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Introduction
Acute myeloid leukemia (AML) is an aggressive 
malignancy characterized by clonal proliferation 
of neoplastic immature precursor cells. AML 
impacts older adults, at a median age of 68 years, 
and has a poor prognosis with a 5-year overall 
survival (OS) of roughly 25%.1 Approximately 
35–40% of adults under 60 years of age attain 
complete remission (CR) and are deemed cured 
with treatment. Unfortunately, the prognosis in 
older adults remains poor, with those unable to 
receive intensive chemotherapy traditionally hav-
ing a median overall survival of 5–10 months. The 
combination of a hypomethylating agent (HMA) 
and the small molecule BCL2 inhibitor veneto-
clax has improved the median OS to 15 months.2 
Nonetheless, AML remains a complex family of 
diseases characterized by a panoply of genetic and 
epigenetic aberrations in both the malignant clone 
and its microenvironment.

Intensive induction chemotherapy regimens com-
bining cytarabine and anthracycline have been 
the standard of care for the last 40 years, and 

cause significant toxicities, especially in older 
patients.3 Until the last decade, most clinical tri-
als evaluated cytogenetic and molecular features 
through secondary or retrospective analysis. More 
recently, a select few of these aberrations have 
been targeted pharmacologically with resultant 
clinical success,4 emphasizing the importance of 
upfront diagnostic testing to optimize treatment 
options. In 2017, the European LeukemiaNet 
(ELN) updated their risk classification groups by 
incorporating more mutations, including those 
associated with adverse clinical outcomes. The 
adverse risk group now recognizes FLT3-internal 
tandem duplication (ITD) with high expression 
(ITD high) with wild type NPM1, mutated 
RUNX1, mutated ASXL1 and mutated TP533 
(Table 1) as contributing to worse outcomes.

As we have continued to dissect the molecular 
pathogenesis and pathophysiology of AML, we 
are able to stratify patients on the basis of specific 
clinical and molecular features in order to opti-
mize individual treatment strategies. Herein, we 
describe selected factors associated with adverse 
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risk AML, focusing on high risk mutations, 
including those not described in an ELN adverse 
risk group (Table 2). We discuss selected newer 
treatment options available for high-risk patients 

that target specific genetic and microenviron-
mental factors as well as selected treatments cur-
rently under development for future early phase 
clinical trials.

Table 1.  High-risk features in newly diagnosed AML.

Clinical factors

Age >60 years

Antecedent hematological disorders

Treatment-related

Leukemia with persistence of minimal residual disease after induction chemotherapya

Cytogenetic and molecular features

t(6;9)(p23;q34.1); DEK-NUP214b

t(v;11q23.3);KMT2A rearrangements, multiple fusion partners

t(9;22)(q34.1;q11.2); BCR-ABL1

inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2.MECOM(EVI1)

−5 or del(5q); −7; −17/abn(17p)

Complex karyotype or monosomal karyotype

Mutations within ELN adverse risk stratification

FLT3-ITD high+ wild type NPM1

RUNX1c

ASXL1c

TP53

Proposed high risk mutations to be included in ELN

KIT mutations

RNA Spliceomes (NRAS and KRAS)

RNA splicing (e.g., SRSF2, SF3B1, U2AF1, and ZRSR2)

DNMT3A

BCOR

Complex molecular genetic abnormalities involving three or more genes

aResidual disease defined by multiparameter flow cytometry or positive PCR for disease-specific genes describes a group 
of patients with significant risk of early recurrence after consolidation therapy, including consolidation in the form of 
allogeneic transplantation.
bMore recent data suggests that t(6;9)(p23;q34.1) should likely be re-classified within the intermediate risk group if treated 
intensively with allogeneic HSCT.5,6

cShould not be used as an adverse prognostic marker if they co-occur with favorable-risk AML subtypes.
AML, acute myeloid leukemia; ELN, European LeukemiaNet; HSCT, hematopoietic stem cell transplantation;  
PCR, polymerase chain reaction.

https://journals.sagepub.com/home/tah


K Doucette, J Karp et al.

journals.sagepub.com/home/tah	 3

Adverse risk molecular factors in the 2017 
ELN risk stratification
The clinical and molecular factors associated with 
a drug-resistant phenotype and overall poor prog-
noses are delineated in Table 1.

Cytogenetics
Cytogenetic findings are classified according to 
favorable, intermediate, and unfavorable risk cat-
egories.3 Unfavorable cytogenetics define adverse 
ELN risk and thus provide critical prognostic 
information that can inform treatment options.7 

Nonetheless, −7, −5/del(5q), monosomal karyo-
types, and complex cytogenetics with at least 
three abnormalities carry an adverse prognosis 
independent of treatment type.8 Adverse risk 
cytogenetics often accompany secondary AMLs, 
including myelodysplasia-related (MDS/AML) and 
therapy-related (t-AML) variants, older age, high 
risk molecular pathways implicated in leukemogen-
esis (e.g., TP53), and multidrug resistance.8,9

Of the high-risk cytogenetic translocations, we 
have chosen to highlight mixed lineage leukemia 
(MLL)-rearranged AML. AMLs with MLL-based 

Table 2.  High-risk mutations, their functional class and mechanisms of leukemogenesis.

High-risk mutations Functional class Mechanisms of leukemogenesis Incidence in AML

FLT3, KRAS, NRAS, KIT Signaling and kinase 
pathway

These mutations lead to the aberrant 
activation and proliferation of cellular 
signaling pathways.

~2/3 of AML cases

DNMT3A, ASXL1 Epigenetic modifiers  
(DNA methylation and 
chromatin modification)

Felt to be inciting mutations in 
leukemogenesis and are often found in 
age-related clonal hematopoiesis. These 
mutations likely promote clonal outgrowth, 
but require additional mutations to initiate 
leukemic transformation.
Of note: DNMT3A mutations in conjunction 
with mutation NPM1 confers particularly 
poor prognosis. NPM1participates in a 
variety of cellular functions, which include 
protein formation, ribosome biogenesis, DNA 
replication, and the cell cycle.

