Fig. 2 and Supplementary Note 19), such as WNT, RA, BMP, FGF, 
NOTCH and HOX39,40, suggesting involvement of other molecular 
mechanisms for the unique body plan formation in RFP and FLP. 
Therefore, we further identified genes undergoing positive selec-
tion (PSGs) or rapid evolution (REGs) or containing lineage-specific 
mutations (LSGs) (Supplementary Figs. 18–23 and Supplementary 
Notes 20 and 21) or lineage-specific conserved noncoding elements 
(SCNEs) in RFP and FLP (see Supplementary Note 22), respectively. 

The enrichment categories of top candidate genes under significant 
alteration in both RFP and FLP are associated with visual percep-
tion (dmbx1a (ref. 41) and opn3 (ref. 42) in RFP versus cryba4 (ref. 43) 
and opn3 (ref. 42) in FLP), immune response (bahd1 (ref. 44), ripk1 
(ref. 45) and pik3ip1 (ref. 46) in RFP versus nfkbid (ref. 47), trim59 (ref. 
48) and themis2 (ref. 49) in FLP), hypoxia tolerance (fbxl5 (ref. 50) in 
RFP versus ucp2 (ref. 51) in FLP) and cardiac function (tmem43 (ref. 
52), dis3l1 (ref. 53), popdc2 (ref. 54) and glrx1 (ref. 55) in RFP versus 
irx4a (ref. 56) and glrx3 (ref. 57) in FLP) (Supplementary Tables 90–97, 
Extended Data Fig. 3 and Supplementary Notes 20 and 21), possibly 
suggesting a similar remodeling of their visual, immune, respiratory 
and circulatory systems in benthic adaptation to seafloor coloniza-
tion (Extended Data Fig. 3 and Supplementary Note 21). Among 
them, cardiovascular adaptation is a surprising association with 
rapid sequence evolution during transition from the water column 
to benthic colonization. Our results revealed that this process may 
involve not only a cardiac morphological reorganization resulting 
from selective pressure on cardiac morphogenesis genes (popdc2 
and irx4a)54,56, but also cardiac functional remodeling resulting from 
selective pressure on genes associated with cardiac conducting effi-
ciency (tmem43 and popdc2)52,54 and antioxidant capacities (glrx1 
and glrx3)55,57 (Extended Data Fig. 3, Supplementary Tables 90–97 
and Supplementary Notes 20, 21 and 23). Such structural and func-
tional alterations of the cardiovascular system in both RFP and FLP 
might have contributed to their reinforced cardiac output, which is 
the highest known among teleosts58,59, and the enhanced antioxidant 
capacity to cope with hypoxia readily encountered during burrow-
ing into the substrate58. Enriched categories of the remaining top 
candidate genes under significant alterations in RFP and FLP were 
associated with axial patterning, neural patterning, musculoskel-
etal restructuring, lipid deposition and fin cartilage reorganization 
(Supplementary Tables 90–99 and Supplementary Notes 20–22), 
suggesting their roles in new body plan evolution and adaptation 
after seafloor colonization.
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Genetic changes correlated with the flat body in flatfishes. The 
observed enrichment of genes associated with musculoskeletal 
restructuring and lipid deposition may reflect their roles in the evo-
lution of body plan flatness after metamorphosis in flatfishes (Fig. 
3a, Extended Data Fig. 4, Supplementary Fig. 24 and Supplementary 
Note 24). Such a phenotype possibly confers a selective advantage 
on the seafloor, where flatfishes usually hide from their enemies 

by embedding themselves into a thin layer of substrate, with only 
the eyes exposed3,60. Our comparative genomic analyses, using 
Larimichthys crocea, Labrus bergylta, Oreochromis niloticus, Oryzias 
latipes and Danio rerio as the outgroups, revealed that four genes 
associated with musculature development have undergone marked 
alteration in RFP, including the sarcolemma gene sspn (PSGs, 
P = 8.43 × 10−3), the sarcoglycan genes sgca (PSGs, P = 3.30 × 10−3) 
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Fig. 3 | Genetic changes correlated with the flat body plan in flatfishes. a, The relative ratio of length in dorsal–ventral to left–right axis. The relative ratio 
of maximum height of dorsal–ventral axis/maximum length of left–right axis here was used to indicate the degree of body plan flatness of fishes. The 
ratio was measured in three individuals for each species, and the data are presented as mean values ±s.d. The statistical difference between groups was 
calculated using Student’s t-test (two tails) with *** representing a statistical P value <0.001. b, Mutations in RFP sgca compared to outgroups. ECD, ICD 
and TM represent the extracellular, intracellular and transmembrane domain, respectively. The fixed substitutions between RFP and outgroups are marked 
with a dashed box. c, SCNEs nearby sgcz gene. The x axis represents the nucleotide sequence sites across the sgcz gene and the y axis represents sequence 
similarity scores. The green and blue columns represent the average sequence similarity score within RFP and outgroups for each site, respectively; the red 
lines represent the physical locations of the SCNEs across the gene. d, The relative catalyzing activity of bbox1 in RFP and outgroups. The experiment was 
carried out three times and the data are presented as indicated above. e, Relative fat content in whole body and muscle tissues in flatfishes and outgroups. 
The fat content was measured in three individuals for each species, and the data are presented as indicated above. f, Hypothetical signaling pathway that 
may correlate with the body-plan flatness of flatfishes. Proteins marked blue are those encoded by genes that have undergone genetic alterations in RFP.

