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ABSTRACT

The ability to process and perceive sensory stimuli is an 
essential function for animals. Among the sensory modali-
ties, audition is crucial for communication, pleasure, care 
for the young, and perceiving threats. The auditory cor-
tex (ACtx) is a key sound processing region that com-
bines ascending signals from the auditory periphery and 
inputs from other sensory and non-sensory regions. The 
development of ACtx is a protracted process starting pre-
natally and requires the complex interplay of molecular 
programs, spontaneous activity, and sensory experience. 
Here, we review the development of thalamic and cortical 
auditory circuits during pre- and early post-natal periods.
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INTRODUCTION

The auditory cortex (ACtx) is a key central sound 
processing area. Sound is transmitted in the form of 
vibration through the ear canal, passing through the 
tympanic membrane, ossicles, and transduced into elec-
trical activity in the cochlea. This activity propagates 
through a series of different brainstem and midbrain 
nuclei before reaching the auditory thalamus (medial 
geniculate body, MGB) and finally the ACtx (Budinger 
and Kanold 2018; Goodrich and Kanold 2020). In 
mammals, the thalamus is subdivided into two major 
divisions, the first-order (lemniscal) ventral division of 

the medial geniculate body (MGBv) and higher-order 
(non-lemniscal) nuclei such as dorsal and medial divi-
sion of the medial geniculate body (MGBd and MGBm) 
(Mesulam and Pandya 1973; Ryugo and Killackey 1974; 
Redies et al. 1989; Budinger et al. 2000; de la Mothe 
et al. 2006; Horie et al. 2013). These subdivisions pro-
ject to distinct areas of ACtx. Accordingly, ACtx can be 
generally divided into (i) lemniscal areas, composed of 
primary auditory cortex (A1) and anterior auditory field 
(AAF), which receive inputs from the MGBv, and (ii) 
non-lemniscal or secondary auditory cortical areas, e.g., 
dorsal and ventral field of the auditory cortex (Hackett 
et al. 2011; Anderson and Linden 2011). Primary and 
secondary cortical areas are also distinguished by their 
feedback projections to the first-order and higher-order 
thalamus (Sherman and Guillery 2002; Bartlett 2013). 
In general, developmental studies have focused on the 
development of the lemniscal pathway.

Considering that various animal models have been 
used in studying the auditory system in the past, we 
first compare the definition and timing of the onset 
of hearing. We next discuss some of the key develop-
mental events (i.e., neurogenesis, neuronal migration, 
development of dendrite and synapse) that take place 
during pre- and early post-natal periods in the ACtx. At 
times, we include developmental studies from the soma-
tosensory (SSCtx) and visual cortices (VCtx) to highlight 
general principles for sensory cortical development. In 
the following subsections, the developmental sequences 
for excitatory and inhibitory neurons populating the 
ACtx and their respective role in circuit formation are 
also discussed. We conclude the review with a list of 
open questions to inspire further exploration of crucial 
topics in the field.
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SPECIES CONSIDERATIONS AND THE ONSET 
OF HEARING

Auditory processing, and thus hearing, starts with the 
maturation of the cochlea and transmission of sound-
evoked neural activity to central structures such as the 
ACtx. However, the “onset of hearing” has been dif-
ficult to define. For decades, the understanding of the 
development of auditory regions from the molecular to 
the cellular and systems level has mainly been based 
on studies performed in different animal species. While 
auditory processing in humans starts in utero, with 
physiological or neural responses to sound emerging 
around the end of the second trimester (Birnholz and 
Benacerraf 1983; DeCasper and Spence 1986; Hepper 
and Shahidullah 1994; DeCasper et al. 1994; Kisilevsky 
et al. 2003; Draganova et al. 2005; Porcaro et al. 2006; 
Voegtline et al. 2013), most animal models have altricial 
auditory development. The onset of hearing is somewhat 
ill-defined as the maturation of neural and functional 
responses in utero is obscured by attenuation of external 
sounds in the womb and difficulty in detecting sparse 
or weak responses (Fig. 1). The ear canal in humans 
is opened around the 21st gestational week (GW) 
(Nishimura and Kumoi 1992; Anthwal and Thompson 
2016). Sound-evoked fetal movements in response to low 
sound frequencies (e.g., 100–500 Hz) can be detected 
in the 19th GW, while responses to higher frequencies 
(1000 Hz and 3000 Hz) emerge after the 27th GW 
(Hepper and Shahidullah 1994). Similarly, in altricial 

animals, closed ear canals and immature transmission 
through the middle ear can potentially mask functioning 
neural connections.

Developmental studies measuring the auditory brain-
stem responses (ABR) or single-unit recordings in the 
ACtx suggest timing differences of the onset of hearing 
in several species (Mair et al. 1978; Shipley et al. 1980; 
Moore 1982; Walsh et al. 1986; Geal-Dor et al. 1993; 
Wess et al. 2017). Moreover, the presence or absence of 
sound-evoked responses need to be carefully evaluated 
as animals respond to different frequencies at distinct 
development stages due to filtering of sound stimuli and 
maturational differences across the cochlea and central 
structures. Several animal studies show that sound evoked 
neural responses are present in multiple stations along  
the auditory pathway recorded intracranially or with 
ABR before or around the opening of the ear canals 
(Fig. 1). For example, in cats, ABR or evoked potential 
responses can be recorded in the first postnatal week  
(ear opening ~ P14) (Pujol and Marty 1970; Konig et al. 
1972; Villablanca and Olmstead 1979; Walsh et al. 1986); 
in ferrets, single units can be recorded in the ACtx at 
postnatal day (P) 21–25 (ear opening ~ P32) (Wess et al. 
2017); in rat, ABR responses can be detected around 
P7 (Geal-Dor et al. 1993) and local field potential in 
ACtx can be detected around P8-10 (de Villers-Sidani 
et al. 2007) (ear opening P10-P12; Pujol et al. 1998; 
Anthwal and Thompson 2016); and in mouse, widefield 
and 2 photon  Ca2+ imaging have shown ACtx responses 
at ~ P7 (Meng et al. 2020a, 2021). However, there are 
several caveats with examining sensory responses during 
development, and as such, these studies are likely rough 
estimates of when peripheral sounds drive neural activity 
in the auditory system. First of all, bulk measurements 
such as ABR recordings that are performed outside the 
skull depend on the synchronized firing of many neu-
rons. Therefore, neural responses that are present but 
not synchronized will not be detected. Second, devel-
oping synapses can undergo synaptic depression due to 
limited availability of neurotransmitters or limited  Ca2+ 
clearing capacity (Zucker and Regehr 2002; Oswald and 
Reyes 2008). Thus, sound repetition rates that are com-
mon in adult studies (e.g., 1 Hz) might lead to depres-
sion in developing synapses and will likely underestimate 
the responses (Wess et al. 2017). Therefore, what has 
typically been considered the onset of hearing in altricial 
animals is in fact the onset of low-threshold hearing after 
the opening of the ear canals while the period of high-
threshold hearing with closed ear canals is reminiscent of 
the situation in the fetus (Fig. 1). This subtle difference 
is important when considering manipulations of sensory 
experience in altricial animals that typically start around 
ear opening (Zhang et al. 2001, 2002).

Fig. 1  Development in hearing across species. The auditory system 
can respond to sound (high-threshold) even before the ear canal 
open. The estimated timing for pre-hearing (no responses were 
recorded during sound-stimuli), high-threshold hearing, and low-
threshold hearing is described for the mouse a, cat b, ferret c, and 
human d. P: postnatal day. GW, gestational week
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EARLY FORMATION OF AUDITORY CORTEX 
COMPARED WITH OTHER SENSORY 
CORTICAL AREAS

ACtx, like other cortical areas, consists of six lami-
nae. Excitatory neurons are formed by sequential 
neurogenesis during the embryonic period, layering 
the cerebral mantle in an inside-out manner (Bayer 
et al. 1991; Polleux et al. 1997; Takahashi et al. 1999; 
Levers et al. 2001; Bayatti et al. 2008; Duque et al. 
2016) (Fig. 2a). Although the period for neurogenesis 
and migration is completed at different times among 
different species (Table 1) (mice: Polleux et al. 1997; 
Takahashi et al. 1999; rat: Bayer and Altman 1991; 
possum: Sanderson and Aitkin 1990; ferret: Noctor 
et al. 1997; cat: Luskin and Shatz 1985; monkey: 