~1/2 of AML cases

SRSF2, SF3B1, U2AF1, and 
ZRSR2

Spliceosome complex Spliceosome complex is important for RNA 
splicing of mRNA precursors. Mutations 
in RNA spliceosomes causes mis-splicing 
of mRNA precursors leading to abnormal 
epigenetic regulation, transcription, and 
genome integrity, ultimately leading to 
cancer. These are often seen in older 
individuals with less proliferative disease.

~1/10 of AML cases

RUNX1 Transcription factors This is an important core-binding factor 
family of transcription factors involved 
in embryogenesis of HSC generation and 
regulation of HSC differentiation and 
homeostasis. When mutated, may lead to a 
stem cell phenotype characterized by early 
HSC exhaustion.

~1/10 of AML cases

TP53 Tumor suppressors Tumor suppression occurs via apoptosis, 
DNA repair and cell cycle arrest/senescence, 
and when disrupted, will lead to survival of 
cancerous cells.

~1/6 of AML cases

AML, acute myeloid leukemia; HSC, hematopoietic stem cells.
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translocations are associated with poor outcomes 
in adults and frequent relapses, despite initial 
response to standard induction chemotherapy and 
allogeneic hematopoietic stem cell transplantation 
(HSCT).10 The MLL gene, located on chromo-
some 11q23, encodes the histone-lysine-N- meth-
yltransferase 2A (KMT2A), which plays a critical 
role in differentiation and homeostasis through 
chromatin remodeling and regulation of home-
obox (HOX) genes. MLL-rearranged leukemia is 
characterized by balanced translocation and fusion 
with over 80 different partner genes including 
AF4, Afadin, AF9, ELL, and ENL, with the result-
ant translocations t(4;11)(q21;q23), t(6:11)
(q27:q23), t(9;11)(q22;q23), t(11;19)(q23;p13.1), 
and t(11;19)(q23;p13.3).11 For leukemia to 
develop, MLL fusion proteins must interact with 
the protein menin, a tumor suppressor protein 
responsible for regulating cell growth for endocrine 
organs (encoded on the MEN 1 gene).12 When co-
factor menin and MLL fusion proteins interact, 
there is an upregulation of HOXA9 and MEIS1 
genes, which ultimately promotes leukogenesis 
and proliferation. In fact, when menin is blocked 
in MLL transformed leukemic blasts, HOX gene 
upregulation and cell differentiation arrest ceases, 
supporting menin’s crucial role for oncogenesis.13 
MLL-rearrangement is found more frequently in 
t-AML (9.4%) than in de novo AML (2.6%, 
p < 0.0001), with particular occurrence in the set-
ting of agents that freeze the topoisomerase 
II-DNA complex, such as anthracyclines and 
epipodophyllins.14

The histone H3K79 methyltransferase DOT1L is 
recruited in MLL-rearranged AML, leading to 
methylation of oncogenic downstream targets 
HOXA9 and Meisi1.10 In a murine model, inhibi-
tion of DOT1L led to the suppression of down-
stream MLL target genes with significant tumor 
regression. The DOT1L inhibitor Pinometostat 
– a potent and selective small molecule inhibitor 
of DOT1L methyltransferase activity – has the 
ability to abrogate HOX cluster gene expression 
in AML cells, which leads to leukemia cell apop-
tosis. A phase I study of Pinometostat in MLL-
rearranged relapsed/refractory (R/R) myeloid 
malignancy patients demonstrated tolerability 
and modest including morphologic changes in the 
bone marrow consistent with myeloid differentia-
tion.15 An ongoing phase Ib/II open-label, single-
arm trial enrolling R/R MLL-rearranged AML 
patients will evaluate the tolerability and early 

efficacy of pinometostat in combination with 
azacitidine.16

New therapeutic agents targeting the menin-
KMT2A protein–protein interaction are being 
investigated in early phase clinical trials.7 
Preliminary results of KO-539 in a phase I/IIA 
trial of adults with R/R disease, show that the 
drug is generally well tolerated with no dose inter-
ruptions or discontinuations due to drug-related 
adverse events. There is also some suggestion of 
good anti-leukemic activity.17

Genetic mutations
FLT3-ITD high+ and wild type NPM1.  FLT3 is a 
transmembrane ligand-activated receptor tyro-
sine kinase and is expressed on hematopoietic 
progenitor cells.18 Mutations in FLT3 occur in 
25–30% of all AMLs and result in aberrant acti-
vation of RAS/RAF/MEK/mammalian target of 
rapamycin (mTOR) pathways, as well as through 
phosphatidylinositol 3 kinase (PI3K)/AKT path-
ways, all of which lead to cell growth and survival. 
Higher allele frequencies/ratios, have been associ-
ated with poorer outcomes, especially with wild 
type NPM1.

Prior to ELN 2017, all FLT3 mutations irrespec-
tive of allelic ratio were considered to be high risk. 
A low ITD allelic ratio is considered <0.5, whereas 
a high allelic ratio is over ⩾0.5. ELN now lists 
patients with wild-type NPM1 without FLT3-
ITD or with FLT3-ITDlow (without adverse-risk 
genetic lesions) and mutated NPM1 and FLT3-
ITDhigh as intermediate risk.3 Patients with 
mutated NPM1 with FLT3-ITDlow are listed as 
having a favorable risk. We do not have prospec-
tive data that suggests FLT3 mutated patients in 
favorable and intermediate risk groups have bet-
ter outcomes without allogeneic HSCT. Several 
tyrosine kinase inhibitors (TKIs) have been stud-
ied either as monotherapy or in combination with 
various chemotherapies. Midostaurin is now 
approved in combination with 7+3 as front-line 
treatment for newly diagnosed adults, who can 
tolerate induction treatment.19 This phase III trial 
found significantly improved event-free survival 
(EFS) and OS in the combination midostaurin 
and daunorubin/cytarabine (7+3) arm compared 
with the 7+3 arm alone (Table 3). Interestingly, 
the CR rates were similar in both arms, suggest-
ing that the improvement in OS could reflect a 
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greater depth of CR and/or an increased number 
of patients able to go to HSCT.