Nature Genetics | VOL 53 | May 2021 | 742–751 | www.nature.com/naturegenetics746

http://www.nature.com/naturegenetics


ArticlesNaTurE GEnETics

and sgcz (SCNEs), and the dystrophin gene dmd (SCNEs) (Fig. 3b,c, 
Supplementary Tables 90, 91, 98 and 99 and Supplementary Notes 
20 and 22). Unexpectedly, all four of these genes are the core com-
ponents of the dystrophin–glycoprotein complex (DGC), critical 
in both mechanical stabilization61 and signal-dependent-activated 
development of muscular tissues62–64. Mutations or abnormal 
expression of these four genes could cause severe muscular dys-
trophy or substantial reduction in muscle size in vertebrates65–68, 
including zebrafish69,70. Among these genes, sgca has been the most 
frequently reported locus that causes the majority of sarcoglycanop-
athies (one of the severe muscular dystrophies) in humans71. Our 
analysis revealed two RFP-specific missense substitutions in sgca, 
compared to nonflatfish outgroups (Fig. 3b). Both mutations locate 
within a conserved C-terminal intracellular domain (Fig. 3b), which 
is critical in the signal-dependent-activated development of mus-
cular tissues. Mutations of this domain frequently cause hampered 
musculature development and severe muscular dystrophy, such 
as limb-girdle muscular dystrophy syndrome in humans72,73. Such 
alterations in sgca may change the signal-dependent-activation pro-
cess of muscular development in RFP and thus may have implica-
tions in their thinner musculature and flat phenotype.

In addition to musculature, three genes related to lipid metab-
olism, including bbox1 (REGs, P = 5.01 × 10−4), mex3c (REGs, 
P = 4.20 × 10−2) and mlx (REGs, P = 2.13 × 10−2) also underwent 
marked changes in RFP (Supplementary Tables 90 and 91 and 
Supplementary Note 20). These three genes encode either enzymes74 
or metabolic signals75,76 essential for adipogenesis and fat accumu-
lation in vertebrates. Mutations or abnormal expressions of mex3c 
and mlx can result in reduced adiposity and lean phenotype in 
both mouse75 and fruit fly76. Genetic disruption of bbox1 leads to a 
modified serum carnitine level and less fat accumulation in mice74. 
Our in vitro enzyme catalytic activity assay further shows that the 
RFP-specific bbox1 has significantly higher (P = 2.76 × 10−3) cata-
lytic activity transforming γ-butyrobetaine into l-carnitine (Fig. 
3d, Supplementary Fig. 18 and Supplementary Note 25), a mole-
cule critical for fat oxidization and hence fat accumulation74. The 
increased catalytic activity of bbox1 in RFP indicates fast lipid oxi-
dization and decreased fat accumulation in RFP and thus may cor-
relate with the flat phenotype, as observed in other teleosts77,78. This 
hypothesis was further supported by the lower whole body and mus-
cular fat content in RFP compared with other nonflatfish teleosts, as 
observed in our analysis and in multiple other studies79–81, since a 
significantly lower fat content (P < 0.001) was observed in RFP than 
in nonflatfish outgroups in both whole body (6.22-fold low) and 
muscular (5.76-fold low) tissues (Fig. 3e; see Supplementary Note 
24). Similar to what was observed in RFP, we also found the DGC 
component gene (sntb1)82 and lipogenesis-related genes (bbox1, 
mex3c, faf2, acad11, elovl6 and tysnd1)83–86 to be rapidly evolving in 
FLP, particularly in bbox1 (REGs, P = 8.75 × 10−6) and mex3c (REGs, 
P = 1.20 × 10−5) (Supplementary Table 91 and Supplementary Note 
20). These observations suggest that a similar mechanism might 
have been involved in the evolution of flat body plan in both RFP 

and FLP. Taken together, our analyses provide evidence that marked 
changes in musculature development and lipid accumulation genes 
have occurred in flatfishes, and thus may correlate with the evolu-
tionary origin of their body flatness (Fig. 3f).