Rakic 1974; human: Rakic 1988; Krmpotić-nemanić 
et al. 1979; Kostovic and Rakic 1990), ACtx seems to 
achieve this earlier than the SSCtx and VCtx. In mar-
supials, the generation of all auditory cortical neurons 
is complete by P46, about three weeks earlier than 
neurons in the VCtx (Sanderson and Aitkin 1990). 
Studies in rodents during the early postnatal period 
using birth-dating and laminar specific gene expres-
sion indicate an earlier arrival of postmitotic neurons 
to their final position, and earlier maturation of the 
respective lamina to the adult pattern in ACtx com-
pared with other sensory cortical areas (Ignacio et al. 
1995; Chang et al. 2018). The temporal pattern dif-
ferences observed from the perspective of neurogenesis 
and cytoarchitectural maturation may indicate that 
other biological events, such as dendritic and axonal 

Fig. 2  Development of excitatory and inhibitory neurons during 
the embryonic period. a Cortical excitatory neurons were gener-
ated from the radial glial cells and migrate towards their final loca-
tion within cortical plate (CP) guided by Cajal-Retzius cells. The 
first generated neurons are the subplate (SP) neurons, followed by 
deeper layer neurons and upper layer neurons that sequentially 
migrate into the CP. Cajal-Retzius cells and some subplate neu-
rons largely disappear over development. b Inhibitory neurons 
are generated from the ganglionic eminence (GE) starting around 
embryonic days (E)10 and migrate tangentially to the cortex (left). 

The presence of inhibitory neurons in the intermediate/ventricular 
zone and marginal zone can be detected at the lateral region of 
the murine cortex as early as E12.5 (left). Some of these inhibitory 
neurons will continue to migrate towards the dorsomedial region of 
the cortex, however, whether the timing of these neurons invading 
the cortical plate happens concurrently is unclear (middle). Around 
P14, the inhibitory neurons evenly distributed within the cortex 
(right). ACtx, auditory cortex; L, layer; MZ, marginal zone; SVZ/VZ, 
subventricular zone/ventricular zone; VCtx, visual cortex
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growth, synaptic formation and maturation, and cir-
cuit connectivity between cortical and subcortical 
regions, might also depend on specific cortical areas.

Cortical inhibitory neurons have a different ancestry 
from excitatory neurons. Cortical interneurons are gener-
ated in the ganglionic eminence (GE) around embryonic 
day (E)10 (Lavdas et al. 1999; Anderson et al. 2001; Jiménez  
et al. 2002; Nery et al. 2002; Bandler et al. 2017) (Fig. 2b). 
During the embryonic period, inhibitory neurons migrate 
tangentially, in a ventrolateral-to-dorsomedial manner 
from the GE to the cortical intermediate/ventricular zone 
and marginal zone (Wichterle et al. 2001; Tanaka et al. 
2003; Miyoshi and Fishell 2011; Lim et al. 2018). Cortical 
interneurons reach the lateral part of the murine cortex by 
E12.5 (Fig. 2b) and migrate radially or at different angles 
into the cortex (Tanaka et al. 2003; Gierdalski et al. 2011). 
The densities of cortical interneurons continue to increase 
and peak around the second postnatal week, gradually 
decline, and reach a steady state in adulthood (Micheva 
and Beaulieu 1995; Schierle et al. 1997; Lee et al. 1998; 
Gao et al. 1999). The origin and timing of migration for 
different subtypes of cortical interneurons may contribute 
to differential distribution patterns among cortical regions 
(Schierle et al. 1997; Gao et al. 1999; Rudy et al. 2011; 
Fazzari et al. 2020). In the ACtx, different subtypes of cor-
tical interneurons are likely to have different roles in audi-
tory processing (further discussed below, see also Blackwell 
and Geffen 2017).

Circuit Development in Auditory Cortex in 
Comparison with Visual Cortex

A direct comparison of the developmental milestones 
between sensory cortices is further complicated by the fact 
that the time of opening of the eyes and ears differs. For  
example, the ear canal opening is around P9–10 (for mice),  
P32 (for ferret), and P14 (for cat), while eye opening is 
around P12–14 (mice), P30 (ferret), and P6–10 (for cat) 
(Pujol and Marty 1970; Bonds and Freeman 1978; Blake 
1979; Moore 1982; Shen and Colonnese 2016; Anthwal 
and Thompson 2016; Danka Mohammed and Khalil  
2020). Considering the time difference of the onset of sen-
sory functions in different species, we shall explore the tim-
ing of cortical maturation in ACtx from a circuit perspective.

Early axonal growth from the cortical postmitotic 
neurons happens almost concurrently with their matura-
tion while further cortical neurogenesis is still ongoing. 
During development, the continuous cortical expansion, 
after neurogenesis and neuronal migration, is likely cor-
related with synaptogenesis (Huttenlocher and Dabholkar  
1997). Early studies in primates suggested that the devel-
opment of proximal synapses on apical dendrites hap-
pens concurrently across layers and cortical regions (Rakic  
et al. 1986) while later studies that included distal synapses  
showed that changes of branching and spine density varied 

between cortical areas (Elston et al. 2009). This suggests 
that the initial growth and morphological maturation 
occur simultaneously across regions while the development 
of more distal inputs might vary. In humans, the thickness 
of the gray matter in each cortical regions increases after 
birth due to the expansion of layers 2–6, and then slowly 
thins to adult level, but the timing differs among cortical 
regions (Sowell et al. 2003, 2004; Raznahan et al. 2011). 
The temporal cortex in humans, where ACtx is located, 
is among those regions that continue to grow when other 
regions experience thinning, with the temporal cortex gray 
matter reaching a maximum volume at around adoles-
cence (~ age 16–17 years) (Giedd et al. 1999). The dif-
ference in changes of cortical thickness may relate to the 
functional role played by the respective cortical regions 
(Lu et al. 2007; Squeglia et al. 2013; Kalamangalam  
and Ellmore 2014).

Despite the regional differences, dendritic and synaptic 
development among sensory cortices seems to proceed 
in a laminar gradient similar to most cortical regions. 
Studies in rat VCtx and SSCtx showed that the complex-
ity of neuronal morphology was achieved earlier for the 
earlier-born deeper layer neurons than for the later-born 
superficial layer neurons (Juraska and Fifková 1979; Wise 
et al. 1979; Miller 1981). It is important to keep in mind 
that the dynamics of spine development differ based on 
their distance from the soma since both dendrites and 
spines that are located at the terminal remain plastic into 
adulthood (Petit et al. 1988). Additionally, the presynaptic 
inputs originating from the thalamus may affect the tim-
ing of dendritic spines maturation between cortices. Two 
independent studies in the rat ACtx and VCtx showed a 
stepwise fashion in dendritic spine development during 
the early postnatal period, but in a different temporal 
manner (Miller 1981; Schachtele et al. 2011). Initially, 
the spine densities at the proximal portion of apical den-
drites for pyramidal neurons increase at a slow rate in 
the ACtx (P4–P9) and VCtx (P6–P9). The slow growth 
may be contributed by the cochlear spontaneous activity 
relayed by the thalamus (Babola et al. 2018). This initial 
slow increase is followed by a period of a rapid increase 
in both ACtx (i.e., P9–P19) and VCtx (i.e., P12–P15). 
The differences in the onset of the slow and rapid growth 
periods are likely due to the difference in the onset of low 
threshold sensory inputs e.g., the timing of ear (~ P9/10) 
and eye-opening (~ P12).

In conclusion, compared with the VCtx, ACtx shows 
an earlier formation of its cytoarchitectural features and 
formation of dendrites and synapses. However, many 
neurodevelopmental events in the ACtx take a longer 
period to complete, for instance, the continuous thick-
ening of the gray matter in the ACtx when other corti-
cal areas are experiencing thinning (Giedd et al. 1999). 
Such protracted development could make the auditory 
system more susceptible to insults and neuronal disorders. 
Indeed, there is an association of ACtx malformation and 
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multiple disorders (Thompson et al. 2001; Sowell et al. 
2003; Holinger et al. 2005; Marco et al. 2011) (see also 
review: Hugdahl et al. 2008; O’Connor 2012).

DEVELOPMENT OF THALAMOCORTICAL 
INNERVATION AND TRANSIENT CIRCUITS

The ascending pathway from the thalamus to the cor-
tex is pivotal for relaying sound-evoked activity from 
the periphery to the ACtx. Generally, there are two 
pathways for the thalamocortical circuits in the auditory 
system: the first-order and higher-order thalamocorti-
cal circuits. In the first-order thalamocortical circuit, 
most of the neurons in the MGBv project to A1 and 

AAF in a tonotopic manner (Aitkin and Webster 1972; 
Morel et al. 1993; Anderson et al. 2007; Hackett 2011). 
Higher-order thalamocortical circuits originating from 
MGBd and MGBm have projections to distinct laminae 
in all auditory cortical areas and process tonotopic, non-
tonotopic, and multisensory information (Aitkin 1973; 
Lee 2015; Smith et al. 2019).