Sorafenib has been most successful in the post-
transplant setting for patients in CR after alloge-
neic HSCT.41 Sorafenib was instituted between 
30 days after induction/consolidation and 120 days 
post-transplant once patients achieved count 
recovery. The OS at 24, 36, and 48 months was 
76% [95% confidence interval (CI), 63–91%], 
76% (95% CI, 63–91%), and 57% (95% CI, 31–
91%), respectively. The EFS at 24, 36, and 
48 months was 74% (95% CI, 62–90%), 64% 
(95% CI, 48–85%), and 64% (95% CI, 48–85%), 
respectively. Sorafenib in this study population 
was well tolerated and did not impair engraft-
ment, with a non-relapse mortality rate at 3 years 
post-transplant of 10% (95% CI, 1–20%). The 
phase II SORMAIN trial (N = 83) evaluated the 
use of sorafenib for 24 months in adults with 
FLT3-ITD positive AML after obtaining com-
plete hematologic remission with HSCT.42 At a 
median follow up of 41.8 months, they found a 
24-month relapse free survival of 53.3% (95% 
CI, 0.36–0.68) in the placebo group versus 85.0% 
(95% CI 0.70–0.93) with hazard ratio (HR) of 
0.26 (95% CI 0.10–0.65, p = 0.002).

Next-generation TKIs (crenolanib, quizartinib, 
and gilteritinib) have more specific activity with 
fewer off-target effects.43 Of these TKIs, gilteri-
tinib demonstrates the greatest clinical benefit to 
date, as seen in the R/R AML ADMIRAL trial,44 
and is approved for R/R AML. Compared with 
salvage chemotherapy, gilteritinib had a higher 
CR rate (34% versus 15.3%) and OS of 9.3 months 
versus 5.6 months (p < 0.001). Post hoc analyses of 
phase II and III combination trials suggest 
improved efficacy in the subgroup of patients with 
FLT3 mutations relative to standard approaches. 
Combinations of TKIs with diverse chemothera-
pies (CPX-351, azacitidine, 7 + 3, cladribine) and 
targeted agents such as venetoclax are in clinical 
trials, with over 20 open and recruiting trials 
within the United States for FLT3-positive AML. 
Other studies with subgroup analysis of FLT3 
positive patients are listed in Table 3.

RUNX1
RUNX1, located on chromosome 21q22, is an 
important transcription factor involved in hemat-
opoietic stem cell (HSC) growth, differentiation, 
and homeostasis. Different types of RUNX1 

mutations are found in AML, including missense 
mutations, deletions, truncation mutations, and 
frameshift mutations in the “Runt” homology 
domain.45,46 These diverse mutations lead to loss-
of-function mutations with attendant chemother-
apy resistance and poor prognosis.47 RUNX1 
mutations are typically associated with older age, 
male gender, more immature morphology, and 
MDS/AMLs.48

RUNX1 mutations are seen in approximately 
8–16% of AML patients and are typically associ-
ated with ASXL1 mutations and other epigenetic 
modifiers (IDH2, KMT2A, EZH2) as well as spli-
ceosome mutations.48 They are typically inversely 
associated with NPM1 and CEBPA mutations, 
and are associated with lower CR rates, shorter 
disease-free survival (DFS), EFS, and OS.49 
Co-mutation with ASXL1, SRSF2, or PHF6 con-
fers a significantly worse prognosis relative to pair-
ing with other mutations such as IDH2.48

To date, there are no approved targeted agents for 
mutated RUNX1 (mtRUNX1), but preclinical 
studies demonstrate that the depletion of RUNX1 
by short-hairpin RNA as well as editing-out 
RUNX1 eR1 (CRISPR/Cas9-mediated) leads to 
AML cell death.46 In vitro treatment with bromo-
domain and extraterminal (BET) protein antago-
nists has also proven efficacious in causing 
mtRUNX1 AML cell death. BET proteins recog-
nize acetylated lysine moieties on histones and act 
as a scaffold to recruit promoters and enhancers to 
co-activate expression of genes involved in cell 
growth and survival. AML mtRUNX1 cell 
engrafted in mice treated with a BET protein 
inhibitor exhibited increased apoptosis and subse-
quently improved survival. A phase I trial of the 
BET inhibitor OTX015 in 41 patients yielded CR 
or CR with incomplete recovery (CRi) in 3, but 
did not detect a correlation between response and 
mtRUNX1.50 Other early trials with other BET 
inhibitors have shown similar findings.51,52 The 
first generation BET protein inhibitor, ABBV-
075, in combination with venetoclax, was found 
to significantly reduce AML cell-burden and pro-
long survival in AML engrafted immune depleted 
mice,53 which may provide a springboard for BET 
inhibitor/venetoclax combination trials.

ASXL1
Additional sex comb-like 1 (ASXL1) is a chroma-
tin-binding polycomb protein required for normal 
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embryogenesis through epigenetic activation and 
repression of gene transcription, and is located on 
chromosome band 20q11.54 ASXL1 mutations 
are detected in 10–20% of AMLs and consist pre-
dominantly of heterogenous nonsense/frameshift 
mutations that appear to result in loss of func-
tion.55,56 Nonetheless, gain-of-function mutations 
have also been suspected with homozygous muta-
tions. Similar to RUNX1, they are found in older 
patients, those with secondary AML, and are 
often co-mutated with RUNX1 and spliceosome 
mutations.54 They are inversely associated with 
FLT3 ITD mutations, mutually exclusive with 
NPM1 mutations, and associated with lower rates 
of CR and overall poorer prognosis when com-
pared with wild type ASXL1.55,57 There are cur-
rently no targeted agents that have shown 
improved outcomes in this subgroup of patients. 
Nonetheless, BET inhibitors may afford comple-
mentary effects on chromatin remodelling.51,52

Tumor protein 53
The tumor protein 53 (TP53) gene, located on 
chromosome 17p13.1, is a prototypical tumor 
suppressor gene, and is mutated in up to 50% of 
cancers.58 The encoded TP53 protein is involved 
in transcriptional regulation of downstream path-
ways crucial in tumor suppression through apop-
tosis, DNA repair, and cell cycle arrest/senescence. 
Multiple forms of TP53 mutations are detected in 
AML, including missense mutations, deletions, 
insertions, and nonsense mutations.59 TP53 gain-
of-function mutations can also lead to prolifera-
tion and survival of tumor cells, as well as 
angiogenesis and metastasis.60 The most com-
mon TP53 mutations are missense alterations 
occurring in the DNA-binding domain.61 Though 
mutations in other domains also impact TP53 
protein function, the implication of these muta-
tions remains uncertain.