Genetic changes correlate with asymmetric body plan in flatfishes. 
The body asymmetry is another striking feature of flatfishes, yet its 
genetic basis remains largely unknown since the time of Darwin8. 
Recently, advances have been made in understanding the genetic 
regulation of body asymmetry in animals. Such regulation involves 
several gene families and signal pathways, such as RA, WNT and 
NODAL19,87,88. Both NODAL and RA signals have also been impli-
cated in the body plan asymmetry of flatfishes16–19. Our compara-
tive genomic analyses showed that multiple genes from WNT and 
RA signal pathways have undergone remarkable genetic alterations 
in RFP (see Supplementary Notes 20–22), suggesting their roles 
in the evolution of asymmetric body plan. These WNT-signaling 
genes include wnt9b (LSGs, L188M), sfrp5 (LSGs, K236R), tpbg 
(PSGs, P = 8.02 × 10−4), pou2f1 (REGs, P = 2.94 × 10−3) (Fig. 4a, 
Supplementary Tables 90 and 96 and Supplementary Notes 20 and 
21), which encode either ligands (for example, wnt9b) or direct 
modulators (for example, pou2f1 (ref. 89), tpbg (ref. 90) and sfrp5  
(ref. 91)) of the WNT-signaling pathway. Defects or expression disrup-
tions of wnt9b, tpbg, sfrp5 and pou2f1 genes lead to deficiency in the 
WNT signal pathway, and bilateral craniofacial asymmetry and skull 
malformation in vertebrates92,93, including zebrafish94. Our analyses 
also revealed substantial changes in physicochemical properties and 
three-dimensional structure of these WNT components in RFP (for 
example, T212P and P428S cause polarity changes of amino acids in 
pou2f1; T169K caused charge changes in tpbg; K236R caused pro-
tein structure changes in sfrp5) (Supplementary Figs. 19–22). The 
alterations of so many axial-patterning WNT-signaling pathway 
genes may indicate their role in the body plan asymmetry of RFP. 
Similarly, three RA-signaling pathway genes have also undergone 
significant alteration in RFP, that is, rdh14 (REGs, P = 3.69 × 10−3), 
rere (SCNEs) and rarb (SCNEs) (Fig. 4b, Supplementary Tables 
90, 98 and 99 and Supplementary Notes 20 and 22). These genes 
encode core components in the RA signal pathway95–97 and defects 
in rdh, rere or rar genes were observed to cause RA-signaling altera-
tion, which results in multiple congenital abnormalities, including 
bilateral asymmetry of eyes, craniums or somites in vertebrates97,98. 
Our enzyme catalytic activity assay further lends support for such 
functional alterations in these RA-signaling genes. Compared 
with the outgroups, RFP-specific rdh14 has much lower (2.51-fold 
low; P = 2.84 × 10−6) activity catalyzing retinaldehyde into reti-
nol (Extended Data Fig. 5 and Supplementary Note 25), implying 
more retinaldehyde (substrate for RA synthesis) accumulation and 
thus RA signal alterations in RFP. These RFP-specific mutations in 
the RA-signaling genes might have played roles in the asymmet-
ric body plan of RFP, although their actual role still awaits further 
verification. Interestingly, we noted only two WNT signal pathway 
genes, wnt4a (REGs, P = 0.00) and tpbg (REGs, P = 4.68 × 10−2), 

Fig. 4 | Genetic changes associated with asymmetric body plan in flatfishes. a, Mutations of wnt9b in RFP compared with outgroups. The diagram of 
protein structure is shown on the top of the graph, and the site that showed variation is marked with a dashed box. b, SCNEs nearby the rere gene. The 
x axis represents the nucleotide sequence sites across rere; the y axis represents sequence similarity scores. The blue and brown columns represent 
the average sequence similarity score within RFP and outgroups for each site, respectively; the red lines represent the physical locations of the SCNEs 
across the gene. c, Metamorphic process of flounder. Images of flatfish in premetamorphic stage, prometamorphic stage, metamorphic climax stage and 
postmetamorphic stage are shown. d, Left–right asymmetrical expression of genes in eye, skin and muscle tissues of metamorphic larvae of flounder. The 
numbers 1–4 on the x axis represent the four metamorphic stages of flounder. L and R on the x axis represent tissues on the left side and right side of the 
larva, respectively. e, Number of the specifically highly expressed genes during metamorphosis of flounder. The right diagram represents the biological 
processes in which these genes were involved. The rhombus symbols mark the stages during which the number of the genes began to show greatest 
expression changes. f, Hypothetical signaling pathway that may correlate to the body plan asymmetry in flatfishes. Proteins marked blue are those 
encoded by genes that experienced genetic alteration in RFP. Genes marked blue and italicized are regulating targets of these proteins and also exhibited 
abnormal expression (left–right asymmetry) during metamorphosis in RFP.
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undergoing rapid evolution in FLP (Supplementary Table 91 and 
Supplementary Note 20). It remains to be elucidated whether such 
a distinction is related to the less extensive cranial asymmetry usu-

ally observed in FLP compared to typical RFP14. However, such a 
distinction between RFP and FLP provides further evidence for the 
polyphyletic origin of flatfishes.
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Our transcriptomic analyses lend further support to the involve-
ment of WNT and RA signaling in the body plan asymmetry of 
flatfishes. Using Paralichthys olivaceus as a representative example, 
we show that multiple genes in both RA- (aldh1, aldh8, rdh5, rdh7, 
rdh8, rdh11, rdh12, rdh13) and WNT- (wnt1, wnt4, wnt10) signal-
ing pathways exhibited obvious transient expression fluctuations 
in all three examined flounder tissues (eye, muscle, skin) during 
metamorphosis, with marked left–right asymmetrical expression 
(both in gene expression level and in specific highly expressed gene 
number) initiating from the premetamorphic stage, climbing to an 
asymmetrical climax during the prometamorphic and metamorphic 
climax stage and then recovering to symmetry in the postmetamor-
phic stage (Fig. 4c–e, Extended Data Fig. 6, Supplementary Figs. 25 
and 26, Supplementary Tables 100–124 and Supplementary Notes 
26 and 27). Such gene expression asymmetry and fluctuations dur-
ing metamorphosis were further confirmed by our real-time quan-
titative PCR analysis (Extended Data Fig. 7 and Supplementary 
Note 28). The conspicuous asymmetrical expression of these genes 
observed during metamorphosis (Fig. 4d,e, Extended Data Figs. 6 
and 7 and Supplementary Notes 27 and 28) indicating gradients of 
WNT and RA signals across the left–right axis, may be related to eye 
migration, cranium deformation and lopsided pigmentation during 
metamorphosis. This is again supported by the evidence that the left 
deviation of expression of pigmentation genes, such as tyro99, mitf99 
and tyrp1 (ref. 99), usually occurs after the asymmetrical expression 
of RA and WNT signals in the skin of metamorphosing flounder 
larvae (Fig. 4c,d, Extended Data Fig. 7 and Supplementary Notes 
27 and 28). Left–right asymmetric expression of NODAL-signaling 
genes (including nodal, lefty and pitx2) was also observed in the 
tissues of metamorphic flounder larvae (for example, muscles and 
eyes) (Fig. 4d). Such obvious reactivation of NODAL signaling in 
metamorphosis, which is not usually observed in teleosts with a 
regular body plan18, is believed to have initiated the left–right asym-
metry of flatfishes16–18. Yet it remains an open question as to whether 
such reactivation of NODAL signals can also be attributed to the 
asymmetrical RA and WNT signals, although cross-talk between 
them has long been documented in diverse taxa100,101. Taken together, 
our analyses provide gene evolution and expression evidence for the 
possible involvement of WNT combined with RA-signaling path-
ways in shaping the asymmetric body plan in flatfishes (Fig. 4f), 
although the exact role of these RA and WNT genes in the body 
plan asymmetry still awaits further investigation.

