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Novel AI driven approach to classify 
infant motor functions
Simon Reich1,9, Dajie Zhang1,2,3,9, Tomas Kulvicius1,4, Sven Bölte5, Karin Nielsen‑Saines6, 
Florian B. Pokorny2,7, Robert Peharz8, Luise Poustka1,3, Florentin Wörgötter3,4, 
Christa Einspieler2 & Peter B. Marschik1,2,3,5*

The past decade has evinced a boom of computer-based approaches to aid movement assessment 
in early infancy. Increasing interests have been dedicated to develop AI driven approaches to 
complement the classic Prechtl general movements assessment (GMA). This study proposes a novel 
machine learning algorithm to detect an age-specific movement pattern, the fidgety movements 
(FMs), in a prospectively collected sample of typically developing infants. Participants were recorded 
using a passive, single camera RGB video stream. The dataset of 2800 five-second snippets was 
annotated by two well-trained and experienced GMA assessors, with excellent inter- and intra-rater 
reliabilities. Using OpenPose, the infant full pose was recovered from the video stream in the form of 
a 25-points skeleton. This skeleton was used as input vector for a shallow multilayer neural network 
(SMNN). An ablation study was performed to justify the network’s architecture and hyperparameters. 
We show for the first time that the SMNN is sufficient to discriminate fidgety from non-fidgety 
movements in a sample of age-specific typical movements with a classification accuracy of 88%. 
The computer-based solutions will complement original GMA to consistently perform accurate and 
efficient screening and diagnosis that may become universally accessible in daily clinical practice in the 
future.

Research on early motor functions has a long history. After the monumental detachment from the reflex-focused 
approach, Heinz Prechtl pioneered a novel route some 30 years ago to systematically investigate spontane-
ous movements (i.e., free from external stimuli) in preterm and term infants1,2. The investigation indicated 
a qualitative deviation, but not a quantitative difference in the movement patterns pointing to neurological 
dysfunctions3–6. This was the starting point for the development of the Prechtl general movement assessment 
(GMA).

GMA became internationally known in 1997 with the first publication on this topic by Prechtl et al.7. It is a 
clinical reasoning approach based on visual gestalt perception of normal vs. abnormal infant movements in the 
entire body, hence the term general movements (GMs). Initially a promising new method for evaluating the 
integrity of the young nervous system via the assessment of an overt behavior, GMA has become one of the most 
widely-used and reliable tools for the detection of cerebral palsy during early infancy8–11.

From the 9 th week postmenstrual age to approximately 20 weeks of postterm age, fetuses/infants show a 
distinct repertoire of endogenously generated (i.e. independent of a sensory input) movement patterns such as 
startles, GMs, breathing movements, yawning, and sucking12,13. Normal GMs are variable sequences of neck, 
trunk, leg, and arm movements, with gradual beginnings and endings and of changing intensity, force, and 
speed1. Before term age, GMs are referred to as fetal or preterm GMs, whereas movements observed between term 
age and approximately 6–8 weeks of postterm age are termed writhing movements (WMs). Normal WMs can 
last between seconds and several minutes. They predict a normal neurodevelopmental outcome with a negative 
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likelihood ratio (LR) of 0.0414. During the WMs period, the abnormal GM patterns include poor repertoire (PR), 
with LR+ = 0.61; cramped-synchronized (CR), with LR+ = 45; or the very rare chaotic patterns14.

WMs gradually disappear during the second month postterm, and a new pattern of GMs, the Fidgety Move-
ments (FMs), emerges. Normal FMs are small amplitude movements of moderate speed with variable acceleration 
of the neck, trunk and limbs in all directions. They are continually observable during active wakefulness, yet 
are disrupted during episodes of fussing and crying. Normal FMs are predictive of normal neurodevelopment 
(LR− = 0.05)14. With a sensitivity of 98% and specificity of 91%11, the absence of FMs at 3–5 months of postterm 
age is the best predictor of later development of neurological impairments (e.g., cerebral palsy; LR+ > 5114), 
exceeding the predictive power of cranial ultrasound and other neurological examinations, and is comparable to 
brain magnetic resonance imaging8,11. FMs gradually fade out around 20 weeks of postterm age when voluntary 
movement patterns become predominant15,16.

General movements are generated by the central pattern generators (CPGs), a neural network, which is most 
likely located in the brainstem. Variability in the motor output is achieved by supraspinal projection, inhibition, 
and, most importantly, modulation of CPG activity17,18. If the CPGs exhibit reduced modulation, less variable, 
i.e. abnormal, movements are shown, indicating fetal or neonatal compromise15,19.

Standard GMA requires observation of merely 2–5 min of an infant’s spontaneous movements by trained 
assessors15. While brain-imaging and EEG decipher neurological structure and functions at the analytical level, 
GMA evaluates the functional brain as a whole. Compared to other tools (e.g., MRI/DTI, EEG, fNIRS), GMA is 
non-intrusive and easy to apply, while being highly informative and valid. As an efficient and reliable diagnostic 
tool, GMA is particularly suitable for low resource settings. In addition to its application in infants with perinatal 
brain injury, GMA has been widely applied to assess young infants with various neurodevelopmental and genetic 
disorders, as well as congenital infections20–24.