Development of Thalamocortical Projections into 
Auditory Cortex

Similar to the neurogenetic gradient between regions, the 
development of thalamocortical and corticothalamic pro-
jections between the thalamus and its respective cortical 
regions occurs in a temporal gradient (McConnell et al. 

Fig. 3  Transient circuits between subplate neurons and thalamo-
cortical axons in auditory cortex. a The first generated neurons are 
the subplate neurons (SP, gray). These neurons can be detected as 
early as E11 in the auditory cortex (ACtx), almost similar timing 
as the thalamic nuclei that are generated in the medial geniculate 
body (MGB) around E10. The thalamocortical axons from the thala-
mus contact subplate neurons in ACtx around E13.5. b Thalamo-
cortical axons from the medial geniculate nucleus (MGN) arrive in 
the SP of ACtx (red) earlier than those from the lateral geniculate 
nucleus (LGN) in the SP of visual cortex (VCtx, blue). Around post-
natal days (P) 5, the thalamocortical fibers arrived in the VCtx layer 
(L) 4, earlier than those in ACtx. c SP neurons project to thalamor-
ecipient L4 and L1 as well as to MGB during early postnatal ages. 
Complexin 3 (Cplx3, green) is expressed in SP neurons and strong 
puncta immunolabeling can be detected at (i) the thalamus sur-

rounding the ventral division of MGN (MGBv), and in (ii) the L4 
and L1. Vesicular glutamate transporter 2 (vGlut2, magenta) label-
ling thalamocortical fibers and thalamorecipient L4. d A transient 
circuit is formed between the SP and MGB during the early embry-
onic period, and the SP neurons were projecting to the future L4 
neurons (left). During the development, the TCAs from MGB will 
penetrate the cortex and move towards the L4 neurons (middle). In 
the adult, when the connections between MGB and L4 are estab-
lished, the subplate network diminished (right). During this process, 
SP might be considered a proto-organizational structure, ensuring 
that L4 is organized in a tonotopic manner. Pseudo-colored rep-
resents different frequencies in the tonotopic map. MGBd, dorsal 
division of MGN; scale bar for c is 1  mm; scale bar for (i, ii) is 
50 µm
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1989, 1994; Ghosh and Shatz 1992b). Subplate neurons 
are among the first population of postmitotic cortical 
neurons and are the first cortical target of thalamocorti-
cal projections (Kostovic and Rakic 1990; Kanold and 
Luhmann 2010). Axons from MGB arrive in the subplate 
region of the ACtx earlier than the lateral geniculate 
nucleus (LGN) axons arrive in the VCtx subplate (Fig. 3). 
While the cause of these differences in timing is unknown, 
differences in peripheral activity or genetic programs or 
both might play a role in that. In rats, neurogenesis in 
the MGB begins around E10–E15 (Altman and Bayer 
1979, 1989; Gurung and Fritzsch 2004), slightly earlier 
than the generation of subplate neurons (Valverde et al. 
1995)(Fig. 3a). Thalamocortical axons (TCAs) exit the 
thalamus guided by a cocktail of axon guidance molecules 
(Slit1, Netrin1, Ephrin-A5, Sema3A/3F) to follow a path 
towards the cortex, avoiding the hypothalamus, arrive 
at their respective subplate zones, and wait before they 
penetrate into the cortex (Leyva-Díaz and López-Bendito 
2013; López-Bendito 2018). The presence of TCAs in 
the ACtx in mice can be detected around E13.5 (Fig. 3a) 
when projections from the inferior colliculus have not 
fully innervated the MGBv (Gurung and Fritzsch 2004), 
suggesting that the topographic axonal pathfinding from 
the MGBv to ACtx may not require ascending inputs but 
is regulated by intrinsic programs within the thalamus 
and/or the cortex. Spontaneous activity in the thalamic 
neurons regulates the expression of transcription factors, 
Robo1 and DCC, that switch the rate of extension of 
TCAs from fast to slow when they enter the neocortex, 
possibly interacting with the local environment before 
growing into the future layer (L) 4 (Mire et al. 2012; 
Castillo-Paterna et al. 2015).

Transient Circuit Between Thalamocortical 
Projections and Subplate Layer

When thalamic axons enter the cortex, they encounter the 
earliest generated cortical neurons, the subplate neurons, 
which in rodents are born at ~ E11 (Kostovic and Molliver 
1974; Al-Ghoul and Miller 1989; Wood et al. 1992; Price 
et al. 1997; Zeng et al. 2009; Kanold and Luhmann 2010). 
Together with Cajal-Retzius neurons of the marginal zone, 
subplate neurons form transient circuits that are present 
mostly during development (Kostovic and Rakic 1984, 
1990; Luskin and Shatz 1985; Kanold and Luhmann 2010; 
Molnár et al. 2020). Thalamocortical inputs accumulate in 
the subplate (Fig. 3b), forming their first synaptic contacts 
with subplate neurons (Friauf et al. 1990; Zhao et al. 2009). 
Consistent with this early ingrowth of thalamocortical fib-
ers, in vivo recordings have shown that subplate neurons 
respond to sound (Wess et al. 2017). In rodents, the sub-
plate neurons already receive thalamocortical inputs at birth 
and are capable of firing action potentials, with repetitive 
firing developing within the first postnatal week (Zhao et al. 
2009). Furthermore, these subplate neurons also receive 

inputs from the developing cortical plate (cortical layers 
2 to 6 that is still undergoing maturation), especially from 
future L4 (Viswanathan et al. 2012; Meng et al. 2014). 
Subplate axons target L4 as well as L1 (Viswanathan et al. 
2017; Meng et al. 2020b), thus forming a feedforward and 
feedback circuit within the subplate and neurons located 
within the developing cortical plate.

The subplate consists of a heterogeneous group of 
neurons expressing specific molecular markers, e.g., com-
plexin 3 (Cplx3), connective tissue growth factor (CTGF), 
dopamine receptor D1 (Drd1), orphan nuclear receptor 
Nr4a2 (Nurr1), and G-protein-coupled lysophosphatidic 
acid receptor 1 (Lpar1/Edg2) (Hoerder-Suabedissen and 
Molnár 2013; Viswanathan et al. 2012, 2017). Because of 
its presynaptic localization and specificity, Cplx3 allows the 
identification of subplate axon terminals (Viswanathan et al. 
2017). The puncta-like immunoreactive staining is denser 
at the thalamorecipient layer and L1 of ACtx (Fig. 3c). 
Also, the puncta-like staining of Cplx3 is mainly detected in 
the MGBd and MGBm (Fig. 3c), suggesting that subplate 
neurons in the ACtx send their axons to higher-order thala-
mus, in agreement with studies in the somatosensory system 
(Viswanathan et al. 2017; Hoerder-Suabedissen et al. 2018). 
As the cortex matures to adult, a fraction of subplate neu-
rons survive as L6b neurons (Kostovic and Rakic 1980; 
Valverde and Facal-Valverde 1988; Clancy and Cauller 
1999; Marx and Feldmeyer 2013; Marx et al. 2017). While 
previously it has been thought that thalamic axons “wait” 
in the subplate (Kostovic and Rakic 1990), recent work has 
shown that this period is highly dynamic and involves the 
organization of thalamic afferents into topographic maps 
(Wess et al. 2017). Thus, this period might be considered 
a proto-organizational period (Fig. 3d). As detailed below, 
manipulating cochlear function or auditory experience dur-
ing this early period can change circuits to subplate neurons 
indicating the dynamic nature of this period (Meng et al. 
2021). In short, subplate neurons are in a central position to 
orchestrate early cortical activity, guide thalamic afferents, 
and play an early key role in establishing topographic maps 
and functional circuits.