Genetic changes associated with the modified fins and 
over-substrate maneuvering of flatfishes. To fit their special-
ized body plan, flatfishes have also evolved a new vertebrate gait of 
‘fin-feet’ walking, which enables their flexible horizontal maneu-
vering over substrates5,6 while keeping both of their eyes alert from 
above60. Such fin-feet walking was attributed to their largely elon-
gated median fins11 and their largely reduced paired fins (for exam-
ple, pectoral fins11) (Extended Data Figs. 8 and 9, Supplementary Fig. 
27 and Supplementary Note 29), since these specialized fins enable 
a repeated generation of the ‘fin-feet’ (mainly by dorsal and anal 
fins) pushing down against the substrate to produce constant for-
ward movement while keeping an accurate maneuvering orientation 
(mainly by pectoral fins)5,6. However, the genetic basis of such fin phe-
notypes in flatfishes is unknown. Our comparative genomic analyses 
revealed two genes, including hoxd12a (K105R) and bhlha9 (PSGs, 
P = 9.38 × 10−3), underwent considerable changes in RFP (Extended 
Data Fig. 10, Supplementary Tables 90 and 97 and Supplementary 
Notes 20 and 21). Among them, hoxd12a is closely associated with 
fin patterning and morphogenesis in teleosts102, since it encodes a 
DNA-binding transcription factor essential for regulation of the 
anterior–posterior pattern of fins102. The alterations in hoxd12a 
were believed to account for the forelimb (homologs of teleost fins) 
reorganization in cetaceans103 and paired fin degeneration in lung-

fishes104. Furthermore, hoxd12a has also been implicated in dorsal 
fin development in flounders105. The observed mutations in hoxd12a 
may have implications for the morphological changes of median 
and paired fins in RFP (Supplementary Table 97 and Supplementary 
Note 21), although the causative effect of these mutations still awaits 
further verification. Similarly, bhlha9 encodes a transcription fac-
tor closely related to fin morphogenesis. Knockdown of bhlha9 in 
zebrafish usually results in a size reduction of pectoral fins106. The 
observed positive selection in bhlha9 gene of RFP may also indicate 
its possible role in fin modification (Supplementary Table 90 and 
Supplementary Note 20). The bhlha9 gene is also rapidly evolving 
(P = 2.03 × 10−4) in FLP (Supplementary Table 91 and Supplementary 
Note 20), and hoxd12a experienced convergent variation between 
FLP and RFP (Supplementary Table 97 and Supplementary Note 21), 
indicating a possible role of these two genes in shaping the special-
ized fin morphologies of RFP and FLP.

Discussion
Our study demonstrates the strengths of combining phylogenomics 
and comparative genomics to shed light on the evolutionary his-
tory and mechanisms of a nonmodel taxon with complex adaptive 
traits, such as flatfishes. Using large-scale genomic data, we revealed 
a polyphyletic origin of flatfishes, with real flatfish Pleuronectoidei 
and flatfish-like Psettodoidei independently evolving from their dif-
ferent percoid ancestors. However, Pleuronectoidei and Psettodoidei 
also share convergent alterations in genes related to muscular devel-
opment, lipid accumulation, body axis determination and fin pat-
tern regulation. Meanwhile, Psettodoidei also exhibited unique 
mutations that may contribute to their less asymmetric body plan 
compared to Pleuronectoidei. The results obtained in this study 
have substantially clarified the long-standing controversies over the 
phylogeny of flatfishes, while the genes highlighted in this study lay 
a blueprint for future functional characterization of the molecular 
mechanisms underlying the unusual body plan of flatfishes. The 
genetic basis of such complex traits in flatfishes will not only enrich 
our knowledge on how the symmetric body plan that dominates 
the animal kingdom has evolved, been retained and modified, but 
also potentially help to unveil congenital causes of similar human 
pathological disorders, such as muscular atrophy and craniofacial 
malformations.
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Methods
DNA and RNA extraction. Genomic DNA was isolated from muscle tissues using 
the classic phenol–chloroform method. Total RNA was extracted using a Trizol kit 
(Life Technologies). The quality and quantity of extracted DNA/RNA were assessed 
using an Agilent 2100 bioanalyzer (Agilent Technologies), and their integrity was 
further evaluated on agarose gel stained with ethidium bromide. The extracted 
DNA/RNA samples were stored at −80 °C until subsequent library construction 
and genome/transcriptome sequencing. All tissue sampling and DNA and RNA 
extraction processes complied with all relevant ethical regulations provided by the 
Institutional Animals Care and Use Committee of Zhejiang Ocean University and 
by the Experimental Animal Management and Ethics Committee of South China 
Sea Institute of Oceanography, Chinese Academy of Sciences.

