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Protein signatures from blood plasma and urine suggest
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with a history of chronic diseases compared
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Abstract Key processes characterizing human aging are
immunosenescence and inflammaging. The capacity of the
immune system to adequately respond to external pertur-
bations (e.g., pathogens, injuries, and biochemical irritants)
and to repair somatic mutations that may cause cancers or
cellular senescence declines. An important goal remains to
identify genetic or biochemical, predictive biomarkers for
healthy aging. We recruited two cohorts in the age range
70 to 82, one afflicted by chronic illnesses (non-healthy
aging, NHA) and the other in good health (healthy aging,
HA). NHA criteria included major cardiovascular, neuro-
degenerative, and chronic pulmonary diseases, diabetes,
and cancers. Quantitative analysis of forty proinflammato-
ry cytokines in blood plasma and more than 500 proteins

in urine was performed to identify candidate biomarkers
for and biological pathway implications of healthy aging.
Nine cytokines revealed lower quantities in blood plasma
for the NHA compared with the HA groups (fold change
> 1.5; p value < 0.025) including IL-12p40 and IL-12p70.
We note that, sampling at two timepoints, intra-individual
cytokine abundance patterns clustered in 86% of all 60
cases, indicative of person-specific, highly controlled
multi-cytokine signatures in blood plasma. Twenty-three
urinary proteins were differentially abundant (HA versus
NHA; fold change > 1.5; p value < 0.01). Among the
proteins increased in abundance in the HA cohort were
glycoprotein MUC18, ephrin type-B receptor 4, matrix
remodeling–associated protein 8, angiopoietin-related pro-
tein 2, K-cadherin, and plasma protease C1 inhibitor.
These proteins have been linked to the extracellular matrix,
cell adhesion, and vascular remodeling and repair process-
es. In silico network analysis identified the regulation of
coagulation, antimicrobial humoral immune responses,
and the IL-12 signaling pathway as enriched GO terms.
To validate links of these preliminary biomarkers and IL-
12 signaling with healthy aging, clinical studies using
larger cohorts and functional characterization of the
genes/proteins in cellular models of aging need to be
conducted.
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Introduction

Environmental/lifestyle factors such as nutrition, the
gastrointestinal microbiome, smoking, physical activity,
and mental stress as well as genetic attributes influence
human aging. Declining physiological and immunolog-
ical functions can trigger acute or chronic diseases in-
cluding organ failure. Aging-associated immunological
changes (immunosenescence) involve changes in the
adaptive immune system, such as lymphocyte migra-
tion, maturation, and function, but also the innate im-
mune system [22]. Chronic low-grade inflammation
(inflammaging) is considered a contributing factor to
increased disease risks when people age [70]. It is un-
clear to what extent immunosenescence and
inflammaging involve similar molecular and cellular
changes, and if they entail health and longevity benefits
[19]. Immunosenescence is thought to transition
through stages of initiation, early, and late senescence.
Cellular traits are mitochondrial dysfunction, chromatin
remodeling, and altered lysosomal capacity for autoph-
agy. Chronic inflammation mediated by the release of
various inflammatory molecules results, which is
termed the senescence-associated secretory phenotype
(SASP) [25]. Cytokines are components of the SASP. A
myriad of cytokines contribute to the maturation of and
modulate our immune function, thus shaping the mor-
phology and functional capacity of lymphoid organs
and the thymus where hematopoiesis and T cell devel-
opment, respectively, primarily originate [22, 65]. The
cytokine network is pleiotropic; it has redundant and
overlapping activities related to the development, pro-
liferation, activation, chemotaxis, and migration of dis-
tinct cell types, including vascular endothelial cells [20,
21]. Thymic atrophy appears to be a distinct morpho-
logical feature of immunosenescence and leads to de-
cline and/or dysregulation of the human T cell immune
repertoire [54, 55]. A key cytokine stimulating
thymopoiesis and peripheral T cell expansion is IL-7
[7, 22].

Cellular manifestations of the aging process are par-
ticularly evident in postmitotic cells such as cardiac
myocytes and neurons [10, 61]. Subcellular organelles
such as mitochondria and lysosomes have important
roles in cellular waste product removal and recycle their
molecular building blocks. Reduced functions of lyso-
somes [12] and mitochondria [9] can lead to waste
accumulation which, in turn, triggers the inflammation
embodied by the SASP phenotype. SASP proteins are