Although gestalt perception is a powerful tool for analyzing phenomena with complex and changeable, 
albeit expected characteristics, it is contingent on the observer’s skills and experiences. Like all man-powered 
assessments, GMA is vulnerable to human factors (e.g., fatigue and other physical influences, limited skills or 
experience, biases and subjectivity) and environmental influences. Although the reliability of GMA has repeat-
edly proved high for well-trained assessors, with inter-rater agreement ranging between 89 and 98%14,25–27, this 
degree of excellence does require specific high-quality training, with continuous practice and re-calibration of 
the assessors. Despite that GMA is urgently needed as a highly efficient and valid tool for the young population 
as well as for the society, the cumulative cost and effort required for maintaining adequate standard practices 
among GMA assessors can add up and become quite challenging. As such, GMA has yet not been scaled up 
widely enough as ought to be (e.g., in worldwide routine medical procedures and well-child care). As automated 
machine learning (ML) approaches can avoid the influence of unfavorable human and environmental factors, 
they might have the potential to augment the merits of GMA and boost its application.

As a consequence, the last decade has evinced a boom of computer-based approaches to complement classic 
GMA28–30. Leveraging ML approaches to track infants’ movements, researchers have applied different types of 
sensors either by attaching them directly on the infant’s skin or by placing them into the wearables. For example, 
in 2008, an electromagnetic tracker system was introduced for cerebral palsy detection, where a marker was 
placed on each of the four extremities and their positions in space were measured31,32. A sensitivity of 90% and 
a specificity of 96% had been reported33.

In recent years, more promising, wireless measurement devices were presented to the scientific community. 
For example, a so-called “chest unit” has been invented to be placed directly on the skin34. It consists of a 3 degrees 
of freedom (DoF) accelerometer, a thermometer, an ECG system, and a pulse oximetry module. Similarly, a 
“smart jumpsuit” featuring 4 IMU sensors with 6 DoF was presented35. Based on these sensors, basic posture 
(accuracy of 95.97%) and movement recognition (accuracy of 76.73%) was performed. In another work, 2 IMUs 
with 6 DoF were placed on the infant’s feet36. These two sensors were reported to be able to differentiate typical 
from atypical movements36.

Although these implementations are able to report accurate localizations of the (x, y, z)-position of the IMUs, 
the sensors and the wearables might interfere with the infant’s spontaneous movements39. Moreover, full body 
tracking is impossible with such methods. In recent years, advancements in camera technology, as well as in 
computer vision have enabled body part tracking via 2D RGB cameras. This fully non-intrusive approach (i.e. no 
marker on the infant’s body) allows tracking the infant’s free and spontaneous movements as required by GMA. 
More importantly, not only the position of the single points, i.e. the IMUs, but also the position of all joints of 
the infant can be captured.

These non-intrusive methods can be divided into two approaches. First, only certain body parts or features 
are tracked and classification is based on their motion patterns. Second, a full pose of the infant in form of a 
skeleton model is recovered and classification is based on the skeleton’s movement characteristics.

For the first approach, numerous algorithms exist and show satisfying results. For example, by counting pix-
els of moving body parts and computing their mean and standard deviation, cerebral palsy was reported to be 
detected with a sensitivity of 85% and a specificity of 71%40. A more refined approach of the same technique used 
logistic regression for automated classification of fidgety movements41. In a more advanced method, the infant’s 
body was segmented into pixel clusters, which were tracked, and an accuracy of 87% was achieved42. Similarly, 
one can track the legs and feet of infants and use these features for classification. For different movement types, 
a precision ranging 85–96% and recall ranging 88–94% were obtained43. In 2020, deep learning methods have 
been introduced into the automated GMA field and showed a classification accuracy of 84.52% for fidgety move-
ments on low birth weight participants39.

For the second approach, targeting pose estimation, two methods currently exist as the de-facto standard. 
First, DeepLabCut allows for markerless tracking of predefined body points44. It contains a pre-trained neural 
network where the user manually defines and labels tracking points on sample images, which are then used for 
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transfer learning. As a result, DeepLabCut can track unknown points in previously unseen data, for example 
data from animals. Similarly, OpenPose is also a deep learning-based approach. Different from DeebLabCut, 
which uses human annotations for tracking, OpenPose was being trained on a human skeleton model45. For a 
given RGB image, the network outputs (x, y)-positions of skeleton points. In our current work, OpenPose is used 
since it does not require manual labeling of body parts that need to be tracked. An example image can be seen 
in Fig. 3. Both, DeepLabCut and OpenPose, work on 2D RGB image streams from single or multiple cameras. 
Current state-of-the-art methods use RGB cameras for full pose recovery28. Other approaches utilize RGB-D 
depth sensors28,46,47.