While germline TP53 mutations define the arche-
typal familial cancer syndrome known as 
Li-Fraumeni, only 1.1% of AML cases have a 
germline TP53 mutation On the other hand, 
abnormalities in TP53 arise as somatic mutations 
in 10% of de novo AMLs 20% in t-AMLs, and up 
to 90% in erythroleukemias.58 Prognosis with 
TP53 mutations is dismal, with high rates of dis-
ease refractory to both chemotherapy and HSCT 
with CR rates <30% and 3-year OS <15%.58,62 A 
recent study showed that patients with TP53 

mutations with variant allele frequency (VAF) 
>40% had significantly worse cumulative inci-
dence of relapse (p = 0.030), relapse-free survival 
(RFS [p = 0.001]) and OS (p = 0.003) than 
patients with a VAF ⩽40%.63 In patients treated 
with a cytarabine-based regimen, the median OS 
of patients with a VAF >40% was 4.7 months ver-
sus 7.3 months for patients with a VAF ⩽40% 
(p = 0.006). In patients treated with HMA, the 
VAF did not affect OS significantly. Interestingly, 
patients with VAF ⩽40% treated with cytarabine 
based regimen, had improved OS compared with 
those treated with HMA (1-year OS rates of 44% 
and 31%, respectively; p = 0.04) whereas patients 
with VAF >40% had poorer OS regardless of 
treatment choice (1-year OS rate <25% in all 
groups). Similarly, Sasaki et al. assessed VAF in 
various common driver mutations in 421 patients 
with newly diagnosed AML.64 TP53 mutations, 
found in 20% of their cohort, were the major con-
tributor to decreased OS with each increasing 
increment in VAF associated with a 1% higher 
risk of death. The median VAF in their cohort 
was 45.7% (range 1.15–93.74%).

APR-246 (PRIMA-1MET) is a small molecule 
that restores wild-type TP53 transcriptional activ-
ity of unfolded wild-type or mutant TP53 protein, 
resulting in apoptosis of TP53 mutated cancer 
cells. Preliminary results from a phase II trial of 
APR-246 in combination with azacitidine in 45 
treatment naïve patients with intermediate/high/
very high risk MDS, myeloproliferative neoplasms 
(MPNs) or oligoblastic AML (blasts ⩽30%) har-
boring TP53 mutations yielded an overall response 
rate (ORR) of 87% and CR rate of 53%.29 The 
median duration of response was 6.5 months with 
intent-to-treat OS of 11.6 months (95% CI 9.2–
14). The median VAF of TP53 (25% at the start 
of the trial) was serially assessed during treatment 
using next generation sequencing (NGS). At a 
VAF cut off of 5%, 39% achieved NGS negativity 
with treatment, which was associated with 
improvement in OS (12.8 versus 9.2 months, p =  
0.02). Additionally, the median VAF at maximum 
mutation clearance was 0.63% (0.0–5%), with 5 
(11%) becoming minimal residual disease (MRD) 
negative. There is an ongoing phase III trial with 
APR-246/azacitidine [ClinicalTrials.gov identi-
fier: NCT03745716]. In addition, APR-246 is 
being studied in a phase I trial in combination with 
azacitidine and venetoclax [ClinicalTrials.gov 
identifier: NCT04214860].
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Magrolimab (Hu5F9-G4) is a blocking antibody 
directed against CD47, which is also known as 
the macrophage immune checkpoint or the “don’t 
eat me” signal on cancer cell surfaces.30 This anti-
body induces phagocytosis and AML cell death, 
particularly in TP53 mutated patients. A phase Ib 
study combining magrolimab and azacitidine in 
34 treatment-naïve AML patients unfit for inten-
sive chemotherapy resulted in transfusion inde-
pendence in 56%, ORR 65%, CR 44%, and  
CRi 12%, with a median time to response of 
2.04 months.65 Of the 19 patients achieving CR/
CRi, 37% (7/19) became MRD negative by flow 
cytometry. Importantly, patients with a TP53 
mutation had a 71% objective response (15/21) 
with CR 48% (10), and 1 CRi, with a median 
duration of response of 9.9 months. The median 
OS for the TP53 mutated patients was 12.9 months 
(95% CI: 6.24 months–not reached) compared 
with 18.9 months for TP53 wild-type patients 
(95% CI: 4.34 months–not reached).

Pevonedistat (MLN4924) is a first-in-class small 
molecule inhibitor of Nedd8-activating enzyme 
(NAE), thereby inactivating E3 ubiquitin ligases 
known as ring ligases (CRLs), which in turn leads 
to accumulation of CRL protein substrates such 
as c-MYC, leading to eventual cell death though 
activation of pro-apoptosis pathways. CRLs are 
crucial for cell proliferation and survival. Based on 
clinical efficacy as a single agent in the R/R setting, 
a phase Ib study combining pevonedistat with 
azacitidine in adults aged ⩾60 years with newly 
diagnosed AML showed an ORR of 50% in the 
intent-to-treat analysis, with a median duration of 
response of 8.3 months in 44% who were able to 
receive at least six cycles of the combination.66 Of 
the five patients with TP53 mutation identified at 
baseline, CR or PR was achieved in four. A total 
of six out of eight (75%) total TP53-mutated 
patients achieved CR/CRi. There is an ongoing 
phase Ib trial in adults ⩾50 years with de novo or 
secondary AML including those with adverse 
cytogenetics and/or TP53 mutations, combining 
venetoclax and azacitidine with escalating doses of 
pevonedistat (PAVE) [ClinicalTrials.gov identi-
fier: NCT04172844].