released into body fluids (blood plasma and urine) and
may become relevant as surrogate biomarkers for senes-
cence and chronic inflammation-associated aging. One
commonly used model system for research on aging in
multicellular organisms with a digestive tract is the
nematode Caenorhabditis elegans. Studies using this
model established the links between mitochondrial
function and aging [49] and identified genes of potential
importance to aging. One such longevity gene, encoding
a NAD-dependent deacetylase, is sir2. Other genes code
for the insulin receptor Daf2 and forkhead transcription
factor Daf16 [35, 62]. The human Sir2 ortholog SIRT3
has a potential mitochondrial NAD-dependent
deacetylase function, supporting the interplay between
mitochondrial functional decline and aging. Further-
more, genotype variability in SIRT3 has been statisti-
cally linked to longevity [44]. SIRT3 is involved in
reactive oxygen species (ROS) suppression and mito-
chondrial biogenesis [29] and a tumor suppressor pro-
tein [13]. The insulin/IGF-1 signaling (IIS) pathway
may be an important, evolutionarily conserved pathway
with a role in NF-kB signaling and the aging process.
SIRT1, a paralog of SIRT3, and the class O Forkhead
box protein (FoxO), the human ortholog of the
C. elegans protein Daf16, are NF-kB signaling inhibi-
tors [45]. In another study, genetic variability in the gene
encoding FOXO3A was found to be strongly associated
with longevity [68].

It is of medical interest to identify surrogate bio-
markers predictive of healthy aging (i.e., the aging of
human subjects who are not afflicted with major dis-
eases such as cancer, chronic and acute cardiovascular
diseases, chronic pulmonary diseases, major neurologi-
cal diseases and stroke, diabetes and diabetic complica-
tions in their lifetimes compared with individuals who
do). No biomarkers are currently in clinical use as
specific tests to predict healthy aging although age-
independent biomarkers of deteriorating health are mon-
itored to diagnose and predict onset of the most common
chronic diseases [33]. Those include C-reactive protein
(CRP), low-density lipoprotein (LDL), glucose, and
HbA1C concentrations (all measured in blood), hyper-
tension, and proteinuria. These tests are often included
during a patient’s physical examination while the read-
out focuses on specific pathologies: CRP and LDL to
identify cardiovascular risk [64] and HbA1C, glucose,
and proteinuria to determine onset or progression of
diabetes [24]. Specifically relevant to aging, the NIH
funded a study to measure phosphorylated Tau-181 as a
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potential blood diagnostic for Alzheimer’s dementia
[26]. Predictive aging biomarkers may be genetic
(longevity-associated genes) or biochemical, the latter
of which may represent changes in abundance, post-
transcriptional or post-translational modifications
(RNAs, proteins, and small molecules). Inflammaging-
associated markers may be cytokines, lysosomal en-
zymes, ROS-modified macromolecules, or mitochon-
drial DNA mutations [10, 19]. Studies to identify pro-
tein and metabolite biomarkers in body fluids for the
elderly and for healthy aging (HA) have been performed
[1, 27, 51, 53]. To our knowledge, no study has used a
cohort design with elderly individuals discordant for the
incidence of major chronic diseases such as cardiovas-
cular, pulmonary, neurodegenerative, metabolic, and
cancer in their lifetimes. We recruited 65 human sub-
jects in the age range 70 to 82 years, ~ 50% each in the
HA and non-healthy aging (NHA) groups. Blood plas-
ma and urine were collected at two timepoints, 4 to
6 months apart, for each study participant. Stool and
saliva samples from this cohort were analyzed for dif-
ferences in the microbiome, with outcomes that we
previously reported [50]. We conducted studies to quan-
titatively analyze the urinary proteome (untargeted pro-
teomics) and forty proinflammatory cytokines and
chemokines in blood (via cytokine antibody arrays)
reported in this paper.

Materials and methods

Study population, recruitment, and specimen collections

This case-control, prospective study consisted of pa-
tients who visited a physician at Danbury Hospital,
Danbury, CT, in the context of routine or disease
follow-up health care. If in the age range 70 to 82, they
were asked about their interest in volunteering for a
study intended to identify biomarkers of healthy aging.
Internal review boards (IRB) of Danbury Hospital and
the J. Craig Venter Institute (JCVI), Rockville, MD
approved a consent form and human subject protocol
outlining risks and benefits of participation in 2013.
Data on medical histories were collected. Sixty-five
human subjects (both genders) provided saliva, stool,
blood, and urine specimens twice during the active
enrollment period. Enrolment and specimen collections
(two samples were obtained from sixty and one from
five participants) were completed in 2015. Medical

histories were used to divide the subjects into healthy
aging (HA) and non-healthy aging (NHA) groups, with
33 and 32 subjects, respectively. The NHA group in-
cluded those diagnosed with (1) cancer, (2) acute or
chronic cardiovascular diseases, (3) acute or chronic
pulmonary diseases, (4) chronic liver disease, (5) diabe-
tes, and/or (6) stroke or neurodegenerative disorders at
any point in their lifetimes. Subjects part of the HA
group did not report diagnosis of any of the illnesses.
Blood was collected via venipuncture by a phleboto-
mist. Clean-catch urine specimens were collected on-
site with instructions by professional medical staff.