In this paper, we present a method for automated recognition of fidgety movements with a new feature vec-
tor. We utilize OpenPose45 for full body tracking from single 2D RGB images, from which a feature vector is 
constructed. No multi-camera setup, depth perception sensor, or motion capture system is required. As a new 
feature vector for classification, a normalized skeleton is used, i.e. raw (x,  y)-positions of 25 extracted skeleton 
points (see Fig. 3). These features can be easily interpreted by humans. Classification is performed using a shallow 
multilayer neural network (SMNN). The choice of a shallow network architecture was determined by the fact 
that, in general, shallow network architectures perform well for relatively small input vectors and for relatively 
small amounts of training data. Usually, deep neural network architectures which directly work on images, which 
makes the input space huge (e.g. image of 200 × 200 corresponds to 40,000 inputs), require a lot of training 
samples (in the order of 100,000 and more). In this work, the dataset is rather small, but, as we do not use raw 
images as input, the feature vector is also quite small compared to images, i.e., it consists of coordinates (x, y) of 25 
skeleton points times number of frames (around 50). Another advantage of shallow network architectures are the 
fast training and inference times. In Fig. 5 it is shown, that our networks can be trained within less than 10 min 
and perform inference in 20 ms, whereas training very deep learning architectures usually takes days or weeks.

Importantly, while previous ML approaches mainly focused on differentiating typical from atypical GMs, 
here we present a new perspective of research aiming at detecting distinguished age-specific typical movement 
patterns. In particular, we aim at an automated detection and classification of presence vs. absence of FMs in 
typically developing young infants.

This paper is structured as follows. In the next section, we first introduce the dataset and the participants, 
followed by the presentation of our novel framework. Afterwards, our results are presented and discussed from 
both the technological and clinical perspectives.

Approach
Data acquisition was conducted at iDN’s BRAINtegrity lab at the Medical University of Graz (Austria). Data 
analyses were performed at the Systemic Ethology and Development Research Unit, Department of Child and 
Adolescent Psychiatry and Psychotherapy at the University Medical Center Göttingen, Germany. The algorithm’s 
pipeline is shown in Fig. 1, and consists of four steps: Data recording using a single RGB camera, full body track-
ing using OpenPose45, feature extraction, and classification using an SMNN. Details on the movement record-
ings are presented in the next section. Afterwards, the full body tracking using a skeleton model is explained. 
The skeleton points are then used as features (inputs) for the neural network to perform classification, which is 
explained in the last subsection of the “Approach” section.

Participants.  From 2015 to 2017, 51 newborns (26 females, 25 males) from Graz and its surroundings were 
recruited for our prospective longitudinal study “Early Human Development: Pilot study on the 3-Month-Trans-
formation”48 on neuromotor, visual, and verbal development. We included infants according to the following cri-
teria: uneventful pregnancy, uneventful delivery at term age (> 37 weeks gestation), singleton birth, appropriate 
birth weight, uneventful neonatal period, inconspicuous hearing and visual development. Besides, no mother of 
the infants had either current or history of alcohol or substance abuse (see Table 1 for participants’ information). 
Infants were brought to our lab biweekly from 4 to 16 weeks postterm. Postterm ages for the seven consecutive 
sessions were: T1 28± 2 days , T2 42± 2 days , T3 56± 2 days , T4 70± 2 days , T5 84± 2 days , T6 98± 2 days , 
and T7 112± 2 days.

One infant was excluded from the current analysis due to a diagnosed medical condition at age 3 years. 
Another five infants were excluded due to incompleteness of recordings within the required age intervals (please 
see below). The final sample size was thus 45. None of the 45 participants was reported to have any developmental 
impairment by the time of data analysis.
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P (x, y), ...,25
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P (x, y), ...,1
Nstack
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Figure 1.   Overview of the algorithm’s process pipeline.
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The study was approved by the Institutional Review Board of the Medical University of Graz, Austria (27-
476ex14/15) and all experiments were performed in accordance with the approved guidelines and regulations. 
Parents were informed about all experimental procedures and the purpose of the study and gave their written 
informed consent for participation and publication of results.

Materials and dataset.  The assessment of the developmental trajectory of GMs, from writhing to fidgety 
movements15, was part of our study protocol with the afore-mentioned seven consecutive repeated-measure 
sessions48. Procedures of standard recording of GMs were reported elsewhere48. For this study, we used data 
from T1 as “pre-fidgety period” and T5-7 as “fidgety period”15,16.

All accessible videos (i.e., infants were awake and active, without pacifier, overall not fussy or crying) during 
recording of T1 (N = 838) and T5-7 (N = 946) are included. For training of the SMNN, each video was first cut 
into brief chunks. During the piloting period, we determined the shortest length of each video snippet to be 5 s, 
a reasonable duration of unit for machine learning, as well as a minimum length of video for human assessors 
feeling confident to judge whether the fidgety movement is present (FM+) or absent (FM−) on each snippet, 
providing a dichotomous classifier for the machine learning process.