Flotetuzumab, a bispecific DART (dual-affinity 
retargeting agent) antibody-based molecule to 
CD3ε and CD123, is being investigated as mono-
therapy in the R/R setting, and early findings sug-
gest that the 42 patients with TP53 mutations 
have higher rates of CD+ T cell infiltration, 

expression of immune checkpoints, and IFN-γ 
signalling than patients with other risk defining 
mutations such as ASXL1, TET2, and 
DNMT3A.67 CR was achieved in 47% (7/15) of 
patients with R/R AML and TP53 abnormalities, 
with 2 remaining in CR >6 months. Responders 
exhibited significantly higher tumor inflammation 
signature at baseline defined by FOXP3, CD8, 
inflammatory chemokine, and PD1 gene expres-
sion scores, compared with nonresponders. 
Immune infiltration in the tumor microenviron-
ment is an important predictor of treatment out-
comes with immunotherapy, and is discussed 
further in the section Microenvironmental Targets: 
Immunotherapy below. Patients with TP53 muta-
tions who achieved CR had a median OS of 
10.3 months (range 3.3–21.3 months), suggesting 
that flotetuzumab immunotherapy could improve 
treatment outcomes in this high-risk group com-
pared with standard of care – a hypothesis that 
needs to be tested. Other studies with TP53 
mutations analysis are listed in Table 3.

Mutations not included in the 2017  
ELN risk stratification

KIT
Some chromosomal abnormalities seen in AML 
are t(8;21)(q22;q22) and inv(16)(p13;q22), 
known as core binding factor-AML (CBF-AML), 
which produce corresponding abnormal fusion 
genes RUNX1-RUNX1T1 and CBFB-MYH1.68,69 
CBF-AML is seen in approximately 15–20% of 
newly diagnosed AML cases and generally has a 
better prognosis except in the presence of a c-kit 
mutation; seen in approximately 60–80% of AML 
patients, with activating mutations seen in 20% of 
CBF-AML adult patients.45,68 KIT is located at 
chromosome band 4q12 and encodes a transmem-
brane glycoprotein that activates downstream sign-
aling pathways involved in cell proliferation, 
differentiation, and survival.70 Discrepancies exist 
in terms of outcomes in patients with c-kit muta-
tions, with some studies showing worse OS and 
decreased remission duration, while others show 
similar outcomes in those with and without the 
mutation.68,71–75

Clinical trials have evaluated the effects of adding 
a TKI to standard treatment options in CBF-
AML. Dasatinib in combination with7 + 3 induc-
tion followed by consolidation and maintenance 
treatment was studied in the CALGB 10801 
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phase II trial.32 This trial enrolled 61 adult 
patients with newly diagnosed CBF-AML, of 
whom 19% harbored a c-kit mutation (Table 3). 
In a post hoc analysis of this limited cohort, 
patients with c-kit mutations had similar out-
comes to those with wild-type KIT with 3-year 
rates of DFS (67% versus 75%) and OS (73%  
versus 76%), and there were no differences related 
to the magnitude of KIT wildtype expression.

The phase II AMLSG 11-08 trial also examined 
the effects of dasatinib in combination with inten-
sive induction and consolidation chemotherapy in 
newly diagnosed CBF-AML.33 In contrast to 
CALGB 10801, patients with c-kit mutation 
(n = 19) had inferior outcomes compared with c-kit 
wild type (n = 70). There is an ongoing phase III 
trial of intensive chemotherapy with or without 
dasatinib in newly diagnosed adult patients with 
CBF AML with RUNX1-RUNX1T1 (or variant 
form) or CBFB-MYH11 fusion transcripts 
[ClinicalTrials.gov identifier: NCT02013648]. 
Additionally, there is a phase II study combining 
midostaurin with standard induction, consolida-
tion, and maintenance therapy in adult patients 
⩽65 years of age with de novo AML harboring rear-
rangements in CBF-AML genes (RUNX1-
RUNX1T1 and CBFB-MYH11); [ClinicalTrials.
gov identifier: NCT03686345] and [ClinicalTrials.
gov identifier: NCT01830361].

RAS
RAS genes encode a family of proteins that are 
crucial in cell signaling networks that regulate cell 
function across multiple tissue types.76 RAS onco-
genes are the most common somatic mutations in 
human cancer and occur in 12–27% of patients 
with AML. In AML, the incidence of NRAS 
mutations is about 11%, compared with approxi-
mately 5% in KRAS mutations. The RAS path-
way is activated by mutations in upstream receptor 
tyrosine kinases (FLT3 or c-KIT) or mutations/
overexpression of downstream effector pathways 
in RAS/RAF/MEK/ERK kinase pathways.77 
Therefore, patients without RAS mutations but 
with FLT3, KIT or PDGRF mutations have acti-
vation of RAS-dependent pathways, thereby 
increasing proliferation and preventing apoptosis 
of leukemic cells. The exact prognostic implica-
tion of RAS mutations is unclear, particularly in 
the newly diagnosed setting.78–84 Nonetheless, a 
retrospective study found decreased median EFS 

in AML patients that harbored NRAS or KRAS 
mutations (4.9 months) compared with RAS wild-
type patients (11.4 months; p < 0.01) at a median 
follow up of 25 months.85 RAS was associated 
independently with increased risk of death with 
HR of 1.85 (p = 0.016). Interestingly, relapse 
occurred despite ongoing RAS mutation clearance 
in 6 out of 10 patients.

Acquisition of RAS or FLT3 ITD mutations at 
the time of progression from MDS to AML clearly 
leads to worse outcomes.86 The median OS after 
leukemia transformation in those with a detecta-
ble RAS and/or FLT3-ITD mutations was 
2.4 months compared with 7.5 months in patients 
with wild type RAS and FLT3 (HR: 3.08, 95% CI 
1.9–5.0, p < 0.0001). For RAS mutation alone, 
the median survival after leukemic transformation 
was 3.6 months compared with 7 months in 
patients with wild-type RAS (p = 0.0008).