Sample processing for cytokine arrays

Blood samples were collected in BD Vacutainer® trace
element plastic blood collection tubes with K2-EDTA as
the anticoagulant on the day of the study participant’s
visit. Blood plasma was separated by centrifugation at
1500×g to remove cells. Plasma supernatants were fro-
zen at − 80 °C, shipped, and stored frozen until thawed
to remove aliquots for the cytokine abundance measure-
ments. We used a commercial product, the G-series
HIAA 3 cytokine antibody microarray (Ray Biotech,
Inc., Norcross, GA). Following the manufacturer’s in-
structions, fluorescence signals for 40 cytokines were
measured. The Ray Biotech Q Analyzer program was
used for data analysis. On the day the HIAA array was
used, plasma aliquots were vortexed and centrifuged for
10 min at 10,000×g to remove particulate matter. Fol-
lowing 30 min of exposure to a sample diluent, the
product’s glass plates were washed, wells were overlaid
with 70 μL sample, covered, and incubated at 20 °C for
2 h. Wash steps with buffers I and II were followed by
covering the sub-arrays with an equal volume (70μL) of
biotin-conjugated anticytokine antibodies, incubation at
20 °C for 2 h, a 2nd round of buffers I/II wash steps, and
incubation at 4 °C overnight. The Alexa Fluor 647-
conjugated streptavidin reagent was added and incubat-
ed at 20 °C for 2 h. Fluorescence signals (Cy5 range;
655 nm emission) were scanned and extracted using a
GenePix 4000B laser scanner (Axon Instruments, Foster
City, CA). Normalization steps consisted of (a)
subtracting background signals, (b) normalizing signals
to positive controls, and (c) comparing the signal inten-
sities of antigen-specific array spots among the images
from different array slides. Relative normalized abun-
dance values for the detected cytokine analytes were
computed. We chose 1.5- and 0.65-fold-changes cutoff
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values to designate an increase or decrease in protein
abundance, respectively, in the data comparison of the
HA and NHA groups. The “A” and “B” samples for a
single individual (two timepoints) were not placed in
sub-arrays on the same array (slide) to avoid bias in data
interpretation. The methods were analogous to those
used previously for HIAA-3 arrays [60]. The quantified
and normalized cytokine datasets are provided in Sup-
plemental File S1, Dataset.

Sample processing for urinary shotgun proteomics

Urine samples collected in 50 mL Falcon tubes on the
day of the study participant’s visit were centrifuged for
10 min at 3000×g, and sediments were removed. Urine
supernatant samples were frozen at − 80 °C, shipped to
JCVI, and stored frozen until thawed for ultrafiltration-
based protein concentration with a 10 kDa MWCO
membrane filter. The procedures all urine samples and
protein concentrates underwent, including protein visu-
alization by staining in SDS-PAGE gels, were previous-
ly described in detail [59]. Aliquots of approximately
100 μg total protein were subjected to filter-aided sam-
ple preparation (FASP) [69] to digest proteins, separate,
and enrich the resulting tryptic peptides [75]. Peptide
mixtures were lyophilized and stored frozen until resus-
pended for liquid chromatography tandem mass spec-
trometry (LC-MS/MS) analyses. The “A” and “B” sam-
ples from a given patient were not processed together in
batches, thus avoiding biases in the data interpretation.

Shotgun proteomics on an accurate mass/high mass
resolution Q-Exactive system

Peptide concentrates were subjected to LC-MS/MS on
an Ultimate 3000 nano-LC coupled to a Q-Exactive MS
system via a FLEX nano-electrospray ion source (Ther-
mo Scientific). The peptide samples were resuspended
in 60 μL HPLC solvent A (0.1% formic acid in water),
and 10 μL were loaded onto a trap column (C18

PepMap100, 300 μm× 5 mm, 5 μm, 100 Å, Thermo
Scientific). The analytical column used was a PicoFrit
column (75 μm× 10 cm, 5 μm BetaBasic C18, 150 Å,
New Objective, MA). A 130 min LC gradient with a
flow rate of 300 nL/min started from 2% solvent B to
35% solvent B (0.1% formic acid in acetonitrile) for
110 min, then followed by a steeper gradient to 80%
solvent B over 15 min. The column was re-equilibrated
with solvent A for 5 more minutes. The eluting peptides

were sprayed at a voltage of 2.1 kV and acquired in a
MS data-dependent mode using Xcalibur software (ver-
sion 2.2, Thermo Scientific). Full scan MS spectra were
acquired at a resolution of 70,000 over a mass range of
m/z 350 to 1800 with an automatic gain control (AGC)
target of 106. Up to ten of the most abundant ions were
subjected to fragmentation by higher energy collisional
dissociation (HCD) with a normalized collision energy
of 27. The peptide ion fragments from theMS/MS scans
were acquired at a resolution of 17,500 with an AGC
target of 5 × 104. Dynamic exclusion was set to 20 s.
Unassigned ions were rejected and only those with a
charge ≥ 2 were subjected to HCD fragmentation.