Out of the total available 19,451 snippets, 2800 (1400 from T1, the pre-fidgety period, and the rest from the 
T5-7, the fidgety period) were randomly selected for annotation by human assessors. Two experienced GMA 
assessors (DZ and PBM), blind of the ages of the infants, evaluated all the randomly ordered 2800 five-second 
snippets separately, labeling each snippet as “FM+”, “FM−”, or “not assessable” (i.e., the infant during the specific 
5 s was: fussy/crying, drowsy, yawning, refluxing, over-excited, self-soothing, or distracted by the environment, 
all of which distort infants’ movement pattern and shall not be assessed for GMA15). The inter-rater agreement of 
the two assessors was excellent (Cohen’s kappa κ = 0.97 , for classes FM+ and FM−). The intra-assessor reliability 
by re-rating 280 randomly-chosen snippets (i.e. 10% of the sample) was Cohen’s kappa κ = 0.85 for assessor 
1, and κ = 0.95 for assessor 2 for the classes FM+ and FM−. Snippets with discrepant labeling by the assessors 
were excluded ( N = 316 ). The snippets labeled as “not assessable” ( N = 700 ; 417 from the pre-fidgety period, 
and 283 the fidgety period) by either assessor were also excluded from further analysis. A remaining total of 
1784 snippets were labeled identically by both assessors: either FM+ ( N = 956 , of which 19 came from T1, the 
pre-fidgety period), or FM− ( N = 828 , of which 819 came from T1).

These 1784 snippets were used for the machine learning procedure. Using a genetic algorithm 
implementation49 of the knapsack problem50, the snippets were separated into validation (about 25%), training 
(about 50%), and testing sets (about 25%), so that snippets of each participant appear in only one of the three 
sets. This way we generated one validation set for feature and learning parameter tuning, whereas training and 
testing sets were generated fives times to perform cross-validation for evaluation of different network architec-
tures. An overview of the datasets is presented in Table 2. For the current study, we identify participants by their 
IDs (1–51). As mentioned above, six of the participants (ID 2, 6, 11, 13, 24, 25) were excluded.

Body tracking and feature extraction.  For body tracking, the OpenPose algorithm was used45. Open-
Pose is a deep learning method, which extracts a 25-point skeleton from image frames. Each skeleton point 
consists of a 2 dimensional position (x, y), leading to a 50-point vector per frame. To ensure that the learning 
algorithm does not take the infant’s size into account, the skeleton is scaled to 1. If joints are not correctly identi-
fied by OpenPose, usually because of occlusions, values are filled with 0. One skeleton sample is shown in Fig. 3.

An overview of the feature extraction process is displayed in Fig. 2. One video snippet has a length of 5 s 
with a sampling rate of 50 fps, resulting in a total of 250 frames. One input vector for the SMNN is constructed 
of multiple, stacked frames. The number of stacked frames Nstack is a hyperparameter of the feature vector and 
was optimized on the validation set. For example, Nstack = 52 will result in an input vector sized 50× 52 = 2600 
values. This vector corresponds to 1.04 s of the video snippet. The next input vector is generated using a sliding 
window approach. The offset between the vectors is a second hyperparameter, Nslide , which was also optimized 
on the validation set.

Table 1.   Detailed information of the N = 45 participants. For participant with ID 28 no APGAR scores could 
be obtained. The APGAR score37 was developed to evaluate a newborn’s health condition and the potential 
need of neonatal care based on five categories (Appearance, Pulse, Grimace, Activity, Respiration). A score ≥ 7 
is considered normal, scores ranging between 4 and 6 are classified as fairly low, and scores ≤ 3 as critically 
low37,38. The APGAR assessment is routinely applied three times, i.e. 1, 5, and 10 min after birth.

Mean Standard deviation Min Max

Percentiles

25 50 75

Gestational age (weeks) 39.0 1.3 35 41 38 39 40

Birth weight (g) 3440.9 382.1 2500 4416 3300 3448 3680

Birth length (cm) 51.5 2.1 46 56 50 51 53

APGAR score

1 min 8.9 0.8 4 10

5 min 9.9 0.6 6 10

10 min 10.0 0.2 9 10



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9888  | https://doi.org/10.1038/s41598-021-89347-5

www.nature.com/scientificreports/

Table 2.   Description of dataset splitting. The validation set was used for hyperparameter tuning whereas sets 
1–5 were used for cross-validation and evaluation of network architectures.

