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MyD88 TIR domain higher-order assembly
interactions revealed by microcrystal electron
diffraction and serial femtosecond crystallography
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MyD88 and MAL are Toll-like receptor (TLR) adaptors that signal to induce pro-
inflammatory cytokine production. We previously observed that the TIR domain of MAL
(MALTR) forms filaments in vitro and induces formation of crystalline higher-order assem-
blies of the MyD88 TIR domain (MyD88TIR). These crystals are too small for conventional X-
ray crystallography, but are ideally suited to structure determination by microcrystal electron
diffraction (MicroED) and serial femtosecond crystallography (SFX). Here, we present
MicroED and SFX structures of the MyD88TIR assembly, which reveal a two-stranded higher-
order assembly arrangement of TIR domains analogous to that seen previously for MALTIR,
We demonstrate via mutagenesis that the MyD88TIR assembly interfaces are critical for
TLR4 signaling in vivo, and we show that MAL promotes unidirectional assembly of
MyD88TR, Collectively, our studies provide structural and mechanistic insight into TLR signal
transduction and allow a direct comparison of the MicroED and SFX techniques.

1Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden. 2 Australian Research Council Centre of Excellence in
Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria,
Australia. 3 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia. 4 nstitute for Glycomics, Griffith
University, Southport, Queensland, Australia. > EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, New South
Wales, Australia. © Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia. 7Cambridge Institute for Medical
Research, University of Cambridge, Cambridge, UK. 8 Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA.

9 Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia. Opresent address: Department of Biological
Chemistry, University of California Los Angeles, Los Angeles, California, USA. "These authors contributed equally: Max T. B. Clabbers, Susannah Holmes.
Memail: c.darmanin@latrobe.edu.au; b.kobe@ug.edu.au; hongyi.xu@mmk.su.se; t.ve@griffith.edu.au

| (2021)12:2578 | https://doi.org/10.1038/541467-021-22590-6 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22590-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22590-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22590-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22590-6&domain=pdf
http://orcid.org/0000-0002-5466-6508
http://orcid.org/0000-0002-5466-6508
http://orcid.org/0000-0002-5466-6508
http://orcid.org/0000-0002-5466-6508
http://orcid.org/0000-0002-5466-6508
http://orcid.org/0000-0003-4384-5647
http://orcid.org/0000-0003-4384-5647
http://orcid.org/0000-0003-4384-5647
http://orcid.org/0000-0003-4384-5647
http://orcid.org/0000-0003-4384-5647
http://orcid.org/0000-0002-8181-1619
http://orcid.org/0000-0002-8181-1619
http://orcid.org/0000-0002-8181-1619
http://orcid.org/0000-0002-8181-1619
http://orcid.org/0000-0002-8181-1619
http://orcid.org/0000-0003-1306-1948
http://orcid.org/0000-0003-1306-1948
http://orcid.org/0000-0003-1306-1948
http://orcid.org/0000-0003-1306-1948
http://orcid.org/0000-0003-1306-1948
http://orcid.org/0000-0003-0358-2774
http://orcid.org/0000-0003-0358-2774
http://orcid.org/0000-0003-0358-2774
http://orcid.org/0000-0003-0358-2774
http://orcid.org/0000-0003-0358-2774
http://orcid.org/0000-0002-0110-7075
http://orcid.org/0000-0002-0110-7075
http://orcid.org/0000-0002-0110-7075
http://orcid.org/0000-0002-0110-7075
http://orcid.org/0000-0002-0110-7075
http://orcid.org/0000-0001-8444-6883
http://orcid.org/0000-0001-8444-6883
http://orcid.org/0000-0001-8444-6883
http://orcid.org/0000-0001-8444-6883
http://orcid.org/0000-0001-8444-6883
http://orcid.org/0000-0003-1757-0205
http://orcid.org/0000-0003-1757-0205
http://orcid.org/0000-0003-1757-0205
http://orcid.org/0000-0003-1757-0205
http://orcid.org/0000-0003-1757-0205
http://orcid.org/0000-0001-6504-0503
http://orcid.org/0000-0001-6504-0503
http://orcid.org/0000-0001-6504-0503
http://orcid.org/0000-0001-6504-0503
http://orcid.org/0000-0001-6504-0503
http://orcid.org/0000-0001-9970-868X
http://orcid.org/0000-0001-9970-868X
http://orcid.org/0000-0001-9970-868X
http://orcid.org/0000-0001-9970-868X
http://orcid.org/0000-0001-9970-868X
http://orcid.org/0000-0002-4449-2233
http://orcid.org/0000-0002-4449-2233
http://orcid.org/0000-0002-4449-2233
http://orcid.org/0000-0002-4449-2233
http://orcid.org/0000-0002-4449-2233
http://orcid.org/0000-0001-9413-9166
http://orcid.org/0000-0001-9413-9166
http://orcid.org/0000-0001-9413-9166
http://orcid.org/0000-0001-9413-9166
http://orcid.org/0000-0001-9413-9166
http://orcid.org/0000-0002-8271-3906
http://orcid.org/0000-0002-8271-3906
http://orcid.org/0000-0002-8271-3906
http://orcid.org/0000-0002-8271-3906
http://orcid.org/0000-0002-8271-3906
http://orcid.org/0000-0002-0113-1905
http://orcid.org/0000-0002-0113-1905
http://orcid.org/0000-0002-0113-1905
http://orcid.org/0000-0002-0113-1905
http://orcid.org/0000-0002-0113-1905
mailto:c.darmanin@latrobe.edu.au
mailto:b.kobe@uq.edu.au
mailto:hongyi.xu@mmk.su.se
mailto:t.ve@griffith.edu.au
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

oll-like receptors (TLRs) detect pathogens and endogenous
danger-associated molecules, initiating innate immune
responses that lead to the production of pro-inflammatory
cytokines. Signaling by TLRs is initiated by dimerization of their
cytoplasmic TIR (Toll/interleukin-1 receptor [IL-1R]) domains,
followed by recruitment of the TIR-containing adaptor proteins,
including MyD88 (myeloid differentiation primary response gene
88) and MAL (MyD88 adaptor-like/TIRAP)(Fig. 1)!. Combina-
torial recruitment of these adaptors via TIR:TIR interactions
orchestrates downstream signaling, leading to induction of the
pro-inflammatory genes. In previous work, we showed that MAL
TIR domains (MALTIR) spontaneously and reversibly form fila-
ments in vitro. They also formed co-filaments with TLR4 TIR
domains (TLR4™R) and nucleated the assembly of MyD8§TIR
into crystalline arrays?. These results suggested signaling by
cooperative assembly formation (SCAF), a mechanism prevalent
in innate-immunity and cell-death pathways>4, and we proposed
a model for signal amplification, in which the TLR4, MAL and
MyD88 TIR domains sequentially and cooperatively assemble
into a higher-order TIR domain complex. This assembly then
induces the formation of the Myddosome, involving the death
domains of MyD88 and the protein kinases, IRAK2 and IRAK4,
leading to proximity- -based activation of these kinases (Fig. 1)>°.
The 7 A cryogenic electron microscopy (cryo-EM) structure of
the MALTIR filament revealed a hollow tube composed of 12 two-
stranded protofilaments of TIR domains and mutational analyses
revealed that protein interactions within these protofilaments are
likely to represent higher-order TIR-domain interaction inter-
faces during in vivo signaling, although the structures formed
within cells may be more limited in size”. However, the structural
basis of how MyD88TIR and TLR4™R domains self-assemble and
interact with MALTIR remained uncharacterized.
Here we set out to structurally characterize the MyD88TIR
crystalline assemblies observed in our previous work2. As the
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Fig. 1 Schematic diagram of the SCAF model for TLR signaling. Pathogen-
associated molecular patterns (e.g., LPS) binding to the extracellular LRR
domain of a TLR (e.g., TLR4) induces dimerization of its TIR domains, which
leads to the recruitment of an adaptor TIR domain (e.g, MALTR) to the
extended surface created by the TLR4TR dimer. Elongation of this trimer
through recruiting additional adaptor's TIR domains (e.g., MALTIR or
MyD88TR) into a higher-order complex leads to clustering of MyD88 DDs
and subsequent recruitment of IRAKs through DD interactions. The initial TIR
dimerization and trimerization steps are likely to be unfavourable and rate
limiting, whereas subsequent monomer additions are more favourable, rapid
and cooperative. LRR, leucine-rich repeat domain; LPS, lipopolysaccharide;
TLR, Toll-like receptor; TIR, Toll/interleukin-1 receptor domain; DD, death
domain.