Thalamocortical Development into Layer 4 of the 
Primary Auditory Cortex

In early development (before ~ P11 in mouse ACtx 
and ~ E24 in cat VCtx), TCAs project to subplate neurons, 
which in turn target the L4 neurons, acting as a “relay 
hub” (Friauf et al. 1990; Zhao et al. 2009; Kanold and 
Luhmann 2010)(Fig. 3d). Thus, thalamic activation results 
in short-latency subplate responses while L4 responds with 
longer latencies (Friauf et al. 1990; Higashi 2005; Barkat 
et al. 2011; Wess et al. 2017). When TCAs start innervat-
ing the L4 neurons, the functional connection between 
subplate neurons and the L4 neurons disappears, and L4 
responds with short latency to thalamic activation (Friauf 
et al. 1990; Barkat et al. 2011; Wess et al. 2017).
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The presence of subplate neurons is crucial for TCAs 
to find their appropriate target and also for establishing 
the topographic and functional properties in L4 (Ghosh 
et al. 1990; Ghosh and Shatz 1992a; Kanold et al. 2003; 
Tolner et al. 2012). Ablation studies in the VCtx and 
SSCtx have shown that subplate neurons are required for 
the formation of ocular dominance columns in VCtx and 
the barrels in SSCtx (Ghosh and Shatz 1992a; Kanold 
et al. 2003; Tolner et al. 2012). Subplate neurons also 
play a role in the functional maturation of thalamocor-
tical and inhibitory intracortical circuits (Kanold et al. 
2003; Kanold and Shatz 2006; Tolner et al. 2012).

When TCAs arrive at the subplate zone, they accu-
mulate for a period (depending on the species) before 
penetrating into the cortical plate (Table 1). While TCAs 
from the MGB arrive in the ACtx subplate earlier than 
those from the LGN in VCtx subplate (McConnell et al. 
1989, 1994; Ghosh and Shatz 1992b), Cux1-expressing 
L4 neurons in VCtx and SSCtx are innervated by TCAs 
earlier than those in ACtx (Chang et al. 2018). This 
suggests that TCAs remain in the subplate for a longer 
duration in ACtx than in the SSCtx and VCtx (Fig. 3b). 
The reason for this difference and the processes occurring 
during this time remain to be elucidated.

Thalamocortical Circuit in the Secondary 
Auditory Cortex

While much is known in the thalamocortical projections 
from MGBv, little is known about the potential differ-
ences between the developments of first- and higher-order 
thalamocortical circuits during early development. In adult 
animals, the thalamocortical afferents in MGBd project 
to L4 of the secondary auditory cortex (A2), while those 
in MGBm project broadly across many tonotopic, non-
tonotopic, multimodal, amygdala, and limbic cortical areas 
(LeDoux et al. 1991; Huang and Winer 2000; Lee and 
Winer 2008; Smith et al. 2012; Bartlett 2013; Lee 2015). A 
study in thalamocortical slices suggested that the first- and 
higher-order thalamic nuclei share similar synaptic prop-
erties (Lee and Sherman 2008). In addition to receiving 
corticothalamic feedback from A2, MGBd also receives 
feedback from A1 L5 neurons and the convergent infor-
mation is passed to L4 in A2 (Huang and Winer 2000; 
Lee and Sherman 2008; Smith et al. 2012; Petrof et al. 
2012). Based on these anatomical studies, it was proposed 
that there are two distinct pathways conveying information 
from A1 to A2, the transthalamic cortical pathway (also 
known as corticothalamocortical pathway, A1 to MGBd 
to A2), and the direct corticocortical pathway (A1 to A2) 
(Guillery 1995; Sherman and Guillery 2002; Sherman 
2016). The timing of transthalamic circuit establishment 
during the early stage of development is unknown.

Anatomical studies in gerbils revealed that circuits 
from higher-order thalamic nuclei tend to develop at ear-
lier ages (Henschke et al. 2018). Because the proportion 

of labeled fibers from MGBd to A1 is larger than those 
from MGBv in early development, it is possible that at 
this stage of development, more connections between 
MGBd TCAs and subplate neurons are formed (Fig. 4a). 
In both the auditory and the somatosensory systems, 
higher-order thalamic systems have been associated with 
more dynamic stimuli, while static stimuli drive first-order 
thalamic circuits (Yu et al. 2006; Liu et al. 2019). Such 
circuits would only show transient activation, which is 
compatible with transmission via immature synapses that 
show synaptic depression and thus compatible with earlier 
functional development. Given the early cortical ingrowth 
of MGBd fibers in A1, the subplate neurons in A1 might 
also receive information from MGBd earlier. However, 
future investigation is needed to detail the development 
and relative functional connectivity of lemniscal and 
higher-order thalamic projections.

DEVELOPMENT OF L4 MORPHOLOGY 
AND INTRACORTICAL CONNECTIVITY

ACtx cell populations within the cortex can be classified 
by the laminar position as well as by molecular identity 
and connectivity patterns (Budinger and Kanold 2018). 
Adult ACtx shows morphological differences from other 
cortical areas, possibly due to a distinct developmental 
trajectory. In rodents, L4 neurons in ACtx show larger 
soma size compared with those in SSCtx and VCtx 
(Chang and Kawai 2018), suggesting that most of the 
ACtx L4 neurons are pyramidal neurons. Also, unlike 
SSCtx and VCtx (Lund 1973; Jones 1975; Braak 1976; 
Parnavelas and Uylings 1980; Meyer and Ferres-Torres 
1984; Simons and Woolsey 1984; Callaway and Borrell 
2011), spiny stellate neurons are rare or almost absent 
in ACtx (Meyer et al. 1989; Fitzpatrick and Henson 
1994; Smith and Populin 2001). In contrast to pyramidal 
cells, spiny stellate neurons have a short apical dendrite, 
receive thalamocortical inputs, and are involved only in 
very local networks (Schubert et al. 2003; Staiger et al. 
2004; Callaway and Borrell 2011). Since almost all neu-
rons in L4 of ACtx are pyramidal-like, they not only are 
involved in local networking within the lamina but also 
receive direct feedback from the upper layers (Barbour 
and Callaway 2008; Kratz and Manis 2015).

Why are there no spiny stellate neurons in ACtx? The 
expression of laminar-specific genes (e.g., ROR beta) can 
be detected in L4 of both primary VCtx (V1) and A1 
(Hirokawa et al. 2008), suggesting that L4 of V1 and 
A1 shares genetic similarities. Intriguingly, most V1 L4 
neurons initially show pyramidal morphology transition-
ing to spiny stellate morphology with the onset of visual 
activity (Callaway and Borrell 2011). This suggests that 
the lack of spiny stellate cells in ACtx might be due 
to different activity patterns during development. Simi-
lar to other sensory cortical areas, the main ascending 
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auditory input to ACtx is provided by TCAs (Fig. 4a) 
which target most layers but most strongly innervates the 
lower portion of L3b and L4 (Hackett et al. 2001, 2016; 
Ji et al. 2016; Vasquez-Lopez et al. 2017; Chang and 
Kawai 2018). Studies in VCtx and SSCtx demonstrated 
that lemniscal TCAs, and possibly the activity patterns 
relayed by these axons, are important for the specifica-
tion of these primary sensory regions (Vue et al. 2013; 
Chou et al. 2013; Pouchelon et al. 2014). Elimination of 
the lemniscal TCAs from the ventrobasal thalamus to 
the primary SSCtx prevented the formation of cortical 
barrels, leaving the cortex morphologically similar to the 
secondary SSCtx (Li et al. 2013; Pouchelon et al. 2014). 
While spiny stellate neurons are usually located near the 
border of a barrel (Egger et al. 2008), elimination of 
the TCAs caused retention of the apical dendrite by L4 
neurons and lack of spiny stellate morphology (Li et al. 
2013). Thus, the absence of spiny stellate cells in A1 may 
indicate that there are differences in the developmental 
activity patterns between A1 and other primary sensory 
cortical areas leading to different morphologies of L4 

cells. Alternatively, the late innervation of A1 by TCAs 
might occur after the period for the possible transforma-
tion from pyramids to spiny stellate morphology, thus 
preventing the transformation of these neurons.