Library construction and sequencing. For genome sequencing of the seven 
species of Trinectes maculatus, Chascanopsetta lugubris, Brachirus orientalis, 
Paraplagusia blochii, Colistium nudipinnis, Pseudorhombus dupliocellatus and 
Platichthys stellatus, both the short-insert (350–700 bp) and long-insert (>1 kb) 
paired-end libraries of each species were constructed from the extracted genomic 
DNA of each species using the Illumina library construction kit (NEBNext Ultra 
DNA Library Prep Kit from Illumina, catalog no. E7370S) and sequenced on 
the Illumina HiSeq 4000 platform. For genome sequencing of the three species 
of Psettodes erumei, Toxotes chatareus and Polydactylus sextarius, the extracted 
genomic DNA was size-selected using PippinHT (Sage Science). Then, the 
Nanopore libraries were constructed and sequenced on PromethION DNA 
sequencer (Oxford Nanopore Technologies). Genomes of the three species of 
Platichthys stellatus, Toxotes chatareus and Polydactylus sextarius were further 
sequenced on the Hi-C platform to obtain chromosome-level genome assemblies. 
For Hi-C library construction, DNA extracted from each species was fragmented 
and purified using magnetic beads. Hi-C libraries were sequenced on the Illumina 
HiSeq 4000 platform with 150-bp paired-end reads. For RNA sequencing of 
the four species Platichthys stellatus, Toxotes chatareus, Polydactylus sextarius 
and Paralichthys olivaceus, the complementary DNA libraries were constructed 
from RNA extracted from various tissues, such as eye, liver, muscle and skin, as 
indicated in Supplementary Table 2 for different analysis purposes according to the 
manufacturer’s instructions (NEBNext Ultra RNA Library Prep Kit from Illumina, 
catalog no. E7530S) and sequenced on the Illumina HiSeq 4000 platform.

Quality control of sequencing data. For Illumina sequencing reads, all low-quality 
reads, duplicated reads and adapter sequences were removed using Perl scripts. For 
Nanopore long reads, mean quality for each read was calculated and only reads 
longer than 1 kb with mean quality ≥7 were retained. For Hi-C sequencing data, 
the low-quality reads were further filtered using Hi-C-Pro software (v.3.2)107 after 
prefiltering with Perl scripts.

Genome size estimation. Genome size of each species was estimated using the 
short-insert library reads by the k-mer method. The 17-mer was chosen for k-mer 
analysis in this study, and the genome size (G) was estimated with the following 
formula: G = Knum/Kdepth, where Knum and Kdepth represent the total number of 
17-mers and the peak of depth of the 17-mer, respectively.

Genome assembly and chromosome construction. For the genome assembly, 
seven species (Trinectes maculatus, Chascanopsetta lugubris, Brachirus orientalis, 
Paraplagusia blochii, Colistium nudipinnis, Pseudorhombus dupliocellatus and 
Platichthys stellatus) were assembled with Illumina short reads using the Platanus 
software (v.1.2.4)108, and all the cleaned short reads were used to fill the gaps of 
the genome using Gapcloser (v.1.10). Three species (Psettodes erumei, Toxotes 
chatareus and Polydactylus sextarius) were assembled with Nanopore long reads 
using WTDBG software (v.1.2.8)109, and all the cleaned Illumina short-insert 
reads were aligned to the assembled contigs to conduct error correction. For 
chromosome construction of three species (Platichthys stellatus, Toxotes chatareus 
and Polydactylus sextarius), the filtered Hi-C reads were aligned to the assembled 
genome and then anchored to chromosomes using three-dimensional de novo 
assembly software (v.170123)110.

Ancestral chromosome reconstruction. First, the chromosome-level genomic 
data of Platichthys stellatus and Cynoglossus semilaevis, in the real flatfish 
Pleuronectoidei lineage, and Toxotes chatareus and Polydactylus sextarius 
(sequenced in this study), leading to the flatfish-like Psettodoidei lineage, 
were aligned and the genome synteny was analyzed using LAST111 with the 
parameters of --k 1 -m 10 --E 0.05. Then, the chromosome variation events 
within and between lineages were compared using ANGES (v.1.01)112 to detect the 
lineage-specific chromosome variation. Finally, contig sequences obtained from 
Nanopore reads of Psettodes erumei were used to check for these lineage-specific 
chromosome fusion and fission events to further test if flatfish-like Psettodoidei 
lineage (including Psettodes erumei) has different ancestral chromosomes from that 
of real flatfish Pleuronectoidei.