Number of snippets

Participant IDsFM+ FM− Total

Total 956 (53.6%) 828 (46.4%) 1784

Validation 237 202 439 (24.6%) 7, 10, 14, 15, 17, 18, 34, 44, 47, 50, 51

Set 1

Training 471 414 885 (49.6%) 1, 5, 8, 9, 12, 16, 19, 20, 21, 22, 23, 27, 28, 29, 30, 33, 36, 37, 38, 39, 40, 42, 43, 45, 
48, 49

Testing 248 212 460 (25.8%) 3, 4, 26, 31, 32, 35, 41, 46

Set 2

Training 482 412 905 (50.7%) 1, 4, 8, 16, 19, 21, 23, 26, 28, 29, 31, 32, 33, 36, 39, 42, 45, 46, 49

Testing 237 203 440 (24.7%) 3, 5, 9, 12, 20, 22, 27, 30, 35, 37, 38, 40, 41, 43, 48

Set 3

Training 487 425 912 (51.1%) 1, 3, 4, 5, 9, 16, 19, 20, 23, 26, 27, 29, 31, 32, 38, 39, 40, 42, 49

Testing 232 201 433 (24.3%) 8, 12, 21, 22, 28, 30, 33, 35, 36, 37, 41, 43, 45, 46, 48

Set 4

Training 483 422 905 (50.7%) 1, 3, 4, 8, 9, 16, 19, 20, 23, 26, 28, 31, 32, 35, 37, 38, 40, 41, 43, 46

Testing 236 204 440 (24.7%) 5, 12, 21, 22, 27, 29, 30, 33, 36, 39, 42, 45, 48, 49

Set 5

Training 486 421 907 (50.8%) 1, 4, 5, 9, 19, 20, 21, 23, 26, 27, 29, 31, 35, 36, 38, 40, 41, 42, 45, 46, 48

Testing 233 205 438 (24.6%) 3, 8, 12, 16, 22, 28, 30, 32, 33, 37, 39, 43, 49

1 2 3 249 250

5s snippet    50 frames / s  =  250 frames

...

... ...

Nstack

Nstack

Nstack

Nslide
Offset

Classification

Majority vote determines classification outcome of entire snippet

FM+

FM+

FM-

FM+ / FM-

Classification

Classification

Figure 2.   An overview of the feature extraction and classification procedure. One snippet has a length of 
250 frames . Nstack = 52 frames are concatenated to one input vector—i.e. the (x,  y)-values of 52 frames frames 
are stacked together to form one input vector. The offset between two input vectors is Nslide = 12 frames , 
resulting in a sliding window approach. Each input vector is classified independently. The final decision is made 
based on uniform majority vote.
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SMNN learning and classification.  In this study, we compared nine different SMNN architectures as 
shown in Table 3 where we varied the number of hidden layers (from one to three) and the number of neurons 
per layer (50, 100 and 200). SMNN 1–3 consists of one hidden layer, SMNN 4–6 of two hidden layers, and 7–9 
of three hidden layers. In the first hidden layer rectified linear units (ReLU)51 were used, whereas in the second 
and third hidden layers parametric ReLU units (PReLU) were used. For regularization and preventing the co-
adaptation of neurons, a dropout layer (20%) was used between hidden layers in SMNN 4–9, too52. Finally, in 
the output layer we used a neuron with a sigmoid transfer function. A visualisation of SMNN 5 architecture is 
presented in Fig. 3. The Adam optimizer53 was used with the learning rate α = 0.001 and the time scale param-
eters β1 = 0.9 and β2 = 0.999.

There are several hyperparameters related to the discussed network architectures. Two hyperparameters are 
with respect to the feature vector, i.e., number of frames per input vector Nstack and the offset between two con-
secutive input vectors Nslide (see Fig. 2), and another parameter is related to the training procedure of the SMNN, 
i.e., batch size Nbatch . These hyperparameters were tuned as follows. First, a set of initial values was determined 
heuristically. Second, one of the parameters, e.g., batch size Nbatch was iterated over some range (see Fig. 6) while 
the other paraemters were kept constant. Based on the True Positives (TP), True Negatives (TN), False Positives 
(FP), and False Negatives (FN) the True Positive Rate (TPR) was computed as TPR = TP/(TP+ FN) and simi-
larly the False Positive Rate as FPR = FP/(TN+ FP) . Best values are FPR = 0 and TPR = 1 , where Nbatch was 
chosen with the minimum distance d =

√

(1− TPR)2 + (0− FPR)2 . Afterwards, Nbatch was kept constant, and 
the procedure was repeated for Nstack , and Nslide . For this ablation study SMNN 5 with the training set 1 and the 
validation set was used (see Table 2). The parameters were kept constant for all other experiments.

Results
In this section, we present the results for the performance evaluation of the proposed approach and discussed 
network architectures. We first justify the selection of the hyperparameters. Next, we present the classification 
performance of the proposed networks.

(a) ( )b

Fully
connected

Fully
connected

Fully
connected

ReLU

PReLU

Sigmoid

Dropout
(20%)

Nstack 50

50 50

50 100 100 100 100 1

1 1

50 50

50

Figure 3.   (a) An example frame with 25-point skeleton overlay and (b) a schematic diagram of the SMNN 5 
network architecture.