INTRACORTICAL CONNECTIVITY 
IN THE UPPER LAYERS

Intracortical circuits are highly dynamic during the early 
developmental period (Fig. 4b). Functionally, adult A1 
L2/3 cells can be subdivided into classes based on their 
local connectivity patterns within A1 (Meng et al. 2017b). 
In rodents, during the first postnatal week and before 
the arrival of TCAs, L2/3 neurons receive strong intra-
cortical inputs from within L2/3 (Meng et al. 2020a) 
(Fig. 4b). During the second postnatal week, these 
neurons also receive extensive inputs from lower layer 
neurons including L5/6 (Fig. 4b). Refinement of these 
intracortical inputs occurs within the second and third 
postnatal weeks combined with an increase in functional 

Fig. 4  Schematic figure of connections in primary auditory corti-
cal development. Ages refer to mice. a Projections from the medial 
geniculate body (MGB) arrive in the subplate layers of primary 
auditory cortex (A1) during embryonic development. After birth, 
the thalamocortical axons from both MGBd and MGBv refine and 
terminate into their appropriate target and some SP neurons start 
to disappear. b  In the first postnatal week, L2/3 neurons (purple) 
establish intracortical networks with their surrounding neurons. 
Besides ascending L4 inputs, between P9 and P16, L2/3 neurons 
also receive extensive inputs from L5/6 neurons. Such connections 

disappear in adulthood. c  During early development, long-range 
corticocortical connections between primary and secondary areas 
are established mainly by the lower layer and possibly subplate 
neurons (left). As the cortex matures, the upper layer neurons form 
long-range corticocortical connections between primary and sec-
ondary cortical areas (middle). As the thalamocortical inputs inner-
vate layer 4 and during maturation of upper layer neurons, the cor-
ticocortical connections in the lower layers decrease. MZ, marginal 
zone; CP, cortical plate
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circuit heterogeneity (Meng et al. 2017b, 2020a). Besides 
different inputs, some of these L2/3 neurons have long-
range axonal projections targeting higher or contralateral 
cortical areas (Winguth and Winer 1986; Petrof et al. 
2012). At least in V1, the development of long-range 
corticocortical projections follows the neurogenesis gra-
dient, where the deeper layers’ neurons project towards 
the secondary visual cortex before the upper layers’ neu-
rons establish their connectivity (Coogan and Burkhalter 
1988; Burkhalter 1993; Price et al. 1994). However, this 
long-range corticocortical circuitry formed by the deeper 
layers is transient and declines slowly as the connectiv-
ity in the upper layer neurons is established (Fig. 4c). 
In the visual system, sensory deprivation prevents the 
normal pruning of the corticocortical connections in the 
deeper layers between primary and secondary VCtx that 
is usually observed in adulthood (Price et al. 1994). The 
existence of the transient intracortical or deep intercorti-
cal corticocortical circuits might be activity-dependent, 
where the elimination is followed by the maturation in 
the upper layers’ corticocortical circuitry and innervation 
of thalamocortical fibers to L4.

CORTICAL AND SUBCORTICAL 
CONNECTIVITY IN THE LOWER LAYERS

In adults, neurons located in the deeper layers, e.g., 
L5/6, project mainly to subcortical structures and thus 
contribute to feedback circuits (Budinger and Kanold 
2018). During the critical period, these deep neurons 
also project across the cortical column to cells in L1 
and L2/3 (Meng et al. 2020a, b). The laminae across 
different cortical regions share similar gene expression, 
and some of these genes regulate the fate of lower layer 
neurons for appropriate projections (Molyneaux et al. 
2007; Kwan et al. 2012). Transcription factors such as 
Tbr1, Foxp2, and Ntsr1 are expressed in corticothalamic 
neurons, and a large population of L6 neurons expresses 
one or more of these transcription factors (Hisaoka et al. 
2010; Sundberg et al. 2018; Chang et al. 2018). In L6, 
the presence of Tbr1 expression is crucial to maintain the 
corticothalamic identity of these neurons and for their 
axons to further extend to subcortical targets, while L5 
neurons require the expression of Fezf2 to suppress Tbr1 
to maintain their identity (McKenna et al. 2011; Han 
et al. 2011; Canovas et al. 2015; Darbandi et al. 2018). 
Foxp2 is a unique transcription factor. Since its discovery 
in a British family with hereditary speech and language 
disorders, it is the first identified gene related to speech 
and language (Vargha-Khadem et al. 1995; Hurst et al. 
2010). Multiple studies indicated that Foxp2 plays a role 
in cortical neurogenesis (Tsui et al. 2013), thalamic pat-
terning (Ebisu et al. 2017), neurite growth, and axon 
guidance (Vernes et al. 2011). However, Foxp2 mutant 
mice do not exhibit ectopic projection in L6 neurons and 

the postnatal cytoarchitecture remains unaffected possibly 
due to compensatory effects (Kast et al. 2019).

In rats, L6 corticothalamic neurons of VCtx and 
SSCtx extend their axons towards the internal capsule at 
around E12 before arriving at the thalamus (Miller et al. 
1993; Deck et al. 2013; Briggs 2010; Grant et al. 2012). 
Studies of early postnatal development of corticothalamic 
projections from ACtx are limited. Generally, cortico-
thalamic fibers have already innervated the thalamus 
around birth. However, the completion of these innerva-
tions takes place at different time points, with innervation 
of the ventrobasal complex first, followed by innervation 
of the LGN, and finally the innervation of the MGB 
(Jacobs et al. 2007). The innervation of corticothalamic 
fibers is complete in MGB about 4 days earlier than in 
the LGN (i.e., P14.5), and this timing is consistent with 
the developmental pattern observed in the L6 labeled by 
Foxp2-expressing neurons where ACtx reaches mature 
cell densities earlier than the VCtx (Chang et al. 2018). 
This indicates a delayed but more rapid development of 
corticothalamic innervation in the auditory system. Addi-
tionally, during early postnatal development, the connec-
tivity between MGBv, L6, and L4 is mainly coordinated 
by the subplate, before the establishment of connectivity 
from MGBv to L4, L6 to L4, and L6 to MGBv (Kanold 
et al. 2019) (Fig. 4a). How these developmental changes 
in circuits take place and are controlled during develop-
ment is yet to be carefully examined.

L5 is formed by a heterogeneous group of cells which 
can be categorized by distinct neuronal morphology, elec-
trophysiology properties, the target of their axonal projec-
tions, and gene expression (Molnár and Cheung 2006). 
In general, L5 in primary sensory cortical areas com-
prises corticocortical and subcortical projection neurons 
in 2 sublaminae (Games and Winer 1988; Petrof et al. 
2012). L5 in A1 can be separated in 3 sublaminae based 
on their target projection towards the inferior colliculus, 
superior olivary complex, and cochlear nucleus (Doucet 
et al. 2003) or into 3 sublayers based on genetic identity 
(Chang and Kawai 2018). In the latter case, corticocol-
licular, Ctip2-expressing neurons are mainly populated 
in the middle layer, with corticocortical neurons sparsely 
distributed in L5 between Cux1-labeled L2-4 and Foxp2-
labeled L6 (Chang and Kawai 2018).

Although the connectivity of L5 neurons with differ-
ent target areas has been well-studied in the adult ACtx, 
processes during early postnatal development remain to 
be elucidated. In the somatosensory system of mice, the 
axonal fibers of L5 corticofugal neurons can be found in 
their subcortical targets at birth (McKenna et al. 2011), 
while those from corticostriatal neurons can be detected 
in the ipsilateral and contralateral striata and the con-
tralateral cortex around P3 (Sohur et al. 2014). L5 projec-
tions continue to refine by regulating specific epigenetic 
modifications during early postnatal stages (Harb et al. 
2016). In the ACtx, injection of retrograde tracers into 
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inferior colliculus at P5 was able to label corticocollicular 
L5 neurons (Chang et al. 2018), suggesting that the con-
nectivity was established before that period of time. L5 in 
A1 also contains corticocortical neurons with their axons 
projecting to higher-order areas of the auditory (Fig. 4c), 
V1, S1, and frontal cortical regions (Covic and Sherman 
2011; Petrof et al. 2012; Kim et al. 2015; Zhang et al. 
2016; Masse et al. 2019). But when these projections 
mature or if there is a critical period for their develop-
ment is unclear. In the VCtx, corticocortical neurons in 
the lower layers initially project to secondary areas, but 
this connectivity between cortical areas is replaced by the 
upper layer neurons during postnatal development (Price 
et al. 1994). Does a similar process happen in ACtx and 
does this process require auditory experience? Under-
standing these processes will help further elucidate how 
larger-scale areal connections are established during the 
early postnatal stage.

DEVELOPMENT OF INHIBITORY CIRCUITS

Inhibition is crucial in auditory processing, and there are 
many subtypes of cortical GABAergic interneurons (Rudy 
et al. 2011). In the ACtx, the distribution of different 
subtypes of cortical interneurons follows a distinct pattern 
from early postnatal period to adulthood (Ouellet and de 
Villers-Sidani 2014). We here focus on three major groups 
of GABAergic neurons: the parvalbumin (PV), somato-
statin (SST), and ionotropic serotonin receptor 5HT3a 
(5HT3aR) neurons.

