Skip to main content
. 2021 May 10;11:9888. doi: 10.1038/s41598-021-89347-5

Table 3.

Description of SMNN architectures.

SMNN Hidden layer Neuron type Drop out Hidden layer Neuron type Drop out Hidden layer Neuron type Output layer Neuron type
1 Nstack×5050 ReLU 1 Sigmoid
2 Nstack×50100 ReLU 1 Sigmoid
3 Nstack×50200 ReLU 1 Sigmoid
4 Nstack×5050 ReLU 20% 50 PReLU 1 Sigmoid
5 Nstack×5050 ReLU 20% 100 PReLU 1 Sigmoid
6 Nstack×5050 ReLU 20% 200 PReLU 1 Sigmoid
7 Nstack×5050 ReLU 20% 50 PReLU 20% 50 PReLU 1 Sigmoid
8 Nstack×5050 ReLU 20% 100 PReLU 20% 100 PReLU 1 Sigmoid
9 Nstack×5050 ReLU 20% 200 PReLU 20% 200 PReLU 1 Sigmoid

Numbers correspond to the number of neurons in each layer. For example, SMNN 1 consists of one hidden linear layer with 50 ReLU neurons and a linear output layer with one sigmoid neuron. Nstack×50 denotes dimension of the input to the first hidden layer.