Analysis of urinary proteomes and methods
for quantification with the MaxQuant software tool

LC-MS/MS raw data were processed using the
MaxQuant-Andromeda software (version 1.5.1.0). The
analysis methods were previously described in detail
[75]. Only reviewed protein sequence entries in the
non-redundant Human UniProt database (release
2015–2016; 20,195 sequences) were used for database
searches. Search parameters were set to allow two
missed tryptic cleavages with oxidation (M), N-
terminal acetylation, and deamidation (N, Q) as variable
modifications and carbamidomethylation (C) as a fixed
modification. The peptide identifications (IDs) were
limited to top-ranked peptides with a length of at least
seven amino acids. The MS and MS/MS ion tolerances
were set at 10 ppm and 0.02 Da, respectively. False
discovery rates (FDR) were estimated using the inte-
grated decoy database search tool Percolator. Protein
hits identified with an FDR threshold set at 1% were
accepted in the final protein list.

A total of 124 datasets (124 samples, all but 5 study
participants were represented by two samples) were
available for quantitative analysis using the MaxQuant
software suite. Default settings for MS1 peak integration
and normalization among datasets provided in the
MaxQuant-Andromeda software suite were accepted.
The label-free quantitation (LFQ) algorithm was en-
abled. Only proteins that were quantified by at least
two unique peptides were used for further analysis.
When all peptides of a protein were shared by multiple
proteins, they were combined and reported as a single
protein group (this was a rare event). The proteins’
calculated abundances were log (base 2) transformed.
Proteins absent in at least 30% of the samples
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(separately for the HA orNHA group) were removed for
the statistical analyses. The datasets for which quantita-
tive information was available for less than 25% of the
human proteins that were represented in the MaxQuant
analyses were also eliminated. Missing values were
imputed using the LSimpute algorithm with the
LSimpute_adaptive option [36]. Histograms were
displayed for Log2 transformed MaxLFQ values prior
to and after imputation. The data (Supplemental File S2,
Dataset) showed improved normalization after imputa-
tion. Thus, data including missing value imputations
were subjected to statistical analyses. The mass spec-
trometry proteomics data were deposited in the
ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD012477 (re-
v i e w e r a c c o u n t d e t a i l s : u s e r n a m e :
reviewer44087@ebi.ac.uk; password: qAT4NwUo).

Statistical analysis of proteomic and cytokine data

Differential analyses of cytokine and urinary proteome
data were performed using the Limma software pack-
age, which is part of the R package and used for the
analysis of expression data using a linear model which is
fit to gene and protein expression data [43]. Application
of the linear model allowed for analysis of the entire
experiment as an integrated whole, sharing information
between samples. Limma accepts log-ratios or log-
intensity values of the expressed proteins as input. The
p value cutoffs for significant proteins were set at 0.05;
most of those discussed in the “Results and discussion”
had lower p values (for urinary proteins 0.01, for cyto-
kines 0.025). Multiple testing adjustments were per-
formed using the Benjamini-Hochberg correction meth-
od. Only nine urinary proteins remained statistically
significant after multiple testing corrections (adjusted p
value ≤ 0.05).

Gene ontology, clustering, and classification analyses

Gene ontology (GO) information of proteins was ob-
tained using the ClueGO version 2.2.5 and CluePedia
version 1.2.5 plugin in Cytoscape version 3.3.0 [4, 5,
48]. Biological process, cellular component, molecular
function, and immune system process ontology data
were from a database update 31.03.2016. KEGG path-
way data were from a 10.02.2016 update. For GO
enrichment analysis, p values of less than 0.05 were
considered, selecting all experimental evidence codes

(EXP_IDA_IPI_IMP_IGI_IEP). The GO terms were
connected by the proteins that shared those GO terms.
Differentially expressed proteins and samples were clus-
tered using the dist function in R, which calculates
the Euclidean distance matrix between different proteins
and samples. The distance matrix was used to generate
hierarchical clusters using the hclust function in R and
allowed conversion into a heatmap with the heatmap
function in R. The Pearson correlation was used to
cluster the urinary proteome datasets to generate hierar-
chical clusters for the datasets. Principle component
analysis (PCA) of proteins was performed in the R
software package. The volcano plots were generated
using the Enhanced Volcano package in R.