crystals were too small for conventional X-ray crystallography, we
employed the complementary techniques of microcrystal electron
diffraction (MicroED) and serial femtosecond crystallography
(SEX). MicroED®® enables structure determination of
submicrometre-sized crystals. In MicroED data collection, the
crystal is continuously rotated in a transmission electron micro-
scope (TEM)19-12, analogous to the rotation method used in X-
ray crystallography!3, and to related three-dimensional electron
diffraction methods in TEM!4, MicroED can complement exist-
ing methods in structural biology such as conventional X-ray
crystallography, where growing crystals of sufficient size and
crystallinity is often the major barrier to structure
determination!>-18. Indeed, many failed crystallization trials have
been shown to contain microcrystals!®-2!, Furthermore, small
macromolecular crystals potentially have reduced defects?2-24,
and controlled perturbations to the sample, such as soaking and
vitrification, may be applied rapidly and more uniformly?4-2¢.
MicroED has already enabled protein structure determination
from microcrystals®10-2327-30_ structure solution of a previously
uncharacterized metalloenzyme3!, structure determination of
membrane proteins from microcrystals embedded in lipidic cubic
phase3?-3>  and  the visualization of ligand-binding
interactions?>3%. Furthermore, MicroED enables the study of
biomolecules that naturally aggregate or assemble into micro-
crystals, facilitating structure determination of several short
peptide fragments from thin prion protofibrils?337-39, Such
naturally occurring crystalline assemblies are of special interest, as
they can reveal the interactions occurring in assemblies within
cells, illustrating the underlying mechanisms guiding the assem-
bly formation and providing relevant structural insights.

More or less in parallel to the development of MicroED, SFX
has emerged as a powerful technique for structure determination
and the study of protein dynamics of microcrystalline
samples?440-43_ SFX exploits the femtosecond-scale duration of
extremely brilliant X-ray free-electron laser (XFEL) pulses for the
collection of high-quality diffraction data at room temperature,
which occurs before the onset of structure-altering radiation
damage*447. In SFX, diffraction data are collected as single
snapshots from randomly oriented microcrystals*>47. With the
crystals delivered to the beam at room temperature and minimal
sample handling, challenges associated with cryo-cooling and
potential protein conformation restrictions are avoideds. SFX
has facilitated structure determination from submicrometre
crystals of radiation-sensitive proteins**->! and membrane pro-
teins such as G protein-coupled receptors®>—>>. SFX has also
enabled time-resolved studies of light-sensitive proteins with
unprecedented temporal resolution®>=>7, enabling the study of
reactions initiated by ligand binding and exploiting the sub-
micrometre crystal size for rapid reaction initiation#9->1->456-58,
In particular, SFX has advanced fibril studies, e.g., amyloids or
microtubules, where the fibrous biomolecule assemblies may have
partial or no crystallinity, approaching the regime of single-
molecule imaging®-%0,

Here we present MicroED and SFX structures of the MAL-
induced MyD88TIR microcrystals at 3.0 A and 2.3 A resolution,
respectively. Importantly, both structures show several distinct
remodelled loop regions that adopt conformations that are dif-
ferent from previously determined monomeric X-ray and nuclear
magnetic resonance (NMR) structures®1-62. Cr 1ystal packing ana-
lysis revealed that the MAL-induced MyD88TIR crystals have a
two-stranded higher-order assembly arrangement of TIR
domains identical to that observed previously within sponta-
neously formed MALTIR filaments?, and mutagenesis studies
demonstrated that the interfaces within these higher-order
MyD88TIR agsemblies are important for signaling. This identical
architecture suggested a unidirectional templating mechanism for
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Fig. 2 MicroED data collection from MyD88TIR microcrystals. a, b Electron micrograph of aggregated microcrystals, only showing poor-quality diffraction
data. Scale bar, Tum. ¢, d Multiple microcrystals are overlapping, showing multiple lattices in their corresponding diffraction patterns, complicating data
indexing. Scale bar, 1um. e, f Single hydrated microcrystal, showing high-quality diffraction data up to 3.0 A resolution. Scale bar, Tum. The cyan rings on
the micrographs indicate the 1.5 pm diameter parallel beam, defined by the selected area aperture, used for MicroED data collection. Electron diffraction
patterns were collected with an angular increment of 0.68° per frame, at a dose rate of 0.12 e=/AZ per frame. The data in a-f are representative of three

EM grids prepared using 3l of a 1:50 MALTIR: MyD88TIR crystal solution.

Table 1 Data collection statistics.

Cell dimensions

Data collection MicroED?b SFX¢
Temperature (K) 77 300
Space group 2 2

a, b, c (A) 99.06, 31.01, 54.30 100.40, 31.50. 54.50
a By © 90.00, 90.00,
107.70, 90.00 107.40, 90.00
Resolution (A) 30.54-3.00 30.93-2.30
(3.11-3.00) (2.38-2.30)
Remerge 0.46 (0.95) -
Rsplit - 0.34 (13)
Mean I/o(1) 4.8 (1.8) 2.6 (1.4)
CCy)2 0.95 (0.43) 0.90 (0.36)
ccr 0.99 (0.77) 0.97 (0.73)
Completeness (%) 73.7 (57.3) 91.4 (60.2)
Multiplicity 12.2 (6.0) 242 (3.4)

Values in parentheses are for the highest-resolution shell. Intensity statistics were generated
from phenix.table_one® for the MicroED data and from CrystFel07.128 for the SFX data.
aMerged data from 18 crystals.

bMicroED data were truncated at mean I/6(1) > 1.5 and CC,,, > 0.4%4.

“Merged data from 4725 indexed snapshots out of 13,528 hits.

nucleation and assembly of the higher-order MyD88TIR oligo-
mers, which we confirmed using crystal growth assays. Moreover,
structural comparison of the MyD88TIR higher-order assembly
and monomeric MyD88TIR enabled us to understand the con-
formational changes that MyD88TIR monomers undergo upon
joining the higher-order assembly. Collectively, our studies shed
light on the hierarchical nature of the SCAF mechanism oper-
ating in TLR and IL-1R pathways.

Results
Data acquisition. The MAL-induced MyD88TIR microcrystals
were typically 100-200 nm in diameter, making them ideally
suited to both MicroED (Fig. 2) and SFX.

The microcrystals were deposited on Quantifoil EM grids
and vitrified for screening and MicroED data acquisition

(Supplementary Fig. 1). The microcrystals had a tendency to
aggregate, forming large bundles that diffracted poorly (Fig. 2a,
b). Furthermore, the bent and overlapping crystals complicated
the data interpretation (Fig. 2¢, d). Using a small parallel electron
beam of 1.5 um diameter, defined by the selected area aperture,
only single thin hydrated microcrystals were selected for
MicroED data collection (Fig. 2e, f). The MyD88TIR microcrystals
diffracted to 3.0 A resolution and provided high-quality electron
diffraction data (Fig. 2f). Data from 18 crystals were integrated,
scaled and merged (Table 1). The overall completeness is limited,
owing to a preferred orientation of the MyD88TIR microcrystals
on the grid and because of the limited tilt range of the
goniometer.

The MyD88TIR microcrystals were studied in parallel using
SEX. Initially, serial crystallography was attempted on a fixed
target at the PETRAIII PII beamline, with a beam size of 2 x 2
pum. However, in this setup, data collection and analysis were
complicated by the frequent bundling of microcrystals into larger
aggregates (Supplementary Fig. 2). To reach higher resolution and
overcome microcrystal aggregation, the sample was delivered as a
stream of solvated microcrystals with a gas-dynamic virtual
nozzle (GDVN) injector®®%4 to a pulsed XFEL beam at the Linac
Coherent Light Source (LCLS), SLAC National Acceleratory
Laboratory®. By using a micro-focused beam (nominally 1 x 1
pm full width at half maximum (FWHM)), and optimizing crystal
concentration (7.5 x 108 crystals/ml), high-quality diffraction
patterns from individual crystals were collected. Overall, the
SEX dataset comprised 4725 indexed patterns from 13,528 hits
(35% indexing rate) out of 1,029,868 detector frames (average hit
rate of 1.3%). The lattice parameters derived from the SFX data
were found to be slightly larger than in the MicroED data
collected under cryo-conditions (Table 1).