Genome annotation. Repetitive sequences were identified using different software 
programs. Transposable elements (TEs) were annotated on both protein and 

DNA levels. On the protein level, the RepeatProteinMask (RM-BLASTX) was 
used to search TEs in its protein database. On the DNA level, RepeatModeler 
software (v.1.0.8) was used to build de novo repeat library and RepeatMasker 
(v.4.0.6)113 was then run against the de novo library and repbase (RepBase v.16.02) 
separately to identify homologous repeats. Protein-coding genes were annotated 
using three combined approaches, including de novo prediction, homology-based 
annotation and/or transcripts-based annotation from the repeats-masked 
genome. For de novo prediction, Augustus (v.3.2.1)114 and GENSCAN (v.1.0)115 
were used. For homology-based annotation, protein sequences of seven species 
(Mus musculus, Gallus gallus, Callorhinchus milii, Takifugu rubripes, Lepisosteus 
oculatus, Cynoglossus semilaevis and Paralichthys olivaceus) were downloaded from 
NCBI and protein sequences of one species (Danio rerio) were downloaded from 
Ensembl. The longest transcript of each gene was selected and any genes with 
early termination sites were removed. All remaining genes were aligned to the 
repeat-masked genome for homology-based annotation using tblastn with e-value 
less than 1 × 10−5. Genewise software (v.2.2.0)116 was used to identify the longest 
coding regions and/or highest score in each gene locus to support the presence 
of a homologous gene. For transcript-based annotation, cleaned RNA-seq reads 
were assembled into transcripts, and then were aligned against the assembled 
genome to link spliced alignments. EvidenceModeler (v.1.1.1)117 was used to 
integrate the results derived from these methods into the final gene set. Functions 
of these predicted genes were analyzed using the public protein databases. 
InterProScan (v.4.8) was used to screen proteins against databases (Pfam, v.27.0; 
prints, v.42.0; prosite, v.20.97; ProDom, v.2006.1; smart, v.6.2). In addition, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG), NR, SwissProt (v.2011.6) 
and TrEMBL (v.2011.6) databases were also searched for homology-based function 
assignments using BLAST software (v.2.6.0) with e-value of 1 × 10−5.

Identification of orthologous genes. Orthologs were identified in the assembled 
genomes of ten sequenced species, along with the species with published 
genome sequences (Cynoglossus semilaevis, Paralichthys olivaceus, Scophthatmus 
maximus, Danio rerio, Larimichthys crocea, Labrus bergylta, Oreochromis niloticus 
and Oryzias latipes) using the OrthoMCL pipeline (v.2.0.9)118. Briefly, all the 
protein-coding genes of the published species were downloaded from the NCBI 
database, except for Scophthatmus maximus, which was downloaded from its own 
website (http://denovo.cnag.cat/genomes/turbot). To improve the accuracy of the 
analysis, genes that encode shorter than 30 amino acids or have early stop codons 
in the coding regions were removed. All the remaining genes were aligned and 
reciprocally compared, and the reciprocal best similarity pairs among species were 
considered as putative orthologs after further evaluation using MCscan software 
(v.0.9.13)119.

Phylogenetic tree construction and divergence time evaluation. All the 1,693 
single-copy homologous genes identified among species (Trinectes maculatus, 
Chascanopsetta lugubris, Brachirus orientalis, Paraplagusia blochii, Colistium 
nudipinnis, Pseudorhombus dupliocellatus, Platichthys stellatus, Psettodes erumei, 
Polydactylus sextarius, Toxotes chatareus, Cynoglossus semilaevis, Paralichthys 
olivaceus, Scophthatmus maximus, Danio rerio, Larimichthys crocea, Labrus 
bergylta, Oreochromis niloticus and Oryzias latipes) were aligned and concatenated 
into supergenes for phylogenetic relationship analyses. Maximum likelihood-based 
phylogenetic analysis was conducted using RAxML (v.8.2.9)120. Meanwhile, species 
trees were also constructed using MPEST (v.2.0)20 and OrthoFinder (v.2.3.5)21. 
Divergence times of these species were then estimated on the basis of the 4dTV 
sequences via Bayesian relaxed molecular clock approach using MCMCtree 
program in the PAML package (v.4.8)121. Fossil records downloaded from the 
TIMETREE website (http://www.timetree.org) were used for calibrating our 
calculated divergence time.

Estimation of relative evolutionary rates. The relative evolutionary rates of 
species were calculated using two-cluster analysis and Tajima’s relative rate test. 
Two-cluster analysis was performed to test molecular evolution of multiple 
sequences in the phylogenetic context. A faster or slower evolutionary rate in a 
particular taxon was analyzed using Z-statistics and tpcv module in the LINTRE 
program. For Tajima’s relative rate test, a higher number of lineage-specific 
substitutions indicates a much faster evolutionary rate using the chi-squared test. 
All the single-copy genes were used in these two analyses with zebrafish as the 
outgroup species.

Estimation of gene family expansion and contraction. Expansion and 
contraction of gene clusters was determined using the CAFE software (v.3.1)122. 
The phylogenetic tree and divergence time analyzed in the previous steps were 
used in CAFE to infer changes in gene family sizes using a probabilistic model.

Detection of positive selection. All one-to-one orthologous genes extracted 
from flatfish species and outgroup species (Larimichthys crocea, Labrus bergylta, 
Oreochromis niloticus, Oryzias latipes and Danio rerio) were used to identify 
positively selected or rapidly evolving genes. The multiple sequence alignments 
were generated and used to estimate three types of ω (the ratio of the rate of 
nonsynonymous substitutions to the rate of synonymous substitutions) using 
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branch model in the codeml program of the PAML package (v.4.8)121. Branch 
model (model = 2, NSsites = 0) was used to detect ω of appointed branch to test 
(ω0) and average ω of all the other branches (ω1) and the mean of whole branches 
(ω2). Then χ2 test was used to check whether ω0 was significantly higher than ω1 
and ω2 under the threshold P value <0.05, which hinted that these genes would be 
under positive selection or fast evolution.