Developmental Changes of GABAergic Neurons 
in Layers 2–4

Around the first postnatal week in the ACtx of rats, the 
proportion of PV-immunopositive (PV +) neurons is higher 
than SST + neurons (Rudy et al. 2011; Ouellet and de 
Villers-Sidani 2014). Both subtypes have a higher propor-
tion localized in L4 compared with other laminae of ACtx 
(Ouellet and de Villers-Sidani 2014). The maturation of 
PV and SST neurons in L4 is crucial for maintaining the 
normal circuitry between cortical excitatory and inhibitory 
neurons. In the SSCtx, the early-generated SST interneu-
rons are mainly located in the infragranular layers and are 
transiently innervated by TCAs during the first postnatal 
weeks (Marques-Smith et al. 2016; Tuncdemir et al. 2016; 
Anastasiades et al. 2016). The transient innervation of 
TCAs on SST plays a crucial role for the maturation of 
cortical inhibitory circuits and affects the maturation of 
PV interneurons and their inputs on pyramidal neurons 
(Tuncdemir et al. 2016). In addition, the early-generated 
SST interneurons are found to be crucial for synchroniz-
ing spontaneous networking during early postnatal stages, 
as they form a higher synaptic connection with their sur-
rounding pyramidal neurons (Wang et al. 2019). In the 

SSCtx, the presence of SST mRNA expression can be 
detected as early as P0, while PV mRNA expression was 
present much later (Mukhopadhyay et al. 2009). Unlike 
the SSCtx, the PV+ neurons are present much earlier than 
SST+ neurons in the ACtx (Mukhopadhyay et al. 2009; 
Ouellet and de Villers-Sidani 2014; Liguz-Lecznar et al. 
2016), suggesting that SST and PV play different devel-
opmental roles in auditory circuit formation.

PV neurons have fast-spiking (FS) properties, while 
most of the SST neurons have low-threshold spiking (LTS) 
properties (Kawaguchi 1993; Galarreta and Hestrin 2002; 
Cardin et al. 2009; Rudy et al. 2011; Hu et al. 2014; 
Liguz-Lecznar et al. 2016). Studies in the ACtx of gerbil 
suggested that the development of FS and spiking LTS 
neurons in the upper layers are sensory-dependent (Kotak 
et al. 2008, 2013; Takesian et al. 2012, 2013). Follow-
ing ear opening, FS neurons receive increased thalamic 
inputs and therefore relay stronger inhibition onto the 
pyramidal neurons in the upper layers. In contrast, the 
amplitude of LTS-evoked inhibitory postsynaptic sponta-
neous currents (LTS-IPSCs) experienced a developmental 
decrease, and the inhibitory short-term plasticity of LTS 
showed a switch from depression to facilitation (Takesian 
et al. 2010, 2013). GABAergic interneurons also receive 
intracortical inputs, and L4 GABAergic neurons mainly 
receive local inputs before ear opening (i.e., during the 
first postnatal week), with little input coming from lower 
layers (Deng et al. 2017). However, after ear opening, the 
inputs from lower layers on these GABAergic neurons 
increase; hence, these GABAergic cells integrate informa-
tion from almost all layers. Neonatal deafening altered the 
pattern of intracortical inputs (Deng et al. 2017). Thus, 
the maturation of GABAergic neurons in all layers seems 
to depend on sensory-experience and centrally as well as 
peripherally generated spontaneous activity.

GABAergic Neurons in Layer 1

Layer 1 (L1) in development (also known as marginal 
zone) contains mainly early generated Cajal-Retzius cells 
and sparsely distributed GABAergic neurons (Winer and 
Larue 1989; Prieto et al. 1994). The Cajal-Retzius cells 
slowly disappear in early postnatal period, leaving the 
GABAergic neurons (Gesuita and Karayannis 2021). The 
majority of the L1 GABAergic neurons can be grouped 
based on the neurochemical marker reelin, GABA-A 
receptor subunit delta, neuropeptide Y (NPY), vasoac-
tive intestinal peptide (VIP), calretinin, and somatostatin 
(Ma et al. 2014). L1 neurons can also be classified into 
four unique groups based on their molecular profiles, 
morphologies, and electrophysiological properties: neu-
rogliaform cells, canopy cells, α7-nicotinic acetylcholine 
receptors (α7-nAChR) expressing cells, and VIP cells 
(Schuman et al. 2019). Both neurogliaform and canopy 
cells express neuron-derived neurotrophic factor (NDNF) 
(Schuman et al. 2019).

246



M. Chang, P. O. KanOld: Development of Auditory Cortex Circuits

During the early postnatal period, L1 GABAergic neu-
rons integrate interlaminar inputs from L4 and subgranu-
lar layers (Meng et al. 2020b). This period of integration 
spans from ~ P5 to ~ P16, peaks at P10–P16, and encom-
passes the critical period, a period where the develop-
ing cortex can be altered profoundly or permanently by 
deprivation of auditory inputs. After this period, most 
L1 inputs originate from superficial layers (Meng et al. 
2020b). L1 5HT3aR neurons, but not VIP neurons, are 
thought to be involved in the development of the tono-
topic organization during the critical period (Takesian 
et al. 2018). Only 5HT3aR non-LTS neurons are con-
nected to L4 PV cells, and such events involve nicotinic 
receptors recruitment. Thus, these neurons likely are 
non-LTS canopy cells, α7-nAChR-expressing neurons, 
or reelin-expressing neurons (Lee et al. 2010; Rudy et al. 
2011; Schuman et al. 2019). Overall, the developmental 
changes in different subtypes of inhibitory interneurons 
may represent their distinct functional roles in circuit 
maturation during early postnatal development.

THE ROLE OF SENSORY EXPERIENCE 
AND DEAFNESS ON THALAMIC 
AND CORTICAL DEVELOPMENT

Neural activity within and among auditory fields is piv-
otal for shaping brain circuits, and much work has been 
focused to elucidate the effect of early sensory experi-
ence, or the lack thereof, on cortical processing. However, 
neural activity is present in the auditory system even 
before the onset of sensory transduction in the cochlea 
as the cochlea itself produces spontaneous activity pat-
terns that propagate to ACtx (Tritsch et al. 2007; Babola 

et al. 2018). The role of early spontaneous activity on 
ACtx is unknown, but altering this activity disrupts the 
proper establishment of topographic projections in the 
auditory brainstem (Kandler et al. 2009), suggesting that 
it may play a key role in sculpting nascent auditory corti-
cal circuits.

Timing Matters: The Effect of Sensory 
Deprivations on Thalamic Inputs to A1

Congenitally deaf cats have been a useful model to study 
the effects of auditory deprivation (Ryugo and Menotti-
Raymond 2012). Experiments in congenitally deaf cats 
have shown that experience is important for the devel-
opment of normal feedforward and feedback circuitry 
among different auditory cortical areas (Fig. 5). Cat ACtx 
can be divided into A1, A2, AAF, posterior auditory field 
(PAF), and dorsal zone (DZ) (different species may have 
different subregions; see Hackett (2011, 2015)). In con-
genitally deaf cats, a decrease in cortical thickness due to 
the thinning of layers 4–6 is observed in different audi-
tory cortical regions (Berger et al. 2017). Meanwhile, in 
early- and late-onset deafness (induced by ototoxicity), the 
lamina cytoarchitecture and the total volume for auditory 
cortical regions are no different than those in hearing 
cats. The fractional volume, however, shows a decrease in 
A1 but an increase in A2 in both deafness models, indi-
cating remodeling of auditory cortical areas (Wong et al. 
2014). The differences between the studies are likely due 
to the different initiation of the auditory sensory depriva-
tion and potential effects on spontaneous cochlear activity 
(Fig. 5). Anatomical studies with tracers in the different 
deafness models support this idea (Barone et al. 2013; 
Chabot et al. 2015; Butler et al. 2016, 2017; Kok and 

Fig. 5  The connection among thalamus, primary and secondary 
auditory areas in cat. a  In normal hearing, the primary auditory 
cortex (A1) received inputs from all three divisions of the medial 
geniculate body (MGB), as well as from other secondary auditory 
fields. b In congenital deafness, an increase of ectopic connec-
tions can be detected (black arrow), while a decline of intra-areal 
connectivity is present (dotted red line). c, d Early-onset deafness, 
defined as when the hearing was eliminated near ear canal open-
ing during the critical period, and late-onset deafness defined as the 

elimination of auditory stimuli after critical period showed differ-
ent changes in the connections among the thalamus, A1 and other 
higher-order of auditory fields. a–d Gray: normal connection; Black 
arrow: increased connection; Red dotted arrow: decreased connec-
tion; Bolder arrow: larger changes compared with other conditions. 
MGBv, ventral division of MGB; MGBd, dorsal division of MGB; 
MGBm, medial division of MGB; A2, secondary auditory cortex; 
AAF, anterior auditory field; PAF, posterior auditory field; DZ, dor-
sal zone
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Lomber 2017). In cat models of congenital deafness, the 
predominant thalamocortical projections from the MGBv 
to A1 remain unaltered (Fig. 5b). In contrast, in animals 
with both early-onset (around ear opening) and late-onset 
(> 4 postnatal months), deafness experiences a decrease 
in connectivity between the MGBv and A1, with more 
severe deficits in early-onset deafness (Barone et al. 2013; 
Chabot et al. 2015). Early- and late-onset deafness also 
differentially alters the projections from MGBd to A1 
(Fig. 5c, d). After early-onset deafness, there are more 
projections, while no changes occur in late-onset deafness 
when compared with normal cats (Chabot et al. 2015). 
A study in gerbil showed that with auditory deprivation 
starting near ear opening, the normal pruning in thalamic 
projection from MGBd to A1 during normal development 

does not take place (Henschke et al. 2018). Do these 
TCAs from MGBd project to the thalamorecipient layers 
to replace the normal MGBv and L4 thalamocortical cir-
cuit? Similarly, do corticothalamic neurons in L6 project 
to MGBv to maintain the normal feedback connections 
or project ectopically to another target?