Structure solution, model building and refinement. The
structure of MyD88TIR was initially solved using the MicroED
data by molecular replacement, finding a well-contrasting unique
solution in space group C2. The solution was found with a search
model derived from a distantly related Toll-related receptor 2
(TRR2) TIR domain, sharing only 30% sequence identity with
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. MyD88™R NMR structure
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Fig. 3 MyD88TIR structure comparison. a Ribbon diagram (blue) of a monomer from the MyD88TR higher-order assembly structure. Structural elements
are labelled sequentially in TIR domains, with the BB-loop connecting strand BB with helix aB, according to the established nomenclature'?®,
b-f Superposition of the MyD88TIR SFX structure (blue), with b the MyD88TIR MicroED structure (orange); ¢ the monomeric MyD88TIR X-ray crystal
structure (PDB ID 4EQ7; magenta); d the monomeric MyD88TIR NMR solution structure (PDB ID 2Z5V; green); e the crystal structure of the TIR domain of
the Toll-related receptor TRR2 from the lower metazoan Hydra vulgaris (PDB ID 4W8G; yellow); and f the MALTR higher-order assembly cryo-EM

structure (PDB ID 5UZB; red).

Table 2 Refinement statistics.
Refinement MicroED SFXa SFXb
Refinement phenix.refine  REFMACS5 phenix.refine
program
Resolution (A) 30.54-3.00 30.94-2.30 30.93-2.30
No. reflections 2436 6352 6687
Rwork/ Riree 0.223/0.280 0.220/0.270 0.239/0.281
Mean B-factor (A2)  52.01 40.00 45.60
R.M.S. deviations
Bond lengths (A)  0.005 0.002 0.001
Bond angles (°)  0.524 1.191 0.370
Ramachandran
Favoured (%) 97.79 98.53 99.26
Allowed (%) 2.21 1.47 0.74
Outliers (%) 0.00 0.00 0.00
Clashscore 4.38 1.70 3.94
Rotamer 0.00 0.76 0.00
outliers (%)
aSFX structure refinement using the REFMACS refinement programme.
bSEX structure refinement using the MicroED structure refinement protocol.

MyD88TIR (Fig. 3). The structure of MyD88TIR was iteratively
built and refined using the MicroED data (Table 2) and, despite
moderate completeness and resolution, the electrostatic potential
map showed well-resolved features and enabled remodelling of
the loop regions that differed from the previously determined
monomeric crystal and solution structures®1:62 (Figs. 3 and 4a).
The higher-resolution SFX structure (2.3 A) was first solved using
the MicroED MyD88TIR model as a template for molecular
replacement followed by iterative rebuilding and refinement using
a different protocol compared to the MicroED structure (Table 2,
SFX?). To enable a direct comparison between the MicroED and
SEX models, we also solved, rebuilt and refined the SFX

MyD88TIR structure using an identical protocol as described for
the MicroED data (Table 2, SEXP). The SFX? map (Fig. 4b)
showed well-resolved features, including water molecules that
were not modelled in the MicroED structure. To check whether
the MicroED and SFX maps were biased by the search model,
simulated annealing (SA) composite omit maps were calculated,
confirming the interpretation of our structural models (Supple-
mentary Fig. 3). As the microcrystals contain a small proportion
of MALTIR molecules, there may be a contribution of this het-
erogeneity to the diffraction, but this is likely to have a negligible
effect. Accordingly, there is no evidence of the presence of
MALTIR molecules in the electron density and electrostatic
potential maps of the MAL-induced MyD881IR crystals.

Structural comparison of MyD88TIR structures. The MicroED
and SFXP MyD88TIR structures, which were built and refined
using the same protocol, are almost identical, with a root mean
square deviation (RMSD) of 0.4 A for 138 Ca atoms. Minor dif-
ferences in some side-chain conformations can be observed, which
is most likely due to the flexibility of certain regions resulting in
poorly defined electron density or as a result of the difference in
the data collection temperature (Supplementary Fig. 4). The
MyD88TIR SEX2 structure was used for the comparison with other
TIR domain structures and for the analyses of interaction inter-
faces within the crystal. The structure of MyD88TIR within the
MAL-induced higher-order assembly exhibited conformational
differences from the known NMR (RMSD of 2.4 A for 107 Ca
atoms)®! and X-ray (RMSD of 2.0 A for 118 Ca atoms)%? struc-
tures of monomeric MyD88TIR, This is especially apparent in the
region encompassing the BB loop and aB helix, and in the CD
loop (Fig. 3). The conformational differences are likely due to
participation of these regions in TIR: TIR interactions within the
MAL-induced higher-order assemblies. Among the known TIR
domain structures, the MALTIR filament structure (Fig. 3) and the
TLRI, TLR2, TLR6 and IL-RACP crystal structures possess similar
BB-loop and aB-helix conformations2.
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Fig. 4 Structure determination and model building of the MyD88T'R higher-order assembly by MicroED and SFX. Models and maps are presented of the
remodelled BB loop (residues 186-204; top) and CD loop (residues 242-251; bottom) for the a MicroED and b SFX@ structures. The carbon atoms in the
MicroED and SFX@ structures are shown in grey and green, respectively. Nitrogen, oxygen and sulfur atoms are shown in blue, red and yellow, respectively.
The electrostatic scattering potential (MicroED) and electron density (SFX) 2mFo — DFc maps (blue isomesh) are contoured at 1.26, and the difference
mFo — DFc maps (green and red isomesh for positive and negative density, respectively) are contoured at 2.86. No missing reflections were restored using

weighted Fc values for map calculations.

MyD88TIR interaction interfaces in the microcrystal. Analysis
of the crystal packing reveals MyD88TIR higher-order assemblies,
each consisting of two offset parallel strands of TIR domains, with
subunits in a head-to-tail arrangement forming each strand
(Fig. 5a—c and Supplementary Tables 1-3). Formation of the
MyD88TIR assemblies is mediated by two major types of asym-
metric TIR domain interactions: one within each of the two
strands (intrastrand interface) and one between the two strands
(interstrand interface).

Based on the SFX structure, the intrastrand interface involves
opposite sides of the MyD88TIR domain, which together buries
~18.0-18.6% (1500 A2) of the total surface area per subunit in the
structure. It is composed of interactions between residues located
in the BB loop of one subunit (BB surface) and the pD and BE
strands and the aE helix on the next subunit (EE surface)
(Fig. 5b-d and Supplementary Table 1). The highly conserved
proline residue (P200 in MyD88) in the BB loop is buried in a
shallow pocket between the BE strand and the aF helix consisting
of residues 1253, C274, 1290 and A292. Hydrogen bonds
(Supplementary Table 1) and a hydrophobic stacking interaction
between the side chains of W284 and R196 stabilize the interface.
The conformation of the BB loop is also stabilized by an internal
salt-bridge between E183 and R196 (Fig. 5d).

The interstrand interface buries ~12.0-12.2% of the total
surface area per subunit (991 A2?) and is composed of interactions
between residues located on the aB and aC helices of one
molecule (BC surface) and the CD loop and the aD helical region
of the partner molecule (CD surface) (Fig. 5b, ¢, e and
Supplementary Table 2). Several residues (W205, F235, K238,
F239, 1241, P245, 1267 and F270) contribute hydrophobic
interactions to this interface (Fig. 5e).