Results and discussion

Cohort description and study design

The studies described here were performed along with
those of oral and gastrointestinal microbiomes for 65
human subjects aged 70 to 82, recruited at a single site
and composed of 31 male and 34 female human sub-
jects. Half of the subjects had a history of serious,
mostly chronic diseases (the NHA group), and the other
half reached 70 or more years of age without being
diagnosed with (1) cancer, (2) acute or chronic cardio-
vascular diseases, (3) acute or chronic pulmonary dis-
eases, (4) chronic liver disease, (5) diabetes, and/or (6)
stroke/neurodegenerative disorders (the HA group).
Study participants were also asked questions about
chronic pain, memory loss, hospitalizations, their men-
tal state, and dietary habits, but these factors were con-
sidered less to place an individual in the NHA group.
Details of the medical records are found in Supplemen-
tal File S3, Dataset. Eleven patients had cancer, 8 pa-
tients had diabetes, and 15 and 7 patients reported
suffering from chronic cardiovascular and pulmonary
diseases, respectively. One study participant had a neu-
rodegenerative disorder. Overall, 125 blood plasma and
urine specimens were obtained during recruitment over
a 15-month time frame. For all but five participants, two
timepoints (and datapoints) were available to determine
proteins differentially abundant in HA vs. NHA cohorts.
To facilitate participant consent and retention in the
study and ensure absence of health risks, no instructions
to change diet or alter therapeutic drug intake were
provided during an individual’s participation and visits

597GeroScience (2021) 43:593–606



of the clinic. Based on self-reported medical data re-
evaluated at the 2nd timepoint’s visit, none of the HA
subjects needed to be recategorized as NHA.

Quantitative differences for urinary proteins (HA vs.
NHA) many of which have known or putative roles
in cell adhesion, blood vessel formation/repair,
and inflammation

Collectively, we quantified nearly 2000 urinary proteins
from the surveyed sample set. The urinary proteome
span over seven orders of magnitude, suggesting excel-
lent depth of coverage (Fig. 1). On average, 752 proteins
were identified from each specimen (± 157, n = 125,
FDR at 1%). Based on the frequency of detection in
the 125 datasets (filtered for proteins to be present in at
least 30% of all samples), 505 proteins were retained for
quantitative analysis. Principal component analysis
(PCA) did not reveal separate clusters for the HA and
NHA proteome datasets (Fig. 2). Pearson correlation
analysis revealed that the timepoints per subject clus-
tered pairwise in 16 out of 58 cases (Supplemental File

S4, Figure). Intra-individual variability in the urinary
proteome was previously reported [39]. Without sepa-
rating for gender, statistical differences in abundance
(HA vs. NHA cohorts) were determined via unequal
variance non-parametric t tests and yielded 23 proteins
at a fold change > 1.5 (p value < 0.01). Nine proteins
were statistically significant following Benjamini-
Hochberg corrections (adj. p value < 0.05). These and
five additional functionally interesting proteins with low
p values are listed in Table 1 and included in the dy-
namic range plot of Fig. 1. The entire set of 23 proteins
is displayed in the volcano plot of Fig. 3.

Four proteins were decreased in abundance in the HA
cohort: cathepsin D, ceruloplasmin (CP), afamin
(AFM), and complement factor C9 (C9). These proteins
are associated with acute phase and inflammatory pro-
cesses. Afamin has been linked to metabolic syndrome
and type 2 diabetes [28, 30, 47]. Metabolic syndrome,
defined as a cluster of cardiovascular risk factors asso-
ciated with obesity and insulin resistance [8], is linked to
excess ROS product ion and mi tochondr ia l
oxidoreductive dysfunction. The aging process is in part
attributed to these pathologies. Lysosomal cathepsins
have altered proteolytic activities in the aging brain.
This is relevant to neurodegenerative diseases [56].
Cathepsin D is a quantitative marker of cellular senes-
cence [11]. However, cathepsin D was also found to be
critical for protection against alpha-synuclein aggrega-
tion and toxicity [41]. CP and C9 are acute phase reac-
tants. The abundance changes of these four proteins in

Fig. 1 Dynamic range of urinary proteins. A total of 1959 pro-
teins were ranked by the iBAQ intensity derived from the
MaxQuant analysis. Some representative significant proteins as it
pertains to quantitative differences (HA vs. NHA datasets) are
marked in the plot

Fig. 2 PCA plot comparing healthy (HA) and non-healthy (NHA)
group using 505 urinary proteins as input data. The PCA plot
includes all timepoints (two for most subjects). They are not
averaged for a given subject. There is no separate cluster formation
for the NHA (triangles) and HA (circles) datasets
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Table 1 Subset of differentially abundant proteins (healthy aging vs. non-healthy aging) with functional roles

Protein
acc. no.