These studies suggest that there are different phases in 
the development of the thalamocortical pathway in the 
auditory system. In the first phase, the lemniscal connec-
tivity between the thalamus and cortex can develop even 
without a functional cochlea, possibly via spontaneous 
activity. When sensory deprivation occurs near ear open-
ing, MGBv inputs decline while MGBm and MGBd inputs 
to A1 increase (Fig. 5). This supports the idea that during 
a very early period, sensory input is crucial in shaping 

TABLE 1

Summary of early cortical development and sensory stimulation among different species

The timing of subplate (SP) generation and neurogenesis in different sensory cortices across different species, d days, E embry-
onic days, GW gestational week

Species Mouse Rat Ferret Cat Monkey Human gestation

Gestation 19 d 21 d 41 d 65 d 167 d 40 GW

SP generation

  General E11 (Price et al. 
1997)

E12 (Al-Ghoul 
and Miller 
1989)

5–6 GW (Kostovic 
and Rakic 1980)

  Auditory 
cortex

E12 (Zeng et al. 
2009)

E14–E15 (Bayer 
and Altman 
1991)

12 
GW ~ (Krmpotić-
nemanić et al. 
1979)

  Visual cortex E12 (Wood et al. 
1992)

E14–E15 (Bayer 
and Altman 
1991)

E20–E26 (Noctor 
et al. 1997)

E24–E30 
(Luskin 
and 
Shatz 
1985)

E43–E45 (Kos-
tovic and Rakic 
1980)

13 GW ~ (Kostovic 
and Rakic 1990)

  Somatosen-
sory cortex

E14–E15 (Bayer 
and Altman 
1991)

E22–E26 (Noctor 
et al. 1997)

E38–E43 (Kos-
tovic and Rakic 
1980)

12 GW ~ (Kostovic 
and Rakic 1990)

Neurogenesis

  General E11 (Levers et al. 
2001)

E12 (Valverde 
et al. 1995)

E40 ~ (Duque 
et al. 2016)

8–9 GW (Kostovic 
and Rakic 1990; 
Bayatti et al. 
2008

  Auditory 
cortex

E13–E20 (Bayer 
and Altman 
1991)

  Visual cortex E13.5–E18.5 
(Polleux et al. 
1997)

E14–E21 (Bayer 
and Altman 
1991)

E28–P10 (Noctor 
et al. 1997)

E31–E57 
(Luskin 
and 
Shatz 
1985)

E45–E102 (Rakic 
1974)

  Somatosen-
sory cortex

E12.5–E18.5 
(Polleux et al. 
1997)

E13–E18 (Bayer 
and Altman 
1991)

E28–P2 (Noctor 
et al. 1997)
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the development of both lemniscal and non-lemniscal 
thalamocortical projections to A1. Because MGBd inner-
vates higher-order ACtx, these results suggest that early-
onset deafness leaves A1 more similar to secondary areas 
and that hearing (or at least peripheral function) might be 
necessary for A1 to acquire the hallmarks of a primary 
sensory area. These profound changes are important to 
consider when designing restorative therapies. Besides 
altering thalamocortical projections, deafness alters con-
nections between higher-order areas to A1 (Barone et al. 
2013; Chabot et al. 2015; Butler et al. 2016, 2017) (Fig. 5) 
and connections from non-auditory areas to auditory fields.

Sensory experience continues to maintain and shape 
the thalamocortical circuit, even after the axonal projec-
tions are formed and are mature, as shown in the late-
onset deafness animals where a shift of connectivity from 
MGBv to MGBm (to A1) occurs (Chabot et al. 2015). 
Since MGBm processes polysensory information (Ryugo 
and Weinberger 1978; Winer and Morest 1983), the shift 
may indicate that other sensory information is being sent 
to A1.

Studies from temporary ear plugging or cochlear abla-
tions near ear opening in rodents revealed that hear-
ing loss alters inhibitory synaptic strength and leads to 
an increase in excitatory synaptic response (Kotak et al. 
2005, 2008; Caras and Sanes 2015; Mowery et al. 2015, 
2019). Studies in gerbils have demonstrated that audi-
tory deprivation near ear opening led to a reduction of 
thalamic input on the FS neurons and disinhibition of 
pyramidal neurons (Takesian et al. 2010, 2013). Mean-
while, the developmental decrease of inhibition by LTS 
neurons was prevented by the loss of auditory input 
(Takesian et al. 2013). Hearing experience is also crucial 
in maintaining the local circuitry to A1 L2/3 neurons 
(Levy et al. 2019).

All manipulations discussed above were timed accord-
ing to ear opening and the onset of thalamic transmission 
to L4. However, as detailed above, thalamic afferents 
innervate subplate neurons before L4 (Zhao et al. 2009). 
Abolishing cochlear mechanotransduction or raising mice 
with sounds during the early postnatal period before ear 
opening can change subplate circuits (Meng et al. 2021). 
This indicates that the auditory environment, even at the 
earliest ages, can shape auditory cortical circuits. Thus, 
manipulating cochlear function or auditory experience 
before ear opening or before the onset of the “classic” 
critical period can alter the development of cortical audi-
tory circuits (Meng et al. 2021).

Effects of the Auditory Environment During Early 
Development on Auditory Processing

The studies in deaf cats demonstrated that hearing 
experience is crucial in shaping the axonal trajectories 
to their proper targets. However, these models of deaf-
ness do not identify when experience influences specific 

processes and also do not allow examination of how an 
altered circuit would process sounds. For such studies, 
sound exposure paradigms or temporary ear plugging in 
the postnatal period have been used. For example, early 
studies showed that rearing rodents with clicks or 2-tone 
sound stimuli from P8 could alter frequency tuning in the 
inferior colliculus (Sanes and Constantine-Paton 1985). 
Similarly, raising rodents in the presence of noise from 
just before ear opening distorts the tonotopic map of 
A1 and results in decreased frequency selectivity (Zhang 
et al. 2002). Moreover, exposure to single tones before 
ear opening enhances the representation of such a tone 
later (Zhang et al. 2001). Such exposures are effective 
during an early critical period lasting less than a week 
following ear opening.

The anatomical and functional circuit changes after 
these types of manipulations are unknown but presum-
ably involve changes in thalamocortical and intracortical  
circuits. The current challenge is to link the experience of  
specific sensory stimuli with the resulting circuit changes.  
Although this is somewhat a chicken and egg problem, one  
effect of at least very early sound experience is sensory 
evoked decorrelation of cortical activity since abolishment 
of mechanotransduction results in increased correlations 
of large-scale cortical spontaneous activity and increased 
intracortical connectivity (Meng et al. 2021). This is con-
sistent with the observed developmental decorrelation 
observed in vivo and on the circuit level (Liang et al. 
2019; Meng et al. 2020a).

Changes in neural responses and sensory represen-
tation should lead to perceptual effects. While tone 
exposure increases tone representation, behavioral per-
formance at the exposure frequency is impaired (Han 
et al. 2007). Conversely, temporary ear plugging during 
the developmental critical period results in disruption 
of the neuronal properties, impairment in perceptual 
learning skill (i.e., amplitude modulation detection task), 
which could be partially/fully recovered if the exposure 
of sound happens before the closure of the critical period 
(Sanes and Bao 2009; Sanes and Kotak 2011; Mowery 
et al. 2015). Inducing inhibition through pharmacologi-
cal manipulations during the critical period manages to 
preserve thalamic properties and rescuing the behavioral 
impairments (Kotak et al. 2013; Mowery et al. 2019).