The interactions between the MyD88TIR two-stranded assem-
blies, which form a continuous sheet in the microcrystals, involve
residues predominantly located in the aA helix and the CD and
EE loops (Supplementary Table 3). The interface buries ~7-8%
(570 A2) of the total surface area per subunit and is less extensive
than the intrastrand and interstrand interactions (Fig. 5f and
Supplementary Table 3). These inter-assembly interactions are
most likely analogous to non-biological crystal contacts in
macromolecular crystals?°,

Mutation of MyD88TIR intrastrand and interstrand residues
perturbs assembly formation and signaling. We previously
showed that alanine mutations of R196, D197, P200, W284 and
R288 in the intrastrand interface, and K238, L241, S266 and R269 in
the interstrand interface disrupted MAL-induced MyD88TIR
microcrystal formation in solution. To demonstrate the biological
importance of the interaction interfaces, we tested the effect of
interface residue mutations in a HEK293 TLR4 reporter cell line
with an nuclear factor-kB (NF-kB)-driven mScarlet-I reporter and
with endogenous MYD88 knocked out (Fig. 6a, b and Supple-
mentary Fig. 5). Intrastrand mutations R196A, W284A, 1253D and
R288A abolished NF-kB activation by the TLR4 ligand lipopoly-
saccharide (LPS), whereas P200A in the BB loop substantially
reduced activation (Fig. 6a and Supplementary Fig. 5d). In the
interstrand interface, mutants K238A, L241A, F270A and F270E
had little or no LPS response. An alanine mutation of F239 in this
interface, which predominantly is involved in hydrophobic inter-
actions with aB helix residues within the same subunit, only led to
~20% loss of activity. Mutants localized at the periphery of the
interstrand interface had either intact signaling (P245H and R269A)
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Fig. 5 Structure of the MyD88TIR higher-order assembly microcrystal. a Surface representation of the MyD88TIR microcrystal, consisting of two-

stranded higher-order assemblies (black dotted lines). The two strands are shown in blue and magenta, respectively. b Ribbon diagram of the MyD88TIR
higher-order assembly. A yellow sphere indicates the N terminus of each TIR monomer and a red sphere indicates the C terminus of each TIR monomer.
The two strands are shown in blue and green, and magenta and dark salmon, respectively. ¢ Schematic diagram of the MyD88TR microcrystals and the two
types of asymmetric interactions within the higher-order assembly. BB surface consist of residues in BB loop; EE surface consist of residues in fD and BE
strands, and the oF helix; BC surface consist of residues in aB and aC helices; whereas CD surface consist of residues in CD loop and the aD helical region.
d, e Detailed interactions within the higher-order assembly d intrastrand interface and e interstrand interface. f Detailed interactions between the two-

stranded higher-order assemblies, forming the sheet structure.

or ~20% loss in activity (D234A). Mutant K282A, located at the
interface forming the sheet structure that is considered not biolo-
gically important (Fig. 5f), also had intact signalling These signaling
results agree very closely with analyses of the LPS-induced clus-
tering of expressed MyD88 in cells (Fig. 6b and Supplementary
Fig. 5e, f). The results are also consistent with our previous study on
spontaneous and MAL-induced MyD88 clustering?, except that
here, using a cell line deficient in endogenous MyD88, an effect of
interstrand mutations can be clearly seen.

Disease-related mutations and post-translational modification
sites modulate assembly formation. Several MyD88 TIR domain
missense mutations (V204F, S206C, 1207T, S209R, S230N,
M219T, L252P and T281P) sustain lymphoma cell survival due to
constitutive NF-kB signaling®’-%9. Mapping of these residues
onto the MyD88TIR agsembly revealed that the S209R mutation is
likely to directly impact interstrand interactions, whereas the
T281P mutation may impact intrastrand interactions (Supple-
mentary Fig. 6). L252 is buried and not directly involved in
higher-order assembly interactions, but molecular dynamics
simulations suggest that this mutation is likely to modulate the
conformation of the CD loop”?, which is critical for interstrand
interactions in the MyD88 higher-order assembly. To directly test
the hypothesis that these disease-related mutations increase
MyD88 higher-order assembly formation, we analysed their
effects on clustering in both cell-based and cell-free systems
(Fig. 6a—c). Consistent with previous reports, expression of the
S209R, L252P and T281P mutants in our reporter cell line
showed increased basal NF-«B activation (Fig. 6a). L252P showed

no further inducibility by LPS, whereas S209R and T281P were
LPS responsive. All three mutants had increased basal clustering
compared to wild-type (WT) MyD88, which was further
increased by LPS for S209R and T281P (Fig. 6b). The aggregation
propensity of these mutants was also evaluated by single-molecule
spectroscopy, by measuring the brightness of the fluorescence
time traces of cell-free expressed green fluorescent protein (GFP)-
tagged proteins’! (Fig. 6¢). The S209R and T281P mutants had
increased aggregation propensity, forming larger particles than
WT MyD88 (Supplementary Fig. 7). By contrast, the L252P
mutant formed smaller particles than WT MyD88 (Supplemen-
tary Fig. 7), but the complexes were found in higher numbers and
formed at lower protein concentrations, as previously reported”2.

The MyD88 TIR domain has been reported to be
phosphorylated on $242 (aC helix) and S244 (CD loop), with
phosphomimetic mutations of these residues leading to
opposite effects on NF-«kB activation: the $S244D mutation
becomes hyperactive, whereas the $242D mutation has an
inhibitory effect’%73. $242 forms a hydrogen bond with W205
in the MyD88 higher-order assembly and mutation of this
residue to an aspartate is thus likely to destabilize the
interstrand interface (Supplementary Fig. 6). S244 is not
directly involved in higher-order assembly interactions, but
similar to L252P, molecular dynamics simulations suggest that
the S244D mutation causes a change in the CD loop
conformation’?. When the ability of MyD88 to cluster in
HEK293 cells was tested (Fig. 6b), the $244D phosphomimetic
mutation increased MyD88FL clustering, whereas $242D
inhibited clustering, which is in perfect agreement with NF-
kB activation by these mutants (Fig. 6a). Similar data were
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Fig. 6 Interface, disease-associated and phosphomimetic mutations
modulate MyD88 signaling and assembly. a, b Effects of MyD88 muta-
tions on LPS-induced signaling and MyD88 clustering were tested in
HEK293 cells expressing TLR4, MD2 and CD14, with MYD88 knocked out
and stably transfected with an NF-kB-driven mScarlet-I fluorescent
reporter. The cells were transfected with plasmids expressing wild-type
or mutant V5-tagged MyD88, or empty vector, and then treated with (black
bars) or without (grey bars) LPS (100 ng/mL) overnight, immunostained to
detect MyD88-V5 and analysed by flow cytometry. Cells with very low
expression of MyD88 were used for analysis to avoid spontaneous
signaling (Supplementary Fig. 5b, ¢). The mean trange from n=2
independent experiments is shown. The death-domain mutation G80K,
which has previously been shown to prevent MyD88 clustering’3°, and a
TIR domain alone construct provided negative controls. a NF-kB activation
measured by the geometric mean fluorescence intensity of the mScarlet-
positive population relative to LPS-treated cells expressing wild-type
MyD88. The dotted line indicates level of activation in cells with empty
vector. b The percentage of cells with clustered MyD88 was determined
based on the elevated height-to-area ratio of the MyD88 signal, which is
observed when MyD88 clusters? (Supplementary Fig. 5e). ¢ Wild-type
MyD88 and mutants were expressed in a cell-free system with an N-
terminal GFP tag and the fluorescent samples were analysed by single-
molecule spectroscopy on a home-made confocal microscope. To
characterize the propensity of wild-type MyD88 and mutants to form
higher-order assemblies, the average brightness values (equation (1)) of
the proteins were calculated’2. The results show that S209R, S244D,
P245H and T281P mutants have higher propensity than wild-type MyD88
to oligomerize. The mean+ SEM of n=3 or n=2 (F270E and T281P)
experiments using different lysate batches with two technical repeats per
experiment is shown. The G80K mutant and the TIR domain were used as
negative controls.

observed in the single-molecule assay, using cell-free
expressed proteins (Fig. 6¢). Overall, our new data strongly
suggest that MAL-induced MyD88 TIR-domain clustering
directly correlates with the level of NF-kB activation and
therefore support the relevance of our structure as a model of
MyD88 TIR domain association in vivo.

Comparison of MALTIR and MyD88TIR assemblies. To gain
deeper insights into TIR-domain assembly formation, we com-
pared the MyD88TIR microcrystal structure (Fig. 5) with our
previously published cryo-EM structure of the MALTIR filament?.
Both assemblies share a common overall architecture with head-
to-tail intrastrand interactions mediated by the BB and EE sur-
faces, and interstrand interactions mediated by the BC and CD
surfaces (Supplementary Fig. 8a). The conformations of the aE
helix and the EE and CD loops are different in MyD88 compared
to MAL (Fig. 3 and Supplementary Fig. 8a), resulting in an
increase in the buried surface of both the intrastrand and inter-
strand MyD88TIR interactions (Supplementary Table 4).