For patients with IDH mutations, co-mutations 
with RAS have been associated with higher rates 
of resistance to monotherapy with targeted treat-
ments.87 Proposed mechanisms include constitu-
tive activation of RAS pathway, bypassing the 
differentiation induced by IDH1/2 inhibitors, or 
RAS mutation being a marker of higher muta-
tional burden, which increases rates of resistance. 
These associations have not been consistently 
identified, and, more recently, the AG221-
AML-005 trial reported that co-mutations with 
RAS/FLT3 have not affected response rates to 
combination treatment with the IDH 2 inhibitor 
enasidenib plus azacitidine in newly diagnosed 
patients being treated with this regimen in the 
front line setting.88 However, a recent phase Ib/II 
trial combining the IDH1 inhibitor ivosidenib, 
venetoclax +/− azacitidine in advanced myeloid 
malignancies, found that active signaling co-
mutations (including RAS) were seen in 66% of 
patients who had no response or had relapsed.89

The emergence of AML subclones with new RAS-
MAPK pathway mutations in patients who relapse 
after the FLT3 inhibitor gilteritinib has also been 
detected.90,91 At least in theory, combinations of 
FLT3 inhibitors and inhibitors of MEK inhibitors 
or other downstream intermediaries might pre-
vent or overcome FLT3 inhibitor resistance. In 
this context, preclinical data have supported the 
notion that inhibition of downstream pathways 
such as the mitogen-activated protein kinase 
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(MAPK) and/or PI3K/AKT pathway could abro-
gate net RAS signalling.77

RNA spliceosomes
Normal cells require functional RNA splicing of 
mRNA precursors by a multiprotein spliceosome 
complex for complete gene expression. Mutations 
in RNA spliceosomes leads to mis-splicing of 
mRNA precursors leading to abnormal epigenetic 
regulation, transcription, and genome integrity, 
ultimately leading to cancer.92,93 RNA splicing 
mutations (e.g., SRSF2, SF3B1, U2AF1, and 
ZRSR2) are frequently identified in MDS and 
chronic myelomonocytic leukemia (CMML), 
with about 10% of AML patients harboring these 
mutations.45 These mutations are usually exclu-
sive of one another and are expressed with its wild 
type allele, suggesting the requirement of the 
wild-type allele function for survival of the cancer 
cell. These mutations are typically found in older 
patients with less proliferative disease, and are 
associated with refractory disease.

H3B-8800 – a small molecule agent that binds to 
SF3b complex leading to alternative splicing 
changes – has been studied in patients with MDS, 
AML, or CMML.34 Pharmacodynamic correlates 
detected dose-dependent alterations in mature 
mRNA transcripts in blood mononuclear cells 
with good overall patient tolerability (mostly 
grade 1 or 2 toxicities). While there were no 
objective responses seen in the 84 patients (24 
with AML), there were measurable improve-
ments in red blood cell (RBC) transfusion 
requirements.

In addition to preclinical studies looking at small 
molecule inhibitors to target the core spliceo-
some, RNA-binding proteins (RBPs) have also 
become targets of interest in myeloid leukemias 
with RNA splicing mutations.94 Specifically, 
RBM39 is a suspected RBP molecular target of 
sulfonamide compounds (such as indisulam, 
E7820, and chloroquinoxalin). RBM39 is an 
RBP, which has important functions in transcrip-
tional coactivation and pre-mRNA splicing. 
Hypothetically, depletion or inhibition of RBM39 
should lead to splicing alterations that, in turn, 
lead to cell death. Indisulam, a sulfonamide com-
pound, has been shown to recruit RBM39 to the 
CUL4-DCAF15 E3-ubiquitin ligase, leading to 
its degradation and ultimately aberrant splicing. 

Finally, anti-sense oligonucleotide based-thera-
pies hybridize with RNA and may thereby affect 
splicing events of pre-mRNA or promote RNA 
degradation. Early trials in this field are currently 
underway.

DNMT3A
DNMT3A is a pivotal regulator of the epigenetic 
processes of DNA methylation and chromatin 
modification and is mutated in about 20% of  
de novo AML cases.95 DNMT3A found on human 
chromosome 2p23, which encodes a 130-kDa 
protein that is expressed in two major forms: a 
long isoform known as DNMT3A1, and a short 
isoform known as DNMT3A2. Both isoforms 
catalyze the methylation of cytosine residues in 
cytosine guanine dinucleotide islands with result-
ant silencing of diverse genes involved in the pro-
cesses of differentiation and self-renewal. 
DNMT3A mutations are detected mainly in 
older patients, and are associated with higher 
white blood cell counts, normal cytogenetics, and 
myelomonocytic or monocytic morphology. 
DNMT3A is often co-mutated with NPM1, 
IDH1, and FLT3-ITD and, although not yet 
incorporated into the ELN risk score, confers a 
poor prognosis.35,95–97 The DNMT3A-R882 
mutation has been associated with poor prognosis 
in patients over age 60 years old, while other 
DNMT3A mutations have been associated with 
adverse prognosis in younger patients.98 A recent 
Chinese study of 870 adults with AML, found 
that prognosis of DNMT3A R882 was associated 
with a mutant-allele ratio, with higher allele ratios 
predicting a relatively poor prognosis.99

The frequency and adverse prognostic features of 
DNMT3A mutations suggest that the ability to 
target these mutations directly or through down-
stream intermediaries could have significant clini-
cal impact. In this regard, the H3 lysine 
methyltransferase DOT1L as a critical down-
stream mediator of growth and survival-promot-
ing HOX genes, is a potential therapeutic target 
for the treatment of DNMT3A-mutated AML,35,100 
with interest in DOTL1 inhibitor Pinometostat 
(discussed above in regards to MLL-rearranged 
leukemia).

Variants in the DNMT3A gene have also been 
associated with clonal hematopoiesis of indeter-
minate potential (CHIP), and clonal cytopenias 
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of undetermined significance (CCUS), which 
have been identified as pre-malignant conditions, 
often associated with older age.101–103 Though 
several variants in DNMT3A have been identified 
in CCUS and CHIP, not every mutation has been 
later linked to the development of AML, and the 
recommendation has been to monitor such 
patients.