Protein name Fold
change

t p value Adj. p
value

A selection of putative or known protein functional roles

P07911 Uromodulin (UMOD) ↑ 2.12 − 4.04 9.08E−05 0.032 Leukocyte cell-cell adhesion and migration,
water/electrolyte balance in urinary tract

P07339 Cathepsin D (CTSD) ↓ 1.69 3.96 0.00013 0.032 Lysosomal enzyme with proteolytic functions mediating
ECM degradation, proliferation and migration of
microvascular endothelial cells, part of PI3K/AKT and
FBF pathways

Q9UKU9 Angiopoietin-related
protein 2 (ANGPTL2)

↑ 1.66 − 3.79 0.00023 0.038 Induces angiogenesis via paracrine/autocrine actions,
promotes leukocyte attachment to vascular endothelial
cells, integrin signaling and PI3K/AKT pathways,
inflammation of vasculature

Q9BRK3 Matrix
remodeling–-
associated protein 8
(MXRA8), limitrin

↑ 1.82 − 3.66 0.00037 0.038 Cell adhesion protein suppressing migration and
promoting apoptosis of vascular endothelial cells, active
in their cell junctions (angiogenesis), involved in
integrin signaling and VGEF pathways, blood-brain
barrier

Q14982 Opioid binding and cell
adhesion protein
(OPCML)

↑ 1.78 − 3.63 0.00041 0.038 Glycosylphosphatidylinositol-anchored cell adhesion
molecule, opioid receptors are present in microvascular
endothelial cells

P55285 Cadherin-6 (CDH6),
K-cadherin

↑ 1.64 − 3.60 0.00046 0.038 Calcium-dependent cell adhesion protein (in adherence
cell junctions), E-cadherin is known to be active in
β-catenin, fibroblast growth factor and PI3K/AKT
pathways

P43121 Cell surface glycoprotein
MUC18 (MCAM)

↑ 1.62 − 3.47 0.00071 0.050 Receptor on vascular endothelial cells triggering
intracellular signaling pathways via E-cadherin and
galectin-3, promotes tumor metastasis, vascular wound
healing, cell adhesion

P54760 Ephrin type-B receptor 4
(EPHB4)

↑ 1.66 − 3.41 0.00086 0.050 Receptor tyrosine kinase in VGEF signaling pathway,
involved in regulation of cell adhesion and migration,
vascular remodeling, andwound healing (angiogenesis),
blood-brain barrier

P43652 Afamin (AFM) ↓ 2.15 3.41 0.00089 0.050 Carrier for hydrophobic molecules in body fluids (vitamin
E, palmitoleic acid), ass. with development of metabolic
syndrome and Wnt signaling, proinflammatory,
blood-brain barrier

P02748 Complement component
C9

↓ 1.74 3.33 0.00114 0.053 Acute phase response, MAC complex of complement
system, innate immunity

P19961 Alpha-amylase 2B
(AMY2B)

↑ 1.97 − 3.30 0.00125 0.053 Carbohydrate metabolism

P05155 Plasma protease C1
inhibitor (SERPING1)

↑ 1.60 − 3.30 0.00125 0.053 Activates complement system, fibrinolysis and kinins,
regulates vascular permeability and suppression of
inflammation

P00450 Ceruloplasmin (CP) ↓ 1.77 3.18 0.00180 0.062 Acute phase response, iron ion homeostasis

P15121 Aldo-keto reductase
family 1 member B1
AKR1B1

↑ 1.73 − 3.14 0.00210 0.066 Key enzyme in the polyol pathway, plays a role in
detoxifying dietary and lipid-derived unsaturated
carbonyls, renal water homeostasis

Proteins are listed with UniProt accession numbers (acc. no.), names, differential abundance data, and selected functional roles with a focus
on cell adhesion, angiogenesis, vascular repair and remodeling, coagulation and fibrinolysis, and inflammation and acute phase response.
With two groups of 33 HA and 32 NHA subjects, urinary proteome datasets were analyzed quantitatively. Fold change ↑, ↓: up and down in
the HA compared with the NHA group, respectively. Adj. p value: adjusted p value via Benjamini-Hochberg corrections. PI3K/AKT
phosphatidylinositol-3-kinase/Akt signal transduction pathway, ECM extracellular matrix
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urine likely reflect systemic differences in abundance
and support the notion that the HA cohort is less
perturbed by low-grade inflammation compared with
the NHA cohort. None of the proteins has been specif-
ically brought into context with healthy aging [15, 71].

Nineteen proteins were increased in abundance in the
HA cohort. Interpretation of data on partial or extensive
biochemical characterization revealed protein associa-
tions with angiogenesis, vascular remodeling and repair,
and signaling pathways and adhesion involving the
ECM, endothelial and epithelial cells, and leukocytes.
Two proteins altered in abundance in the NHA vs. HA
groups, matrix remodeling–associated protein 8
(MXRA8) and ephrin type-B receptor 4 (EPHB4), con-
tribute to maintaining the blood-brain barrier and
neurovasculature [37, 74]. The prominent role of aldo-
keto reductases including AKR1B1 in the detoxification
of drugs and xenobiotics is relevant to the response to
cellular oxidative stress, a hallmark of the aging process
[3]. Nine proteins have been implicated in endothelial
function, adhesion, and repair in the context of the
vasculature (seven were increased in the HA cohort,
Table 1). Vascular dysfunction is a prominent factor in
chronic disease–associated non-healthy aging. Endothe-
lial vascular function was defined as a surrogate of
vascular risk and aging in women [14]. Atherosclerosis