The conformational differences in the aFE helix and EE loop
also lead to differences in the interface between the two-stranded
higher-order assemblies (Supplementary Fig. 8b). In the MyD88-
TIR microcrystal, these interactions involve the aA helices and the
CD and EE loops, whereas in the MALTIR cryo-EM structure the
aA, aC and aD helices and the AA and EE loops contribute to
these interactions. The differences in these interactions result in
distinct packing of the two-stranded higher-order assemblies,
MALTIR forming a tube consisting of 12 protofilaments, whereas
MyD88TIR forms a continuous sheet (Supplementary Fig. 8c).

MALTIR  pycleates MyD88TIR assembly formation uni-
directionally. MALTIR nucleates the assembly of the MyD88TIR
microcrystals2. The similar architecture observed in the MALTIR
and MyD88TIR higher-order assemblies suggests a molecular-
templating mechanism for nucleation and assembly, in which
MALTIR gerves as a platform to promote unidirectional assembly
of MyD88TIR through intra- and interstrand interactions. To test
this hypothesis, we captured MyD88TR microcrystal growth
using differential interference contrast (DIC) and fluorescence
microscopy. Either MALTIR or GFP-MALTR fusion proteins
acted as nucleators of assembly formation and GFP-MALTIR
nucleates the same type of MyD88TIR microcrystals as MALTIR
(Supplementary Fig. 9). Short MALTIR-MyD88TIR crystal seeds
were washed to remove MAL and then mixed with MyD88TIR,
The results revealed that MyD88TIR assembly formation was
unidirectional, with a substantial number of seeds observed with
growth from one end only (Fig. 7a and Supplementary Movie 1).
However, the tendency of MyD88 microcrystals to aggregate also
presented a problem here, as the assemblies could also be seen
growing in multiple directions from seed aggregates (Supple-
mentary Fi _lg 10). GFP fluorescence is observed throughout the
GFP-MALMR:MyD88TIR crystal seeds, suggesting MALTIR can
also incorporate within the MyD88TIR higher-order assembly,
which is consistent with our previous report showing that
MALTIR and MyD88TIR can form smaller heterogeneous complex
structures when mixed at a 1:1 ratio?. As the concentration of
GFP-MALMR ysed for preparing the seeds (0.25-2 uM) is sig-
nificantly lower than the critical concentration for MALTIR fila-
ment formation (30 uM)2, and the initial concentration of
MyD88TIR jg ~50-400x higher than GFP-MALTIR or MALTIR,
the seeds must predominantly consist of MyD88TIR molecules,
with a small fraction of MALTIR molecules localized at one end
and also scattered throughout the seed. Furthermore, the
MyD88TIR assemblies continue to grow after removal of GFP-
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Fig. 7 MALTIR pucleates MyD88TIR assembly formation unidirectionally. a Time-lapse imaging of MyD88TIR microcrystal formation. Representative
images of microcrystals growing from single GFP-MALTR-MyD88TIR and MALTIR-MyD88TR seeds are shown. The seeds were washed to remove MAL
and then mixed with MyD88TIR. Data are representative of five independent experiments. Asterisks denote seeds with unidirectional growth. Scale bars:
left panel 5um; middle and right panels 10 um. b Ribbon diagrams of MyD88TIR (NMR solution structure of monomeric MyD88TIR (PDB ID 2Z5V) and
higher-order assembly structure) and MALTIR (NMR solution structure of monomeric MALTIR (PDB ID 2NDH) and higher-order assembly cryo-EM
structure (PDB 5UZB)), highlighting the rearrangement of the BB loop and B helix (magenta in MyD88TIR and green in MALTIR) during the monomer-to-
oligomer transition. ¢ Two models of interstrand interactions, transitioning between MyD88TIR monomer (yellow) and MyD88TR higher-order assembly
(blue): (i) EE surface of MyD88TR monomer docks onto BB surface of MyD88TIR higher-order assembly. This interaction does not require any
conformational changes in the BB loop and aB helix to occur prior to binding. (ii) BB surface of MyD88TIR monomer docks onto EE surface of MyD88TIR
higher-order assembly. This interaction requires significant conformational changes in the BB loop and aB helix to occur prior to binding and is therefore
less favoured. d Model of MyD88TIR unidirectional assembly formation. The conformational changes in BB loop and aB helix required for the recruitment of
new TIR domain subunits are induced by interstrand interactions. The higher-order assembly conformations of MALT'R and MyD88TIR, and the monomeric
conformation of MyD88TR are shown in orange, blue and yellow, respectively.

MALTR, demonstrating that MALTIR is only required for
MyD88TIR assembly nucleation and not elongation.

To predict whether any of the inter- and intrastrand interface
surfaces in MALTIR are preferred for the interaction with
MyD88TIR, we calculated the predicted buried surface areas of
possible MALTR and MyD88™IR interactions. The calculations

showed that the MALTIR BB surface-MyD88TR EE surface
interaction has the largest buried surface area (Supplementary
Table 4). We also mapped the electrostatic potential on the
surface of MALTIR and MIXDSSTIR, and found that the MALTIR
BB surface and MyD88TIR EE surface are the only interaction
interfaces that are highly charge complementary (Supplementary

8 NATURE COMMUNICATIONS | (2021)12:2578 | https://doi.org/10.1038/s41467-021-22590-6 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Fig. 11). Furthermore, molecular dynamics simulations on
MALTIR: MyD88TIR complexes revealed that complexes invol-
ving the MAL BB and MyD88 EE surfaces are more stable than
complexes involving the MAL EE and MyD88 BB surfaces
(Supplementary Fig. 12). Consistent with these analyses, we have
previously demonstrated that mutations in the MALTIR BB
surface prevented full-length MAL-induced MyD88 clustering
both in vitro and in cells (R121A, P125A and P125H)2.

We also compared the structures of MALTR and MyD88TIR
monomers with their respective structures within higher-order
assemblies. This comparison revealed large conformational differ-
ences in the BB and BC surface regions (BB loop and aB helix),
whereas the EE and CD surface regions adopt similar conforma-
tions (Fig. 7b). Models of the recruitment of monomeric MyD88TR
to a growing strand demonstrate that recruitment of new subunits
to the assembly via their EE surfaces requires only minimal
conformational changes prior to binding, whereas recruitment of
new subunits to the assembly via their BB surfaces requires large
rearrangements of both the BB loop and aB helix prior to binding,
and would therefore be predicted to be less favourable (Fig. 7c).
Overall, our structural analyses suggest that in the nucleation and
elongation steps of MyD88TIR assembly formation, the EE surface
of incoming MyD88'IR molecules dock onto the BB surface of
MALTR or MyD88TIR subunits. Interstrand interactions via BC
and CD surfaces then trigger a rearrangement of the oB helix and
BB loop in these newly incorporated TIR domain molecules,
enabling them to interact with the EE surface of new incoming
MyD88MR subunits (Fig. 7d).

Discussion

Over the last decade, crystallography has expanded in several
different directions, both in terms of electron crystallography,
through developments in MicroED%?, and in terms of X-ray
crystallography, through SFX#>-%7. Here we used MicroED and
SFX to determine the structure of the MyD88 TIR domain from
hydrated microcrystalline arrays at 3.0 A and 2.3 A resolution,
respectively. Both of these techniques have their advantages and
disadvantages. SFX utilizes high-intensity X-rays to generate
high-resolution structures at room temperature and is able to use
injector sample delivery systems to overcome crystal aggregation
issues at the expense of high sample consumption (typically
0.3-12mg of protein)’47%, By contrast, MicroED is able to
minimize sample consumption (<1 pg protein) allowing for near-
complete sampling of reciprocal space using the rotation method
of vitrified microcrystals at cryogenic temperature using only a
few or even just a single crystal. However, this can come at the
expense of often having worse crystallographic quality metrics
than is typically achieved in X-ray crystallography. Future
advancements in this method, such as serial electron
diffraction’”-78, improved electron diffraction detectors, and
accurate modelling of the electrostatic potential, taking into
account the charged state of atoms and the potential distribution,
are likely to improve map quality and provide information about
charge interactions3%7?, For SFX, developments in mix-and-inject
experiments at XFELs using nano-focused X-ray beams®0:81
alongside advancements in data analysis®? will provide future
opportunities to conduct time-resolved studies of protein
assembly formation. The eventual goal of structural biology at
XFELs is to try and push the limits of signal-to-noise, to the point
where it is possible to image single molecules in solution83.