Number of driver mutations: combining 
cytogenetics and mutations
While complex karyotypes or combined chromo-
somal abnormalities are present in approximately 
10–12% of AML and are associated with adverse 
prognosis, older age, and treatment resistance in 
AML, little is known regarding the impact of spe-
cific co-mutations on prognosis.3,104,105 The 
tumor-mutational burden is relatively low in 
AML relative to solid tumors, and, as such, there 
may be less neoantigen presentation and T cell 
mediated immune response compared with other 
malignancies.106 Nonetheless, data suggest that 
increasing number of mutations is associated with 
poorer prognosis.105

Metzeler et  al. sequenced the entire coding 
sequences of 37 genes and recurrently mutated 
regions in 664 untreated AML patients who 
received intensive induction chemotherapy 
between 1999 and 2012.107 The majority (97%) of 
patients had at least one identified driver mutation, 
and an additional 15 patients had recurrent bal-
anced chromosomal translocations. The number 
of mutated genes per patient was 4 (range 0–10). 
The median number of driver gene mutations 
increased with age (p < 0.001). Patients with inter-
mediate-risk cytogenetics had a higher number of 
mutated driver genes (median of 4) compared with 
patients with favorable or adverse cytogenetics 
(median of 1 and 2, respectively). Additionally, 
they found that patients with secondary AML or 
t-AML had fewer mutations in genes covered, 
compared with those with de novo AML.

In a prospective study looking at 28 frequently 
mutated genes in 271 patients with de novo AML, 
patients in the intermediate cytogenetic risk group 
had an average of 2.76 mutations, with co-muta-
tions associated with shorter OS (p = 0.006). 
Mutations in NPM1 (p < 0.0001), DNMT3A 
(p < 0.0001), FLT3-ITD (p < 0.0001), TET2 
(p = 0.0001), and IDH1/2 (p = 0.0048) were found 

in higher rates in complex molecular genetic 
abnormalities involving three or more genes 
(CMGAs) in the intermediate cytogenetic risk 
group. Mutations in WT1 and KMT2A-PTD 
were also seen at higher rates in CMGAs at a high 
frequency and were mutually exclusive with prog-
nostically favorable CEBPA double mutations 
(dm) (p = 0.0019). CMGAs were detected in 
63.0% of patients within intermediate cytogenetic 
risk and they carried a shorter 5-year OS in 
CMGA patients (18.1% versus CMGA-negative, 
45.9%; p = 0.0006) and higher 5-year cumulative 
incidence of relapse (CIR) (CMGA-positive, 
83.2% versus CMGA-negative, 52.6%; p =  
0.0052). CMGAs were also associated with sig-
nificantly worse OS and CIR in patients with nor-
mal cytogenetics. These trends persisted in 
patients aged ⩽65 years who were also FLT3-
ITD negative (OS: p = 0.0010; CIR: p = 0.1800). 
The increasing use of NGS (discussed below) will 
likely allow CMGA positivity to become a strong 
prognostic marker, which could be incorporated 
in the adverse risk ELN group.

Microenvironmental targets: 
immunotherapy
The multifaceted bone marrow microenviron-
ment exerts a critical influence on leukemia 
pathogenesis, pathophysiology, and the ability to 
eradicate the leukemic clone.108 A key determi-
nant in leukemia generation versus eradication is 
the multicompartmental immune system. 
Dysfunction of this system can lead to immune 
escape of AML cells throughout the course of the 
disease. Additionally, dysfunction within CD8+ 
T cells, and increased regulatory T cells in the 
peripheral blood has pointed towards important 
dysregulation of T cells in AML.

Both phenotype and genotype features of exhaus-
tion and senescence are seen in CD8+ T cells 
identified in AML patients.109 Furthermore, dif-
ferent phenotypes are also seen in patients who 
respond and those who do not respond to induc-
tion treatment. Patients who do respond to treat-
ment have upregulation of co-stimulatory T cell 
signaling pathways, and downregulation of apop-
totic T cell signaling pathways. Additionally, 
increased levels of regulatory T cells have been 
associated with inferior outcomes. Preclinical 
studies have shown that primary AML cells 
express inducible T-cell co-stimulator (ICOS), 
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which is a member of the CD28 family of co-
stimulatory molecules, and maintains durable 
immune reactions when binding to ICOS 
ligand.110 ICOS/ICOS ligand binding plays an 
important role in Treg cell function and differen-
tiation. High levels of ICOS+ regulatory T cells 
secrete high interleukin (IL)-10, which promotes 
AML cell proliferation. Pomalidomide in an 
immunomodulatory imide drug (IMiD) that 
induces T cell proliferation and enhances IL-2 
and interferon γ (IFNγ) production through its 
interaction with cereblon – a substrate receptor 
for E3 ubiquitin ligase complex.111 This second 
generation IMiD also inhibits regulatory T cells 
and enhances both natural killer (NK) cell medi-
ated cytotoxicity and antibody-dependent cellular 
cytotoxicity (ADCC) due to increased IL-2 pro-
duction. In an attempt to modulate this immune 
response, investigators have done early trials with 
pomalidomide after timed sequential therapy 
induction treatment with AcDVP16 (cytarabine, 
daunorubicin and etoposide) in newly diagnosed 
AML patients and high risk MDS, at the begin-
ning of early lymphocyte recovery (days 14–21). 
In 43 patients (AML n = 39, remainder MDS), 
the overall CR (CR + CRi) rate was 75% with a 
median OS of 27.1 months, and DFS of 
20.6 months. Within the AML group, there was 
an overall 86% CR/CRi rate in AML patients 
with unfavorable-risk cytogenetics.

In addition to T cell dysfunction, AML cells in 
the relapsed setting have been shown to have high 
levels of PD-1 expression also contributing to 
immune evasion.112 Interestingly, PD-1 expres-
sion in CD4+ and CD8+ T cells in newly diag-
nosed patients is significantly less, and often not 
observed. It is, however, seen more commonly 
during therapy, after alloHSCT, and at disease 
relapse. Having higher PD-1 expression is also 
associated with poor prognosis.