CROSS‑MODAL PLASTICITY

Sensory systems do not work in isolation and sensory 
loss in one system is accompanied by changes in the 
remaining sensory systems. Multisensory integration in 
higher-order areas is well established (Schroeder et al. 
2003; Cappe et al. 2009; Meijer et al. 2019). Cross-modal 
interactions can also be found among unimodal sensory 
areas. Animal studies have demonstrated interconnectiv-
ity among the primary sensory cortices; S1 has reciprocal 
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connectivity with A1 and V1, respectively, and A1 has 
projections to V1 but not vice versa (Budinger et al. 2006; 
Henschke et al. 2015; Massé et al. 2017). These interac-
tions among the sensory cortical areas are sensitive to 
early experience. Early sensory loss can lead to cross-
modal plasticity. In blind individuals, the visual cortex 
was active during somatosensory and auditory processing 
(Sadato et al. 1996; Cohen et al. 1997; Weeks et al. 2000; 
Burton et al. 2002a, b; Renier et al. 2010). In addition, 
subjects/people with early-onset blindness show stronger 
responses and enhanced perception of auditory stimuli, 
higher sensitivity to pitch discrimination, and refined fre-
quency tuning (Gougoux et al. 2004; Wan et al. 2010; 
Huber et al. 2019). Similarly, in deaf humans, activation 
of the auditory area can be detected with functional MRI 
(fMRI) when provided with visual stimuli (Finney et al. 
2001) and animal studies show that enucleation in early 
development alters auditory responses of neurons in V1 
and A1 (Korte and Rauschecker 1993; Rauschecker and 
Korte 1993; Izraeli et al. 2002; Piché et al. 2007; Chabot 
et al. 2007).

Early loss of sensory inputs leads not only to changes 
in both thalamocortical and intracortical circuits to the 
deprived but also to the spared sensory areas (Henschke 
et al. 2018). In congenitally deaf cats, the cross-modal 
reorganization from visual and somatosensory cortices to 
A1 is absent, but ectopic projections could be detected to 
DZ and PAF (Kral et al. 2003; Barone et al. 2013; Butler 
et al. 2017). Meanwhile, the thalamic inputs from the pos-
terior nucleus to A1 and from the suprageniculate nucleus 
to A1 and DZ are increased. The presence of ectopic pro-
jections from the visual area to DZ and PAF is crucial in 
processing visual stimuli in deaf animals, where the former 
is sensitive to motion detection and the latter processes 
visual peripheral localization (Lomber et al. 2010; Barone 
et al. 2013; Butler et al. 2017). This is consistent with 
observation in humans, as deaf people appear to have a 
more sensitive vision, especially in visual motion detection 
and attention (see review: Bavelier et al. 2006). Moreo-
ver, inputs from V1 (receiving visual stimuli) to A1 have 
been suggested to influence the auditory critical period 
(Mowery et al. 2016). These sensory deprivation studies 
demonstrated a period during early development when 
the corticocortical connectivity between different sensory 
modalities is sensitive to modification by sensory experi-
ence. Moreover, the differences in timing in the develop-
ment of the different cortical regions raise a question of 
how cross-modal integration is achieved at young ages and 
how signaling from more mature areas possibly influences 
the developmental trajectory of less mature areas.

However, cross-modal changes are not restricted to the 
early developmental period. Temporary visual depriva-
tions after the critical period can lead to enhanced audi-
tory responses in A1 (Petrus et al. 2014; Solarana et al. 
2019), increased thalamocortical (Petrus et al. 2014), and 
refined intracortical circuits (Petrus et al. 2015; Meng 

et al. 2015, 2017a). These suggest that the capacity of 
ACtx to be plastic is not abolished after the critical period 
but that the conditions to engage intrinsic plasticity mech-
anism might have changed.

CLINICAL CONSIDERATIONS 
BEYOND DEAFNESS

The developing ACtx is highly plastic because of its 
longer developmental period, leading to a higher risk 
for re-organizing abnormally due to intrinsic or extrinsic 
causes. Premature birth is associated with auditory pro-
cessing disorders (Amin et al. 2015; Durante et al. 2018; 
Jones and Weaver 2020) including deficits in speech dis-
crimination and language learning (Therien et al. 2004; 
Durante et al. 2018; Bartha-Doering et al. 2019) suggest-
ing an altered developmental trajectory of the auditory 
system. Moreover, neurological disorders such as autism 
spectrum disorders (ASD) or schizophrenia is accompa-
nied by deficits of cortical processing in multiple cortical 
regions including ACtx (Javitt 2009; Marco et al. 2011). 
Individuals with either ASD or schizophrenia demon-
strate a higher risk of having auditory abnormalities  
(Toga et al. 2006; Hugdahl et al. 2008; O’Connor 2012).  
Postmortem schizophrenic brains exhibit a reduction in 
L3 pyramidal somal volume and dendritic spine den-
sity in ACtx, indicating possible abnormalities in feed-
forward circuitry from primary to higher-order of the 
auditory system (Sweet et al. 2003, 2004, 2009). The 
brains of ASD individuals show wider minicolumns in A1 
and higher-order association areas, suggesting a possible 
alteration in local networking (McKavanagh et al. 2015).

One of the key players during development is the sub-
plate and the transient circuits they form (Molnár et al. 
2020). In the preterm infants, auditory stimuli evoke par-
ticular EEG signals (“delta-brushes”) which are unique to 
fetal development (Chipaux et al. 2013) and might reflect 
subplate contributions (Molnár et al. 2020). Functional stud-
ies on subplate integrity in human development are needed 
as these circuits are vulnerable and disrupted in disorders, 
e.g., in ASD models or following hypoxia (Pogledic et al. 
2014; Hoerder-Suabedissen and Molnár 2015; McClendon 
et al. 2017; Nagode et al. 2017; Hadders-Algra 2018; Sheikh 
et al. 2019; Molnár et al. 2020).

SUMMARY 

In the past few decades, multiple studies in embry-
onic and postnatal period have established the basic 
understanding of neurogenesis, axonal growth, synapse 
formation in the neocortex, and how such processes are 
affected by intrinsic and extrinsic factors at different 
timing during development. In the ACtx, the neuro-
genesis for cortical excitatory and inhibitory neurons 
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(~ E10.5 in rodents), the arrival of TCAs in the subplate 
(~ E13.5 in rodents), and the completion of migration 
of excitatory neurons into respective lamina (~ P5 in 
rodents) happen earlier than the VCtx (Fig. 2). How-
ever, TCAs arrive in L4 later in the ACtx than the 
VCtx, thus the transient period for SP connection with 
TCAs might be longer in the ACtx than the VCtx 
(Fig. 3). Moreover, the refinement process of dendrites 
and spines in ACtx is longer than in other cortical 
areas. Thus, the basic understanding contributed by 
studies in other sensory systems has to be carefully 
interpreted. Furthermore, the primary ACtx shows 
some distinct morphological features (i.e., L3/4 as 
thalamocortical recipient layers, lack of spiny stellate 
cells in L4); hence, some of the functional properties as 
well as the circuitry and developmental progression in 
the auditory system may differ from other sensory areas. 
Many anatomical and functional studies have estab-
lished a basic understanding of the connectivity between 
the thalamus, primary and secondary auditory cortical 
areas in the adult, and how these are altered by chang-
ing sensory experience. However, many open questions 
remain as we do not have a complete picture of the 
changing circuits across and within ACtx regions. The 
increasing availability of tools to track and manipulate 
specific cell classes should aid progress in this direction. 
Below, we have listed a few important questions worth 
exploring to elucidate the development of auditory pro-
cessing and to provide insights into auditory-related 
developmental disorders.

OUTLOOK/OPEN QUESTIONS

1) How do multiple sensory cortical areas synchronize 
during development when the temporal patterns of 
their cortical maturation and critical periods are dif-
ferent?

2) What is the mechanism controlling the timing of the 
TCAs innervation from SP to L4 in ACtx?

3) What are the developmental differences between 
first-order and higher-order auditory areas and their 
respective thalamocortical circuits?

4) What is the underlying mechanism behind the small 
number/absence of spiny stellate neurons in L4 of A1?

5) How is experience of specific sensory stimuli linked 
to circuit changes?

6) How can circuit changes after early hearing loss be 
reversed?

7) How is cross-modal integration achieved at young 
ages and do more mature areas influence the devel-
opmental trajectory of less mature areas?
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