Table 3.   Description of SMNN architectures. Numbers correspond to the number of neurons in each layer. 
For example, SMNN 1 consists of one hidden linear layer with 50 ReLU neurons and a linear output layer with 
one sigmoid neuron. Nstack × 50 denotes dimension of the input to the first hidden layer.

SMNN Hidden layer Neuron type Drop out Hidden layer Neuron type Drop out Hidden layer Neuron type Output layer
Neuron 
type

1 Nstack × 50 → 50 ReLU 1 Sigmoid

2 Nstack × 50 → 100 ReLU 1 Sigmoid

3 Nstack × 50 → 200 ReLU 1 Sigmoid

4 Nstack × 50 → 50 ReLU 20% 50 PReLU 1 Sigmoid

5 Nstack × 50 → 50 ReLU 20% 100 PReLU 1 Sigmoid

6 Nstack × 50 → 50 ReLU 20% 200 PReLU 1 Sigmoid

7 Nstack × 50 → 50 ReLU 20% 50 PReLU 20% 50 PReLU 1 Sigmoid

8 Nstack × 50 → 50 ReLU 20% 100 PReLU 20% 100 PReLU 1 Sigmoid

9 Nstack × 50 → 50 ReLU 20% 200 PReLU 20% 200 PReLU 1 Sigmoid
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Results of an ablation study for the hyperparameter tuning are shown in Fig. 6 where we show performance 
scores after convergence of the learning for each parameter. The best performance with respect to TPR and FPR, 
and classification accuracy was obtained with Nbatch = 3968 , Nstack = 52 , and Nslide = 12.

The results and corresponding performance scores of all nine SMNNs averaged over the five cross-validation 
test sets are shown in Table 4 and Fig. 4. Network SMNN 1–3 contains one, SMNN 4–6 contains two, and SMNN 
7–9 contains three hidden layers, respectively. As shown in Fig. 4 all network architectures lead to similar clas-
sification performance with one exception where SMNN 4 performs worse than SMNN 5 ( t − test , p = 0.0381 ). 
Difference off all other means are statistically not significant ( t − test , p > 0.05 for all other pairs). However, the 
SMNN 5 network has much smaller variance (see also Table 4) across five cross-validation test sets as compared 
to the other SMMN networks making it most stable with respect to classification performance on new datasets 
(i.e., datasets not used in training).

Runtime comparison of SMNN 1–9 architectures is presented in Fig. 5 where we show average training (left) 
and inference (right) frequency for each model. For this study, a CPU implementation (36 Core, 2.30 GHz) 
implemented with PyTorch is used.

Table 4.   Comparison of SMNN 1–9 architectures (see Table 3). Mean and standard deviation (in parenthesis) 
obtained on five cross-validation test sets (see Table 2) are shown for each model. Acc. - Accuracy. Best average 
values are shown in bold font.

SMNN TP FP FN TN

Sensitivity Specificity Precision

Acc.

F1-Score

FM+ FM− FM+ FM− FM+ FM− FM+ FM−

1
209.00 46.60 28.20 158.40 0.88 0.77 0.77 0.88 0.83 0.86 0.83 0.85 0.80

(14.80) (39.48) (18.95) (41.75) (0.08) (0.20) (0.20) (0.08) (0.10) (0.06) (0.08) (0.06) (0.13)

2
215.00 48.20 22.20 156.80 0.91 0.76 0.76 0.91 0.83 0.88 0.84 0.86 0.81

(15.49) (36.57) (16.45) (37.49) (0.07) (0.18) (0.18) (0.07) (0.10) (0.07) (0.08) (0.06) (0.12)

3
214.20 47.00 23.00 158.00 0.90 0.77 0.77 0.90 0.83 0.88 0.84 0.86 0.81

(12.34) (32.44) (13.87) (33.14) (0.06) (0.16) (0.16) (0.06) (0.09) (0.06) (0.07) (0.06) (0.11)

4
209.40 40.80 27.80 164.20 0.88 0.80 0.80 0.88 0.84 0.86 0.84 0.86 0.82

(7.57) (19.46) (8.87) (20.19) (0.04) (0.10) (0.10) (0.04) (0.06) (0.03) (0.03) (0.02) (0.05)

5
214.00 29.60 23.20 175.40 0.90 0.86 0.86 0.90 0.88 0.89 0.88 0.89 0.87

(10.05) (12.20) (10.73) (13.26) (0.04) (0.06) (0.06) (0.04) (0.04) (0.04) (0.02) (0.02) (0.02)

6
212.80 47.00 24.40 158.00 0.90 0.77 0.77 0.90 0.83 0.87 0.84 0.86 0.81

(10.03) (34.18) (11.87) (36.15) (0.05) (0.17) (0.17) (0.05) (0.10) (0.04) (0.06) (0.04) (0.09)