is a major peripheral vascular pathology and also strong-
ly associated with cytokine-mediated chronic inflamma-
tion and senescence [67]. Impaired angiogenesis and
induced endothelial cell senescence factor into major
aging-associated diseases such as diabetes. This is me-
diated by phosphatidylinositol 3-kinase (PI3K)/AKT
signal transduction and VGEF signaling pathways [6].
There were links between candidate biomarkers and the
PI3K/Akt pathway. Cathepsin D induces proliferation
of omental microvascular endothelial cells by activating
the PI3K/pAKT pathway [40]. E-cadherin (like K-
cadherin a cadherin superfamily member) slows tumor
cell growth by suppressing the PI3K/Akt signaling [34].
Two angiopoietin-related proteins (Angptl1 and
Angptl2) have antiapoptotic activities via the phos-
phatidylinositol 3-kinase/Akt pathway using a zebrafish
model [31]. MXRA8 influences the activation of AKT
and p38 MAP kinase via VGEF signaling in endothelial
cells [23]. Data for proteins changed with statistical
significance (p value < 0.05) are provided in Supple-
mental File S5, Table. Most conventional healthy aging
biomarker discovery studies target specific molecules
based on assay availability. This urinary proteome sur-
vey is untargeted and thus allowed identifying several
barely characterized proteins as novel potential aging
biomarkers.

Proinflammatory cytokines in blood plasma are only
modestly changed in abundance comparing HA
and NHA cohorts and display strikingly consistent
person-specific patterns assessed at two timepoints

The low-grade proinflammatory phenotype SASP, hu-
man aging, and age-related chronic diseases are linked
to perturbations in circulating cytokine levels (e.g., IL-6
and TNF-α) and acute phase proteins (e.g., CRP) [18,
38, 42]. We measured differences for 40 proinflamma-
tory cytokines and chemokines. Nine cytokines and
chemokines were modestly altered in abundance, all of
them increased in the HA cohort (p value < 0.025).
None were statistically significant adjusting for multiple
testing (p value < 0.05). These proteins are displayed in
the volcano plot of Fig. 4. The changes were more than
2-fold for IL-12p40 (the IL-12 subunit p40 or β), IL-
12p70 (the dimer of the α (p35) and β subunits), IL-16,
and MIP-1α. The pleiotropic cytokine IL-12 can have
pro- and antiinflammatory activities within the cardio-
vascular system [2], but more is known about its proin-
flammatory functions influencing both innate and

Fig. 3 Differentially abundant urinary proteins in volcano plot.
Urinary proteins displaying quantitative differences with statistical
significance are depicted in red triangles. Non-significant proteins
are shown in black circles. The proteins meeting the log2 fold
change (FC) cutoff and with a -log10 p value lower than 2 are
shown as green crosses. Proteins not meeting the log2 FC cutoff
and with a -log10 p value higher than 2 are shown as blue dia-
monds, respectively. The p value threshold is 0.01. A log FC
cutoff of 0.45 was used to generate the plot

600 GeroScience (2021) 43:593–606



adaptive immunity [63]. IL-12 has been attributed a
major role as an antiangiogenic factor [66], which is of
interest given that angiogenesis and vascular function
were highly represented terms in the context of HA vs.
NHA urinary proteome surveys. We elaborate more on
the role of IL-12 in the protein network analysis section.
Both IL-16 and MIP-1α are chemoattractants, IL-16 for
lymphocytes, monocytes, and eosinophils [16] and
MIP-1α for diverse cell types. Chemoattractant proper-
ties are relevant to the pathology of atherosclerosis and
vascular remodeling/repair. Macrophage-secreted pro-
tein MIP-1α was reported to contribute to atheroscle-
rotic plaque formation [46] (PMID: 23288165). In line
with the absence of multiple testing–corrected statisti-
cally significant changes, PCA did not result in separate
clusters for the two cohorts (Fig. 5). Strikingly, Euclid-
ian distance correlation analysis revealed that the
timepoints for a given subject clustered pairwise in 47
of 60 cases and, together with a 3rd unrelated cytokine
profile, in three cases (Supplemental File S6, Figure).
Cytokine and chemokine concentrations in blood appear
to be tightly controlled in a “normal” range. The base-
line abundance range differs among individuals, regard-
less of good health or affliction with a chronic disease.
We are unaware of other studies demonstrating that
cytokine/chemokine abundance patterns are person-
specific signatures. We observed that the cytokines with
low p values strongly correlated with each other in
abundance. Only IL-7 and IL-8 did not have R2

correlation values > 0.9. Master regulators for the ex-
pression of proinflammatory cytokines and their secre-
tion into plasma may have strong roles in the observed
high correlations (Supplemental File S7, Figure). In
summary, this data corroborates the notion that the
measurement of cytokine quantities requires a longitu-
dinal approach to monitor a subject’s baseline cytokine
expression level and its perturbations in the context of
any inflammatory pathology. Cross-sectional cytokine
biomarker discovery and validation studies are less like-
ly to yield conclusive results.