In our investigation, only subtle differences were observed
between the MicroED and SFX structures, which may be
explained by the differences in the data resolution and com-
pleteness, flexibility of certain regions, and difference between
cryogenic and room temperature data collection. To our

knowledge, only one other group has reported a comparison of
these two techniques on the same protein crystal system?*. Their
work showed a slight expansion of the unit cell in the SFX case,
which was linked to differences in the data collection tempera-
ture. Our room-temperature SFX data also showed a slight
increase in lattice parameters along the a-axis, when compared to
the cryogenic MicroED data (Table 1), indicating the lattice
change is related to the temperature difference between the two
data sets.

SCAF, which involves assembly of higher-order oligomers for
transmission of receptor activation information to cellular
responses, is an emerging theme in signal transduction? and
operates in several innate-immunity and cell-death pathways
including inflammasome signaling®4, RIG-I-like receptor8® and
TLR pathways?°. In this study, we found that the MAL-induced
MyD88TIR crystalline assemblies contain a two-stranded head-to-
tail arrangement of TIR domains, as previously observed for the
TIR domains of the adaptor protein MAL? Analysis of single
amino-acid MyD88 mutations for their effect on cellular signaling
support the biological relevance of the defined interfaces. Previous
functional analyses have measured spontaneous signaling by
MyD88 overexpressed in HEK293 cells’?. Our analysis here has
several advantages. First, we used cells with endogenous MYD88
knocked out, which gives a more stringent determination of the
function of mutants. This improvement allowed us to demonstrate
the importance of residues in the interstrand interactions, which
were not apparent in our earlier study?. Second, through the use of
flow cytometry, we can analyse single-cell responses and select only
cells with MyD88 expressed at very low levels to avoid spontaneous
signaling. This gives us the ability to observe the response of the
mutants to LPS treatment in an intact signaling pathway, avoiding
artefacts of overexpression. With this technique, we demonstrated
that the R196A mutant is completely inactive, whereas prior work
showed it promoted 56% of WT NF-kB activity in the presence of
endogenous MyD88, despite having defective TIR domain
interactions’’. Consequently, we are confident in the biological
relevance of the signaling assay reported here, which confirmed the
importance of several critical residues in both the intra- and
interstrand interfaces of the MyD88TIR assembly.

We provide evidence demonstrating that MALTIR serves as a
platform to promote unidirectional assembly of MyD88TIR oli-
gomers. One feature of unidirectional elongation is establishment
of hierarchy in the higher-order oligomers, in which upstream
molecules can nucleate the assembly formation of downstream
molecules, but not vice versa, and appears to be a common fea-
ture in many innate-immunity pathways. For example, elongation
of the BCL10 adaptor in the CARMA1-BCL10-MALT]1 assembly
is unidirectional, with growth at one end only as revealed by
confocal imaging®, and structures of the RIG-1: MAVS CARD,
the FADD : caspase-8 DED and the MyD88 : IRAK4 : IRAK2 DD
assemblies revealed that the RIG-1, FADD and MyD88 oligomers
recruit their downstream partners via only one CARD, DD and
DED surface, respectively>8>87,

Our data add support to a sequential and cooperative
mechanism for TLR signal transduction, in which receptor and
adaptor TIR domains assemble via the inter- and intrastrand
interactions observed in the MyD88TIR and MALTIR higher-order
assemblies, leading to formation of a TIR-domain signalosome.
This would then promote clustering of MyD88 DDs to form the
Myddosome, with recruitment and activation of IRAKs>. The
Myddosome defined in vitro is a helical array of DD of MyD88-
IRAK4-IRAK?2 in a 6:4:4 arrangement®. In contrast to this
mechanism suggesting stepwise recruitment of MyD88 proteins,
it has recently been proposed that some MyD88 pre-exists in
unstimulated cells in a free oligomeric complex via DD interac-
tions, but cannot recruit IRAK4 due to the TIR domain blocking

| (2021)12:2578 | https://doi.org/10.1038/541467-021-22590-6 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

access to the IRAK4 binding surface®. Upon receptor activation, it
is proposed that MyD88 TIR domains are recruited into the
TLR4TIR_MALTIR signaling complex, releasing the autoinhibition
and enabling recruitment of IRAKs to the pre-formed MyD88
oligomer. Further data are needed to validate either of these
models, but there are a number of caveats regarding the possibility
of pre-formed autoinhibited complexes. First, MyD88 DD surfaces
involved in IRAK4 interactions are also required for the assembly
of MyD88 DDs into a hexamer and binding of MyD88 TIR
domains to these surfaces is likely to prevent DD oligomer for-
mation altogether. Second, there is a sharp concentration depen-
dence for oligomerization of both full-length MyD88 and MyD88
DD in vitro’? and the threshold for MyD88 clustering in cells is
readily exceeded by overexpression. The spontaneous signaling
seen with overexpression®® argues against MyD88 clusters being
intrinsically inhibited for IRAK recruitment. At normal cellular
concentrations, autoinhibition is likely to play a role in limiting
self-association of MyD8872. Stepwise TIR domain-mediated
recruitment into a TLR signalosome would then increase the
local concentration of DD, leading to Myddosome assembly.

In conclusion, our study provides new insights into the
architecture and assembly mechanism of TIR-domain signalo-
somes in TLR pathways, and at the same time allows for a
comparison of the complementary techniques of MicroED and
SEX. The detailed TIR:TIR interactions reported in this study
may also provide templates for designing small-molecule mimics
of the important interfaces to inhibit MyD88 higher-order
assembly formation for potential therapeutic applications.

Methods

Protein production. Overlapping PCR was used to generate a construct encoding a
GFP-MALTIR fusion protein (EGFP residues 3-239; MAL residues 79-221) with a
GSGGS linker, which was cloned into the pMCSG7 expression vector by ligation-
independent cloning®. For additional information regarding the primers used,
please see Supplementary Table 5. MyD88TIR (residues 155-296 in pET28b, C-
terminal Hise-tag)?, MALTR (residues 79-221 in pMCSG7, N-terminal Hise-tag
and c-Myc-tag)? and GFP-MALTIR were produced in Escherichia coli BL21 (DE3)
cells, using auto-induction media”. Cells were grown at 30-37 °C until the mid-
exponential phase (ODgponm Of 0.6-0.8) was reached. The temperature was then
reduced to 15-20 °C and the cultures were grown for ~16 h before harvesting. The
cells were lysed in 50 mM HEPES (pH 7-8), 500 mM NaCl and 1 mM dithio-
threitol, using sonication. The resulting supernatant was applied onto a 5 ml
HisTrap FF column (GE Healthcare). The bound protein was eluted using a linear
gradient of imidazole from 30 to 250 mM and the fractions containing the protein
of interest were pooled, concentrated and applied onto a Superdex 75 HiLoad 26/60
gel-filtration column (GE Healthcare) pre-equilibrated with 10 mM HEPES pH 7.5
and 150 mM NaCl. The peak fractions were pooled, concentrated to a final con-
centration of 1-10 mg/ml and stored in aliquots at —80 °C.

MyD88TIR crystallization. MAL-induced MyD88TIR crystals were produced by
incubating MALTIR (0.5-3 uM) with MyD88TIR domain (60-100 uM) in 10 mM
HEPES pH 7.5-8, 150 mM NaCl at 25-37 °C for 60-120 min. GFP-MAL-induced
MyD88™TIR crystals were produced by incubating GFP-MALTIR (0.5-3 uM) with
MyD88TIR (95 uM) in 10 mM HEPES pH 7.5, 150 mM NaCl at 30 °C for 20-120
min. To produce seeds for crystal growth analysis, the incubation (30 °C) of GFP-
MALTR (0.5-3 uM) with MyD88TIR (95 uM) in a total volume of 50 ul was
stopped after 20 min.