7
205.20 45.20 23.20 168.60 0.90 0.78 0.78 0.90 0.83 0.88 0.85 0.86 0.82

(16.89) (29.35) (9.73) (41.88) (0.04) (0.15) (0.15) (0.04) (0.08) (0.04) (0.06) (0.04) (0.10)

8
209.00 46.00 28.20 159.00 0.88 0.77 0.77 0.88 0.83 0.85 0.83 0.85 0.80

(12.02) (36.59) (11.05) (37.99) (0.05) (0.18) (0.18) (0.05) (0.10) (0.03) (0.07) (0.04) (0.11)

9
205.20 39.60 25.40 172.00 0.89 0.81 0.81 0.89 0.85 0.87 0.85 0.86 0.84

(17.20) (25.68) (10.55) (34.89) (0.05) (0.13) (0.13) (0.05) (0.07) (0.03) (0.05) (0.04) (0.07)
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Figure 4.   Comparison of SMNN architectures (Table 3) on classification accuracy. Mean classification accuracy 
obtained on five cross-validation test sets (Table 2) are shown for each model. Error bars denote confidence 
intervals of mean (95%). Mean difference of SMMN 5 and SMMN 4 is statistically significant ( t − test , 
p = 0.0381 ). Differences of all other means are not statistically significant ( t − test , p > 0.05 for all other pairs).
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The advantage of shallow networks is that the training time is short compared to deep learning architectures. 
For our proposed networks, the training frequency on average varies from 3.57± 0.07 to 1.76± 0.02 samples 
per second. Given that each training set contains about 900 training samples (see Table 2), this results to 4.2–8.5 
min of training time.

Inference (prediction) runtime is one order of magnitude faster than training time and the inference fre-
quency on average varies from 51.92± 0.37 to 53.0± 0.31 samples per second, which leads to ≈ 19 ms of infer-
ence time per one sample (Note that this value holds only if the sample (input vector) is already copied into the 
RAM, otherwise the inference is about 44 ms per sequence.).

Discussion
In this section, we discuss our results in the context of the state-of-the-art ML driven methods28. Our current 
study provides a simple, straight-forward pipeline for a computer-based GMA. The infant’s skeleton is used for 
providing features. This proves to be a major advantage to many other methods, where features are based upon 
wavelet functions, power-spectrum, or hand-crafted statistics, since the skeleton can be more easily interpreted 
by humans.

First, we discuss our results in light of the dataset. The intra-rater reliability were κ = 85.4± 0.1 % and 
κ = 95.4± 0.1 % respectively for the two assessors. A test–retest kappa of 0.85–0.95, rated on a series of merely 
5-s clips (for which the assessors are not trained for), although not comparable to the actual intra-rater reliability 
of the respective GMA assessor, is strikingly high. To the best of our knowledge, it is the very first study dem-
onstrating that well-trained and experienced GMA assessors are able to reliably classify the GMs by watching 
just 5 s of the infant’s natural movements, both at the inter-rater level (Cohen’s kappa κ = 0.97 between the two 
assessors), and, at the within-rater level. Nevertheless, it must be stressed, that standard GMA requires observa-
tion of an infant’s movements of at least 2–5 min15. In fact, a classification by an AI tool at the individual level, 
e.g. to evaluate whether an infant presents fidgety movements or not, must also be based on the accumulated 
ratings of the infant movement sequences over time, no matter how short a single judgment unit is chosen by the 
algorithm. No classification on the GMs, neither by human nor by computer, shall ever be drawn from a single 5-s 
video. Given the excellent inter- and intra-rater reliabilities, in the current study, we only included the snippets 
that were identically rated by both raters for machine learning, which shall maximize the reliability and validity 
of the dataset. As emphasized, from the clinical perspective, GMA is not about the 5-s behavior of an infant, but 
the overall movement pattern of an individual. For example, a typically developing infant at the “fidgety age” 
does not necessarily present FMs, nor the same intensity of the FMs, all the time. As shown in our dataset, a very 
small fraction of snippets from the typical fidgety age period (T5-7; 9 out of 946 snippets) were rated by both 
assessors unanimously as “FM−”, verifying a normal phenomenon that typically developing infants during the 
typical fidgety period do not demonstrate FMs at all times, although their predominant movement pattern is FM.

From a technological perspective, comparing results applying different methods proves to be difficult in 
general. Due to the confidentiality regulations protecting the participants, no common dataset yet exists for 
evaluating and collating performances of the different machine learning approaches. Recent attempts have been 
made with artificial data64, where artificial 3D models of infants are reconstructed based on recordings. However, 
even these authors themselves find performance differences in the original and artificial data. To compare and 
discuss this problem, we compiled a table of the state-of-the-art algorithms (Table 5).