Early findings in the R/R AML setting, as seen in 
a single center azacitidine and nivolumab non-
randomized phase II study, found moderate 
responses with an ORR of 33% (23/70 patients), 
of which there were 22% overall CRs (CR/
CRi).113 A phase II trial of pembrolizumab given 
post HIDAC salvage chemotherapy in R/R AML 
(n = 37), had an overall response (ORR: 
CR+CRi+PR+MLFS) of 46% and composite 
CR (CR+CRi) rates of 38%.114 In the newly 
diagnosed setting, a large randomized phase II 

trial evaluated the efficacy and safety of azaciti-
dine and durvalumab versus azacitidine alone in 
both high risk MDS and older and unfit AML 
patients not eligible for intensive chemother-
apy.115 Of the 129 enrolled AML patients, the 
median OS and median PFS were not statistically 
different between the two groups at 13.0 versus 
14.4 months and 8.1 versus 7.2 months, respec-
tively. Though treatment was well tolerated, there 
was no clinically relevant benefit to adding immu-
notherapy to treatment.

There are several large trials currently underway 
evaluating pembrolizumab, nivolumab, and ate-
zolizumab in combination with various backbone 
treatments including venetoclax, HMA, or induc-
tion chemotherapy in both R/R and newly diag-
nosed AML patients, largely in the post-transplant 
and post remission setting, where PD 1 expres-
sion is likely to be higher than at baseline.112

Measuring the depth of AML cell kill:  
a critical part of assessing efficacy
MRD is defined as the presence of residual leuke-
mia that was not detected through traditional histo-
pathologic methods and in the presence of <5% 
blasts.116 MRD positivity correlates with an 
increased risk of relapse either at the end of treat-
ment or prior to allogeneic BMT.117 Nonetheless, 
MRD has not yet been standardized quantitatively 
or qualitatively, which will be necessary for wide-
spread clinical application.118 MRD can be identi-
fied using multiparametric flow cytometry (MPFC), 
digital PCR, allele-specific oligonucleotide quantita-
tive polymerase chain reaction (PCR), and NGS, 
depending on resources available and the genomic 
abnormality being followed (Table 4).116,119 MPFC 
can identify the presence of leukemia cells down to 
levels of 1 × 104–1 × 106. It is fast and widely avail-
able, and provides an absolute quantification; how-
ever, MPFC has less sensitivity than other methods, 
and variable antigen expression may yield false 
negative results. Quantitative PCR methods detect 
aberrant mutations in leukemic cells compared 
with a housekeeper gene down to levels of 1 × 106–
1 × 107, with variability depending on the muta-
tion. The problem with this technology is that there 
is often no PCR target, especially in the elderly.

By comparison, NGS can detect the presence of 
leukemia cells down to levels of <1 × 106, has a 
high degree of sensitivity, and does not need 
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patient-specific primers or probes as compared 
with allele-specific olignonucleotide PCR.120 The 
downside to NGS is that it remains expensive, 
requires a high degree of expertise, and is not yet 
standardized. Extensive discussion of these tech-
niques and upcoming technology is not the focus 
of this review and is therefore not included.

All the methods listed above allow for detection 
of significantly smaller amounts of residual dis-
ease compared with standard morphology. 
Evidence now suggests that identifying patients 
with MRD-positive disease can lead to early 
intervention to prevent relapse with post remis-
sion therapy.118 For patients who are MRD posi-
tive prior to transplant, outcomes remain poor. 
As of yet, however, MRD is not a standardized 
tool used in clinical setting, despite its crucial role 
in prognosis and outcome. Current and future 
prospective trials are crucial to examining the role 

of specific post-induction strategies, including 
maintenance therapies in HSCT or patients with 
MRD positivity.

Conclusion
The molecular dissection of AML has uncovered 
the genomic architecture and the interactive path-
ways that are essential for leukemia cell growth and 
survival. Indeed, AML pathogenesis and patho-
physiology represent a complex symphony with 
diverse components that harmonize to create and 
sustain malignant cells that are programmed to 
survive a multiplicity of existential threats includ-
ing cytotoxic therapies. These components exist 
not only in the leukemia cells themselves but also 
in diverse components of the microenvironment.

In this review, we have highlighted a few selected 
molecular lesions where the development of 

Table 4.  Technologies for MRD detection.

MRD method Description

MPFC MPFC is based on immunophenotyping technologies. There are two 
current techniques: (1) leukemia associated immunophenotype uses 
individual-specific surface makers identified at diagnosis and follows 
these markers in subsequent assessments. (2) The “different from 
normal” method identifies aberrant surface marker profiles at follow-up 
irrespective of profiles at diagnosis and can identify immunophenotype 
shifts.121

dPCR Conventional PCR assays amplify a segment of DNA exponentially 
creating multiple copies; therefore, these segments of nucleic acid can 
be quantified by comparing the number of amplification cycles and the 
amount of PCR copies with a reference sample. For dPCR, the exponential 
signal of PCR is converted into a linear digital signal. It is designed to 
provide an absolute nucleic acid quantification, making it superior for 
detecting MRD.122

ASO quantitative PCR This technology uses an ASO probe for detection of specific mutations. 
ASO probes are synthetic DNA complementary to the sequence of a 
variable target DNA. A fluorogenic probe is designed for each individual 
tumor-specific MRD-PCR target.123

NGS NGS is also known as high throughput sequencing, and is a technology 
that allows for massively parallel sequencing of multiple genes, whole 
exomes and genomes. It can be done in a single day, and is precise. There 
is a large variability in cost between whole genome sequencing, whole 
exome sequencing and targeted sequencing, where only chosen regions 
of interest are sequenced. There are a variety of different technologies 
and companies that run this testing, each with a unique list of targeted 
genes.120

ASO, allele-specific oligonucleotide; dPCR, digital polymerase chain reaction; MPFC, multiparametric flow cytometry; 
MRD, minimal residual disease; NGS, next generation sequencing.
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targeted therapies to modulate those targets is 
underway. In particular, we have focused on spe-
cific high-risk genetic mutations that play critical 
roles in leukemogenesis and for which there are 
drugs that are currently in the clinical arena, 
either approved or under rigorous clinical investi-
gation. There are numerous pivotal genomic 
lesions and molecular pathways that we have not 
addressed, for instance the intermediaries that 
regulate cell cycle progression and the diverse 
pathways that are activated by DNA damage and 
orchestrate the repair of such damage. In this 
regard, optimal anti-AML therapy requires com-
plementary strategies, including diagnostic stand-
ards, aimed at interdicting multiple aberrations 
and at preventing those mechanisms, whether 
primary or in response to initial therapy, that con-
fer net resistance.
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