Protein network analysis applied to differentially
abundant urinary proteins

Combined GO term and KEGG pathway enrichment
analyses for 35 differentially abundant urinary proteins
(HA vs. NHA; p value < 0.05) resulted in eight terms
decreased in the HA vs. NHA dataset, most of which
pointed towards lysosomal hydrolytic, proteolytic, and
glucosaminoglycan-degrading functions, as shown in
Supplemental File S9 (Figure). Twenty-five biologically
diverse terms were increased in the HA dataset vs. the
NHA dataset (Supplemental File S8, Dataset). As
depicted in the respective protein network analysis
of Fig. 6, among the highly connected terms were extra-
cellular matrix (ECM), ECM-receptor interactions, and
regulation of blood coagulation. Other terms were antimi-
crobial humoral immune response and the regulation of
fibroblast proliferation and integrin biosynthesis. All of

Fig. 4 Differentially abundant cytokines/chemokines in volcano
plot. The cytokines displaying quantitative differences with statis-
tical significance are depicted in red triangles. Non-significant
proteins are shown in black circles, and proteins not meeting either
p value or log2 FC cutoffs are depicted as green crosses and blue
diamonds, respectively. The p value threshold is 0.05. A log FC
cutoff of 0.45 was used to generate the plot

Fig. 5 The PCA plot between the healthy and the non-healthy
group using 40 cytokines and chemokines from blood plasma. The
PCA plot includes all timepoints (two for most subjects). They are
not averaged for a given subject. There is no separate cluster
formation for the NHA (triangles) and HA (circles) datasets
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these terms are implicated in vascular remodeling/repair
and inflammation, with cell adhesion as a major facilitat-
ing cellular process. Given the IL-12 subunit abundance
differences in the cytokine dataset, it is interesting that the
urinary protein network analysis identified the IL-12 sig-
naling pathway as enriched. ANXA2, GSTA2, P4HB,
S100A8, and S100A9 (p value < 0.05 comparing the
HA and the NHA datasets) contribute to this pathway.
IL-12 signaling activity reduces VGEF receptor 3 expres-
sion in the tumor vasculature [52]. IL-12p35 has a major
role in regulating the inflammatory response during hy-
pertension [72, 73]. IL-12 is also part of an antiangiogenic
program mediated by IFN-γ-inducible genes, inhibits en-
dothelial cell functions, and affects the lymphocyte-
endothelial cell crosstalk [17, 58]. The fact that the abun-
dance of IL-12 in plasma, along with proteins detected in
urine that are able to modulate the vasculature and endo-
thelial function (for instance, cathepsin D, ANGPTL2,
MXRA8, cell surface glycoprotein MUC18, EPHB4,
and SERPING1) are changed supports an association
between healthy aging and balanced vascular function.

Conclusions

In a study comparing a cohort aging healthily with
one afflicted by chronic diseases, we identified

candidate protein biomarkers and their associated
biological processes, such as cell adhesion, angio-
genesis, vascular repair/remodeling, and IL-12 sig-
naling. These outcomes set the stage for studies to
validate their biomarker potential. Predictive bio-
markers and those measuring responses to therapeu-
tic intervention to chronic diseases are increasingly
recognized as important for patient stratification,
specifically in the context of cancer and neurode-
generative diseases [32, 57]. We propose that quan-
titatively validated biomarkers can predict healthy
aging (i.e., low risk of chronic diseases), individu-
ally or as a panel, and allow development of blood
plasma or urine clinical tests to monitor the health of
the population above 50 years of age, not unlike
current medical practice of colonoscopies (imaging
data) to diagnose pre-neoplastic and colorectal can-
cer lesions. A panel of biomarkers may also have
utility to assess the efficacy of investigational new
drugs (INDs) as companion biomarkers in clinical
trials with the purpose to ameliorate or reverse
chronic diseases. Further molecular and physiologi-
cal investigations of the candidate biomarkers and
their pathways, especially with respect to an in-
flamed or otherwise malfunctional vasculature, may
reveal new rationales for therapeutic intervention to
chronic diseases.

Fig. 6 Protein network displaying selected enriched GO terms based on increased urinary protein abundances in the HA versus the NHA
cohort. This data is included in tabular form in Supplemental File S8, Dataset
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