MyD88TIR crystal growth assays. GFP-MALTIR.MyD88TIR and MALTIR-
MyD88TIR seeds were centrifuged at 2000 x g for 5 min and washed three times
with 250 ul 10 mM HEPES pH 7.5, 150 mM NaCl. The seeds were resuspended in
100 ul 10 mM HEPES pH 7.5, 150 mM NaCl and diluted 1:3200 in the same
buffer. Five microlitres of diluted seed was added to the well of an imaging plate (u-
Plate 96 well ibiTreat sterile, Ibidi) with 45 pl MyDSSTIR (95 uM). The plate was
centrifuged at 1500 x g for 5 min and immediately transferred to microscope for
imaging. During imaging, the plate was incubated at 30 °C on the Nikon Eclipse
Ti2 inverted microscope. DIC and GFP fluorescence images were taken using the
x40 objective lens with x1.5 magnification.

MicroED sample preparation and data acquisition. The MyD88TIR crystal
samples were prepared by depositing 3 ul of 1:50 MAL:MyD88 microcrystal
solution on a Quantifoil 3.5/1.0 (300 mesh) Cu holey carbon EM grid. Excess liquid

was blotted away and the sample was vitrified by flash-cooling in liquid ethane,
using a FEI Vitrobot Mark IV (blot force 0, blotting time 6 s). The sample was
transferred to a Gatan 914 high-tilt cryo-transfer holder. MicroED data were
collected on a JEOL JEM-2100 (LaB6 filament) TEM operated at 200 kV equipped
with a Timepix hybrid pixel detector (Amsterdam Scientific Instruments).
Screening and MicroED data collection, using the rotation method, were per-
formed via the Instamatic software interface®l. Diffraction data were collected
under parallel beam conditions from an area of ~1.5 um diameter, defined by a
selected area aperture. The sample-to-detector distance was 1830 mm. Data were
collected with an exposure time of 1.5-2.0 s and an angular increment of 0.68-0.92°
per frame. The electron dose rate applied during data collection was ~0.08 e~/A2/s.
The average tilt range covered per individual crystal was about 30°, corresponding
to a total exposure dose of ~5.5 e~/A2.

MicroED data processing and structure determination. Data of 18 crystals were
integrated, scaled and merged using XDS? and AIMLESS®3. Data were truncated
approximately at the average I/o(I) > 1.5 and CC,, > 0.4%* (Table 1). A distantly
related TIR domain homologue, TRR2 from Hydra vulgaris (PDB ID 4W8G), was
identified as a suitable search model using the automated molecular replacement
pipeline MrBUMP®>. An optimized search model was generated using Sculptor®.
The structure of MyD88TR was subsequently solved using molecular replacement
in Phaser®’ in the PHENIX software suite?®. The model was iteratively built and
refined using Coot??, phenix.refine!® and interactive structure optimization using
molecular dynamics in ISOLDE!?!. The model was refined using a 5% test set for
Rfree> individual isotropic B-factors, electron scattering factors and automated
optimization of the data vs. stereochemistry and data vs. ADP (atomic displace-
ment parameters) weighting. The geometry of the structural models was validated
using MolProbity!?2. A SA composite omit map was calculated over the entire
contents of the unit cell using phenix.composite_omit_map!%, sequentially
omitting 5% fractions of the structure. No missing reflections were filled in for map
calculations.

Serial crystallography, PETRAIII synchrotron. Based on the Roedig et al.!03
design, 2.5 pl of microcrystals in crystallization buffer containing 16% glycerol
(3.3 x 1081 x 10° crystals/ml) were deposited on a chip with a pore size of 1 um
(manufactured by Sauna P/L) under a humidified environment. The excess mother
liquor was filtered from the crystal by drawing off the solution on the underside of
the chip, leaving behind a thin layer of crystals. The chip was then immediately flash
frozen in liquid nitrogen and mounted onto the standard goniometer system, under
a cryo stream, on the P11 beamline at the PETRAIII synchrotron. The beamline was
set up at 12 keV with a beam size of 2 pm and flux measured at 6.4 x 10! p/s. A 100
um pinhole was used and a capillary beam stop designed by the beamline scientists
was incorporated into the beamline. The detector distance was set to 588.3 mm and
data were collected using the fly scan mode (exposure of 2 s, step size of 10 pm,
oscillation of 0.1° and 2 frames per crystal) on a Pilatus 6 M detector.

SFX sample preparation and data acquisition. The crystal concentration tested
ranged from 2.5 x 108 to 2 x 10° crystals/ml for SFX measurements with the
optimal crystal concentration of 7.5 x 108 crystals/ml. The crystals were filtered
through a 20 um stainless steel filter prior to loading into the sample reservoir for
sample injection. SFX data were collected at the coherent X-ray Imaging (CXI)
endstation at the LCLS, SLAC National Accelerator Laboratory®>. A GDVN was
used, with an optimized flow rate of 20 pl/min. The XFEL operated at a rate of 120
Hz, delivering 9.6 keV (1.3 A), X-ray pulses of ~40 fs duration with an estimated
8.3 x 10! photons/pulse at the interaction position, assuming ~50% intensity loss
along the beamline. The beam was focused to a diameter of 1 um FWHM. The data
were collected on a Cornell-SLAC Pixel Array Detector!04105 at a distance of 0.181
and 0.1061 m, for ~111 and 32 min (796,710 and 233,158 detector frames),
respectively. The GDVN overcame most of the multi-crystal issues but clogging in
the injector lines and in-line filters was an issue. The in-line Peek filters were
replaced with 20 pm stainless steel filters and the sample reservoirs were vortexed
every 15 min to prevent the crystals from settling. The highest hit rates (~4.5%)
were achieved by cycling between delivering sample and washing the sample
delivery lines with water every 10 min during data collection. Data were collected
from a total of 3.2 ml of crystal solution (~4.3 mg of MyD88TIR mixed with 0.17 mg
MALTR) at room temperature.

SFX data processing and structure determination. Hit finding and detector
calibration was performed using Cheetah!%¢ with hit finder 8 and a minimum of 15
peaks per image, and with minimal jet masking used. The CrystFEL software
suite!?” was then used for indexing, utilizing MOSFLM!08, XGANDALF!*° and
DirAx!'!0 as indexing algorithms and merged with a partialator (using scaling
without partiality modelling), followed by data reduction using AIMLESS?? in the
CCP4 software suite!!l.

The SFX MyD88TIR structure was solved, rebuilt and refined using two different
protocols, SEX? and SFXP. SFX2: MyD88TIR structure was solved by molecular
replacement using Phaser?® and a polyalanine model of the MicroED structure as a
template. The structure was iteratively rebuilt and refined using Coot?® and
REFMAC5!12 within the CCP4 suite!!!. A 10% R test set was used for
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refinement. The model was first refined using individual isotropic B-factors;
however, in the final steps of refinement, hydrogens were added to the model and
TLS parameters were included to model anisotropic displacements. The geometry
of the structural model was validated using MolProbity!'02. SFXP: The structure was
solved, rebuilt, refined and validated using an identical protocol as described for the
MicroED data. A SA composite omit map was calculated using the same protocol
as described for the MicroED data.

Structural analyses. The Dali!!3, PISA!!4 and PIC!!> servers and PyMOL (ver-
sion 2.2.3 Schrodinger, LLC) were used to analyse the structures. Electrostatic
potentials were calculated using APBS!!6. Figures were prepared using PyMOL.

Plasmids and site-directed mutagenesis. The cDNA encoding luciferase in the
NEF-kB-driven reporter plasmid (pNFxB-Luc, Stratagene) was replaced with that of
the fluorescent protein mScarlet-I (Supplementary Table 5). The resulting plasmid
(pNFxB-mScarlet) drives expression of the fluorescent protein, mScarlet-I, upon
NF-«B activation. Single point mutations of MyD88 were produced by Genscript in
a pEF6-MyD88-V5-His, plasmid encoding residues 1-296 of human MyD882.

Cell lines and cell culture. HEK-Blue human TLR4 cells (InvivoGen) were stably
transfected with the reporter plasmid pNFkB-mScarlet and a single-cell clone was
obtained (HEK-Blue-TLR4-NFkB-mScarlet cell line). The MYD88 gene was
knocked out in this cell line using the CRISPR-Cas9 system and a single-cell clone
that did not show any detectable MyD88 expression or LPS response was obtained
(HEK-Blue-TLR4-NFkB-mScarlet-MyD88 knockout (KO) cell line). All cells were
maintained in Dulbecco’s modified Eagle medium with 4.5 g/I glucose, 110 mg/1
sodium pyruvate supplemented with Glutamax-1, 10% heat-inactivated fetal
bovine serum, 50 U/ml penicillin and 50 pg/ml streptomycin (reagents from Life
Technologies). All cells were tested and shown to be mycoplasma-free.