Two studies used full pose recovery based on passive measurements64,67. McCay et al.64 used artificial data 
made up from “normal” and “abnormal” participants; As feature vector binned joint movements are used. Doro-
niewicz et al.67 analyzed 31 participants to distinguish normal and abnormal (i.e., poor repertoire) writhing 
movements. The feature vector holds information about the movement’s area, movement’s shape, and the center 
of the movement’s area. To the best of our knowledge, our study is the first that uses full pose recovery based 
on passive, single camera video streams with an easy to understand and analyzable feature vector that does not 
require further pre-processing.
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Figure 5.   Running time comparison for neural network architectures SMNN 1–9. Mean training and inference 
frequency (number of samples per second) are shown for each model. Error bars denote standard deviation 
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In this work, we focused on the detection of fidgety movements. As mentioned before, since no common 
dataset is available, the results from the various studies analyzing heterogeneous samples are hardly comparable 
to each other (see Table 5). In some cases, sample characteristics are generally missing. For instance, in a handful 
of existent studies focusing on fidgety movements, despite their technical merits, Machireddy et al.55 and Tsuji 
et al.39 omitted certain essential information about all, or a part of, the participants (e.g., gestational age, medical 
condition), raising question on the validity of such studies concerning the fundamental concepts of GMA. Adde 
et al.54 provided detailed information about their participants. As they analyzed movements from a convenience 
clinical sample, including preterm and term infants (i.e., pooling both the normal and abnormal GM patterns), 
their dataset is radically different from the one used in the current study—the normal age-specific movement 
patterns acquired from a group of prospectively sampled typically developing infants.

Conclusion
This study proposes a novel machine learning algorithm to detect an age-specific movement pattern, the fidgety 
movements, in a prospective sample of typically developing infants. Participants were recorded using a passive, 
single camera RGB video stream. No further sensors were needed. According to the GMA procedure, the dataset 
was annotated by two well-trained and experienced GMA assessors. The inter- and intra-rater reliability between 
the assessors were excellent. Using OpenPose45, with the validated dataset, the infant full pose was recovered from 
the video stream in form of a 25-point skeleton. This skeleton was used as input vector for shallow multilayer 
neural network (SMNN) architectures. No further pre-processing was needed. The input vector was well acces-
sible to humans. An ablation study was performed to justify proposed network’s architecture and its hyperpa-
rameters. We show, for the very first time, that the SMNN is sufficient to discriminate fidgety movements from 
non-fidgety movements in a validated sample of age-specific typical movements with an average classification 
accuracy of 88% . Another advantage of the proposed network architectures is relatively short training (4–9 min 
for about 900 training samples) and inference time ( ≈ 19 ms per sample).

To circumvent the shortage of a large dataset, which can pose a problem, we may investigate in the future the 
feasibility of using home-recordings to serve the automated GMA. The non-standard home videos will result 
in heterogeneous datasets (e.g., different backgrounds, variable distances, and perspectives to the infant) that 
is particular challenging for computer vision and machine learning approaches. As pointed out by other scien-
tists, neither human nor computer rating could ever reach an unrealizable one-hundred-percent accuracy68. At 
the time, there is no question of replacing human clinical reasoning, but rather how to augment technological 
approaches to assist and strengthen classic GMA69. This is particularly relevant to resource limited settings 
where clinics are very busy and study personnel tend to be strained; computer-based approaches may alleviate 
the work load ensuing fatigue and affecting study staff, thus enhancing performance and overall quality of the 
GMA. The technology will also facilitate interpretation of large datasets. In summary, computer-based solutions 
will complement classic GMA to consistently perform accurate and efficient screening and diagnosis that may 
become universally accessible in daily clinical practice in the future.

Table 5.   Comparison of our approach to the state of the art methods from other studies. The upper part of the 
table presents studies focusing on fidgety movements.

Study Classification Acc. (%) Sens. (%) Spec. (%)

Current study FM+ vs. FM− 88 88 88

Adde et al.54 FM+ vs. FM− 90 80

Machireddy et al.55 FM+ vs. FM− 70

Tsuji et al.39 Normal (WMs, FMs) vs. Abnormal (CS, PR) 84.52

Adde et al.40 CP vs. no-CP 85 88

Karch et al.33 CP vs. no-CP 90 96

Philippi et al.56 CP vs. no-CP 90 95

Orlandi et al.29 CP vs. no-CP 92.13

Ihlen et al.57 CP vs. no-CP 87 92.7 81.6

Meinecke et al.58 Healthy vs. at-risk 73 100 70

Heinze et al.59 Healthy vs. pathologic 89.66

Rahmati et al.60 Healthy vs. affected 87

Rahmati et al.61 Healthy vs. affected 91

Stahl et al.62 Impaired vs. unimpaired 93.7 85.3 95.5

Dai et al.63 Normal vs. abnormal 93.3 95 91.7

McCay et al.64 Normal vs. abnormal (synthetic data) 87.05

Raghuram et al.65 Motor-impairment vs. no-motor-impairment 66 95 95

Gao et al.66 Typical development vs. abnormal movements 79

Doroniewicz et al.67 Normal WM vs. PR movements 80.93
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Appendix
See Fig. 6.
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