Identification of genes with lineage-specific mutation. The high-quality 
alignments were also used to identify the lineage-specific mutated genes. In this 
analysis, all single-copy genes among species were checked and any genes with 
the same variation across all particular taxa, compared with outgroup species, 
were identified as LSGs. Candidate LSGs were further double-checked using 
original Illumina reads to avoid assembly and sequencing errors. In addition, 
Bayesian ancestral state inference conducted using the codeml program in PAML 
software (v.4.8)121 was further used to validate the candidate LSGs. In the Bayesian 
framework, the ancestral state was inferred by the state with the highest posterior 
probability. In our case, only the ancestral state of Pleuronectoidei was different 
from the ancestor of all the Pleuronectiformes species, Toxotes chatareus and 
Polydactylus sextarius; the potential LSGs were therefore recognized as the true 
Pleuronectoidei LSGs.

Identification of conserved noncoding elements. Using the Platichthys stellatus 
genome as the reference, the genomes of flatfish and outgroup species were 
aligned to the reference genome using LAST software (v.802)111 with the following 
parameters: -P 5 -m 100 -E 0.05.

The generated alignments were checked locus by locus, and the loci that were 
present in more than eight Pleuronectoidei species, but absent in any nonflatfish 
species, were recognized as the potential Pleuronectoidei-specific conserved 
noncoding elements. Any SCNE sequences less than 20 bp were removed to ensure 
the accuracy of identification.

Gene expression profile analysis. RNA extracted from eye, skin and muscle tissues 
across the left–right axis in different metamorphic time windows (premetamorphic 
larva, prometamorphic larva, metamorphic climax larva and postmetamorphic 
larva) of Paralichthys olivaceus was sequenced on the Illumina sequencing 
platform. For each metamorphic time window, three biological replicates were 
sampled, with each replicate containing tissues from at least 30 individuals 
because of the small size of the larvae, and was used for the RNA extraction and 
sequencing. Raw reads were filtered and remaining high-quality reads were aligned 
to the assembled genome using Tophat2 (v.2.1.1)123. The transcripts were assembled 
and gene expression values were analyzed using the cufflinks software (v.2.2.1)124.

Real-time quantitative PCR assay. Real-time quantitative PCR (qPCR) was 
used to verify the differentially expressed genes across the left–right body axis of 
Paralichthys olivaceus. Samples were collected as indicated above and extracted 
RNA was used for obtaining cDNA using the PrimeScript RT reagent kit with 
gDNA Eraser (Perfect Real Time) (TaKaRa, catalog no. RR047A). The qPCR 
analysis was performed using the TaKaRa TB Green Premix Ex TaqII (Tli RNaseH 
Plus) reagents (TaKaRa, catalog no. RR820A). The β-actin gene was used as the 
internal control of the qPCR experiment. Each experiment was performed with 
three reaction replicates and calculated relative expression value of genes using the 
detected threshold cycle (Ct) value.

Catalytic activity assay of enzymes. In vitro enzymatic activity assay was used to test 
the functional consequence of RFP-specific mutation in bbox1 and rdh14 proteins. 
RFP-specific genes and those of the outgroups were codon-optimized according to 
the Escherichia coli preference and then synthesized and cloned into the vector pET-
28a by Wuhan Gene Create Biological Engineering. The plasmid was transformed 
into DH5α competent cells for amplification, and then the plasmids were extracted 
for verification. Finally, the correct plasmids were transformed into BL21 (DE3) to be 
expressed. The expressed proteins were further extracted, purified and the enzyme 
activity was measured according to Rattner et al.125 and Cao et al.126, respectively. 
Each experiment was performed with three reaction replicates to determine the 
mean ± s.d. of the catalytic activity value of the enzymes.

Statistical analysis. Significant differences between the groups were assessed with 
Student’s t-test (two tails). The chi-squared test or Fisher’s exact test were used in 
the significant analysis of gene ontology enrichment according to the data feature, 
and the hypergeometric test was used in KEGG. Multiple comparisons were 
corrected for false discovery rate. The symbols *, ** and *** represent a statistical 
significance of P values <0.05, 0.01 and 0.001, respectively.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All the sequencing data were deposited at the NCBI (Platichthys stellatus: 
PRJNA592732; Trinectes maculatus: PRJNA592733; Brachirus orientalis: 
PRJNA592734; Paraplagusia blochii: PRJNA592738; Chascanopsetta lugubris: 

PRJNA592739; Colistium nudipinnis: PRJNA592742; Pseudorhombus 
dupliocellatus: PRJNA592743; Polydactylus sextarius: PRJNA592744; Toxotes 
chatareus: PRJNA592745; Psettodes erumei: PRJNA592748; Paralichthys olivaceus: 
PRJNA632737). Besides, the source data of the fish photos were deposited at the 
Figshare database (https://doi.org/10.6084/m9.figshare.13664201.v1). Source data 
are provided with this paper.