Evaluation of the effects of MyD88 mutations on higher-order assembly and
TLR4 signaling in HEK-Blue-TLR4-NF-kxB-mScarlet-MyD88 KO cells by flow
cytometry. To assess the ability of mutant MyD88 to form a higher-order assembly
and to restore TLR4 signaling in the HEK-Blue-TLR4-NF-kB-mScarlet-MyD88 KO
cell line, 400,000 cells were plated in antibiotic-free media in a 12-well plate and
transfected 3-4 h later with 200 ng plasmids expressing WT or mutant MyD88 or
empty vector alone, using Lipofectamine 2000 (Thermo Fisher Scientific) according
to manfacturer’s instructions?. After ~16 h, transfection media were replaced with
medium with 5% serum and 6-8 h later the cells were treated with or without
ultrapure E. coli LPS (100 ng/mL; Invivogen) for ~16 h. Cells were collected and
fixed for 30 min with 4% paraformaldehyde and immunostained overnight with
anti-V5 rabbit monoclonal (D3H8Q) antibody (Cell Signaling Technology) ata 1:
2000 dilution, followed by goat anti-rabbit-Alexa Fluor-488 (Life Technologies) at
a 1:10,000 dilution for 1 h% The stained cells were run on a BD Cytoflex S flow
cytometer and the data were analysed using the FlowJo software. Cells were first
gated to exclude debris on a side scatter vs. forward scatter (FSC) plot and then
gated to select single cells on a FSC-width vs. FSC-area plot (Supplementary

Fig. 5a). A plot of MyD88-V5 signal vs. mScarlet-I reporter signal showed that the
reporter was activated upon TLR4 stimulation with LPS, in cells with MyD88 levels
that were below the detection threshold of MyD88-V5 (Supplementary Fig. 5b),
and higher levels of expression led to progressively more spontaneous signaling.
Thus, cells below the detection threshold of MyD88-V5 were assessed for reporter
activation and for the ability of MyD88 to cluster into a higher-order assembly.
Reporter activation is expressed as the mScarlet-I mean fluorescence intensity in
the mScarlet-I-positive cells or as the percentage of mScarlet-I-positive cells.
MyD88 clustering was determined from a plot of MyD88-V5 signal peak height vs.
area® (Supplementary Fig. 5e). The clustering assay is based on the fact that the
signal from detection of a clustered protein, with a fluorescent antibody, results in a
fluorescent pulse with increased peak height and decreased width compared to the
signal from cells expressing diffuse protein.

Preparation of cell-free extracts. The Leishmania tarentolae Parrot strain was
obtained as LEXSY host P10 from Jena Bioscience GmbH, Jena, Germany, and
cultured in TBGG media (12 g/L tryptone, 24 g/L yeast extract, 0.8% glycerol, 5.55
mM glucose, 17 mM KH,PO,, 72 mM K,HPO,) containing 0.2% v/v penicillin/
streptomycin (Life Technologies) and 0.05% w/v hemin (MP Biomedical)!17. Cells
were collected by centrifugation at 2500 x g, washed twice by resuspension in 45
mM HEPES pH 7.6, containing 250 mM sucrose, 100 mM potassium acetate and 3
mM magnesium acetate, and resuspended to 0.25 g cells/g suspension. Cells were
placed in a cell disruption vessel (Parr Instruments, USA) and incubated under
7000 kPa nitrogen for 45 min, then lysed by a rapid release of pressure. The lysate
was clarified by sequential centrifugation at 10,000 x g and 30,000 x ¢ and anti-
splice leader oligonucleotide was added to 10 mM. The lysate was then desalted
into 45 mM HEPES pH 7.6, containing 100 mM potassium acetate and 3 mM
magnesium acetate, and snap-frozen until required.

Protein expression using cell-free extracts. The MyD88 mutants produced by
Genscript in the pEF6-MyD88-V5-Hiss vector were Gateway™ cloned into the

pCellFree G03 vector to produce N-terminally GFP-tagged proteins (Supplemen-
tary Table 5)!18. Cell-free lysates from three different preparations were supple-
mented with a feeding solution containing nucleotides, amino acids, T7
polymerase, HEPES buffer and a creatine/creatine kinase ATP regeneration system
at a ratio of lysate to feed solution of 0.21 and a final Mg?* concentration of 6 mM.
Purified plasmid DNA, at a concentration between 100 and 400 ng/mL, was added
to the expression reaction at a ratio of 1:9 (v/v) and the reaction allowed to
proceed for 3 h at 27 °C. Fluorescently tagged expressed proteins were detected by
SDS-polyacrylamide gel electrophoresis using a Chemidoc MP imaging system
(Bio-Rad, Laboratories Pty Ltd, Gladesville, NSW, Australia). Gels were imaged
without further processing, using the inbuilt Alexa 488 (GFP), Alexa 546
(mCherry) and Cy5 (prestained markers) settings to verify expression!!”.

Single-molecule spectroscopy and brightness analysis. The expressing lysates
were diluted 1 in 10 in a buffer containing 50 mM HEPES pH 7.5 and 150 mM
NaCl directly in a custom-made 192-well silicone plate. Samples were analysed at
room temperature on a Zeiss Axio Observer microscope equipped with a x40/1.2
NA water-immersion objective (Zeiss C-Apochromat), used to focus a 488 nm laser
and collect fluorescence. The fluorescence signal was collected in 1 ms time bins
and filtered by a 565 nm dichroic mirror and a 525/50 nm band pass filter opti-
mized for GFP detection!!®. For brightness analysis, the average intensity (1) and
SD (o) of the signal were calculated for each 100 s time trace and brightness (B) was
calculated as B = ¢*/u'20 (1). For determining the number of large polymers, all
expressing lysates were diluted to the same average fluorescence (1000 photons/ms)
and raw fluorescence traces were collected as described above, then analysed for the
frequency of events of given size. A threshold of 4000 photons/ms was used to
discriminate large and small MyD88 assemblies.

Molecular dynamics simulations. All molecular dynamics simulations were per-
formed with the MicroED MyD88TIR structure and using the GPU version Gromacs
2019.3121 on the Gadi cluster at the National Computing Infrastructure, Australia.
The Gromos 54A7'22123 force field was used to model the proteins. Each complex
was placed in a truncated octahedron periodic box with a 1.4 nm distance between
the protein surface and the edge of the box wall. The protonation state of titratable
groups was chosen appropriate to pH 7.0. Each system was simulated under peri-
odic boundary conditions in a rectangular box. The pressure was maintained at 1
bar, by weakly coupling the system to a semi-isotropic pressure bath, using an
isothermal compressibility of 4.6 x 107> bar~! and a coupling constant TP = 1 ps!24.
The temperature of the system was maintained at 298 K by independently coupling
the protein-ligand complex, lipids and water to an external temperature bath with a
coupling constant TT = 0.1 ps, using a Berendsen thermostat!2%. All bond lengths
were constrained using the LINCS algorithm!2>. The Simple-Point Charge!2¢ water
model was used and constrained using the SETTLE algorithm!27. Each system was
energy-minimized for 1000 steps, using the steepest descent method, followed by a
position-restrained MD simulation, where all heavy atoms of protein were
restrained to their original position using 1000 kj/mol/nm?, allowing water mole-
cules to equilibrate. The restraints were removed and the whole system was allowed
to equilibrate for 5 ns. The MD simulations were performed for 100 ns in duplicate,
starting with different initial velocity distribution for each system. All coordinates,
velocities, forces and energies were saved every 10,000 steps for analysis. The sta-
bility of the protein and protein-ligand complexes was evaluated, by measuring the
RMSD of protein backbone atoms by fitting the backbone atoms of protein and
comparing the initial and final structures.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file. The atomic coordinates and structure factors of the
MicroED and high-resolution SFX models (SFX? and SFX) have been deposited in the
Protein Data Bank under accession codes 7BEQ, 7L6W and 7BER, respectively. Raw
MicroED data are available from the SBGrid Data Bank (doi:10.15785/SBGRID/814).
SFX data are available at CXIB.org (https://doi.org/10.11577/1767965). Source data are
provided with this paper.
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