Code availability
All public software used in this study is provided in the accompanying Nature 
Research Reporting Summary.
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Extended Data Fig. 1 | Comparison of the annotated coding genes in the species analyzed in this study with those annotated in previously published 
species. The x-axis shows the length distribution of the mRNA, CDS, exon, and intron sequences in each species, and the y-axis shows the corresponding 
ratios of each type of sequences in genome for a particular length.
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Extended Data Fig. 2 | Statistics of gene number in some gene families known to mediate body plan development in each species. The gene number of 
each specific gene family is shown in blue circle and total gene number known to mediate body plan development is shown in purple circle. The circle sizes 
are equivalent to the gene number that was observed.
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Extended Data Fig. 3 | Genes associated with seafloor colonization of flatfishes. The genes associated with certain seafloor colonization adaptation are 
shown below in the panel. Genes under positive selection, fast evolution, lineage specific mutation or possessing lineage-specific conserved non-coding 
elements are marked in different colors. The red and blue dots represent real flatfish Pleuronectoidei and flatfish-like Psettodoidei lineages, respectively. 
The enlarged red diagrams in the panel of ‘reinforced cardiovascular system’ represent heart tissues. The enlarged green diagrams in the panel of 
‘reinforced immune responses’ represent bacteria and viruses.
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Extended Data Fig. 4 | The relative ratio of left-right axis to total length. The relative ratio of maximum length of left-right axis to the total length was 
used here to indicate the degree of body pan flatness of fishes. The ratio was measured in three individuals for each species and the data are presented 
as mean values ± SD. The statistical difference between groups was calculated using Student’s t-test (two tails) with ‘***’ representing a statistical 
significance of P value < 0.001.
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Extended Data Fig. 5 | The catalyzing efficiency of enzyme rdh14 in RFP compared to that of the outgroups. The x-axis represents the RFP specific rdh14 
and that of the outgroups. The y-axis represents the measured relative catalyzing efficiency of rdh14. Each experiment was performed with three reaction 
replicates to determine the mean values ± SD. The distinction of enzyme catalytic activity of RFP compared to non-flatfish teleosts was tested using 
Student’s t-test (two tails) with ‘***’ represents a statistical significance of P value < 0.001.
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Extended Data Fig. 6 | Asymmetric gene expression in metamorphic flounders. The symbol s1-s4 in the x-axis represents the four developmental 
stages of flounder, including the pre-metamorphic stage, the pro-metamorphic stage, the metamorphic climax stage, and the post-metamorphic stage, 
respectively. The y-axis represents the gene expression difference across the left-right axis of flounder, as indicated by FPKM values. The minima, maxima, 
centre, and the upper and lower bounds of box represent the maximum, minimum, median value, upper and lower quartile, respectively. Each colored dot 
represents one gene in WNT, RA, or NODAL signal pathway, or gene that associated with pigmentation that are equivalent to those indicated in Fig. 4d in 
the main text.
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Extended Data Fig. 7 | Asymmetric gene expression confirmed by Real-time quantitative PCR. For each metamorphic time window, three biological 
replicates were sampled, with each replicate containing tissues from at least 30 individuals, and were used for the RNAs extraction and q-PCR analysis. 
The numbers 1-4 in the x-axis represent the four developmental stages of flounder, including the pre-metamorphic stage, the pro-metamorphic stage, the 
metamorphic climax stage, and the post-metamorphic stage. L and R in the x-axis represent tissues on left-side and right-side of the larva, respectively. 
The y-axis represents the relative expression level of genes compared with internal control of beta-actin and the data are presented as mean values ± SD. 
The left-right distinction of gene expression profiles in each metamorphic time window was tested using Student’s t-test (two tails), and ‘*’, ‘**’, and ‘***’ 
represents a statistical significance of P value < 0.05, 0.01, and 0.001, respectively.
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Extended Data Fig. 8 | Relative size of pelvic and pectoral fins in flatfishes compared to non-flatfish species. The x-axis in the panel shows the species 
with pectoral and pelvic fins measured, and the y-axis shows the relative sizes of fins represented by the ratios of length of pectoral and pelvic fins to 
the total length of the fish. All the parameters were measured in three individuals for each species and the data are presented as mean values ± SD. The 
distinction of fin morphology of flatfishes compared to non-flatfish teleosts was tested using Student’s t-test (two tails) with ‘**’ and ‘***’ representing 
a statistical significance of P value < 0.01 and P value < 0.001 respectively. Csem (Cynoglossus semilaevis); Poli (Paralichthys olivaceus); Bori (Brachirus 
orientalis); Lcro (Larimichthys crocea); Psex (Polydactylus sextarius); Olat (Oryzias latipes).
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Extended Data Fig. 9 | Relative sizes of dorsal and anal fins in flatfishes compared to non-flatfish species. The x-axis in the diagram shows the species 
with dorsal and anal fins measured, and the y- axis in the diagram shows the relative sizes of fins represented by the ratios of length of dorsal and anal fins 
to the total length of the fish. All the parameters were measured in three individuals for each species and the data are presented as mean values ± SD. The 
distinction of fin morphology of flatfishes compared to non-flatfish teleosts was tested using Student’s t-test (two tails) with ‘***’ representing a statistical 
significance of P value < 0.001. Csem (Cynoglossus semilaevis); Poli (Paralichthys olivaceus); Bori (Brachirus orientalis); Lcro (Larimichthys crocea); Psex 
(Polydactylus sextarius); Olat (Oryzias latipes).
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Extended Data Fig. 10 | The lineage specific mutated gene of hoxd12a in real flatfish species. The sites that showed variation between species are 
marked in different colors. The fixed variation site between real flatfish Pleuronectoidei species and outgroups are marked with a dashed box.
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