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Advances in therapeutic options for
newly diagnosed, high-risk AML patients

Kimberley Doucette, Judith Karp and Catherine Lai

Abstract: Acute myeloid leukemia (AML] is an aggressive malignancy characterized by
clonal proliferation of neoplastic immature precursor cells. AML impacts older adults and
has a poor prognosis. Despite recent advances in treatment, AML is complex, with both
genetic and epigenetic aberrations in the malignant clone and elaborate interactions with
its microenvironment. We are now able to stratify patients on the basis of specific clinical
and molecular features in order to optimize individual treatment strategies. However, our
understanding of the complex nature of these molecular abnormalities continues to expand
the defining characteristics of high-risk mutations. In this review, we focus on genetic and
microenvironmental factors in adverse risk AML that play critical roles in leukemogenesis,
including those not described in an European LeukemiaNet adverse risk group, and describe
therapies that are currently in the clinical arena, either approved or under development.
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Introduction

Acute myeloid leukemia (AML) is an aggressive
malignancy characterized by clonal proliferation
of neoplastic immature precursor cells. AML
impacts older adults, at a median age of 68years,
and has a poor prognosis with a 5-year overall
survival (OS) of roughly 25%.! Approximately
35-40% of adults under 60years of age attain
complete remission (CR) and are deemed cured
with treatment. Unfortunately, the prognosis in
older adults remains poor, with those unable to
receive intensive chemotherapy traditionally hav-
ing a median overall survival of 5-10 months. The
combination of a hypomethylating agent (HMA)
and the small molecule BCL2 inhibitor veneto-
clax has improved the median OS to 15 months.?
Nonetheless, AML remains a complex family of
diseases characterized by a panoply of genetic and
epigenetic aberrations in both the malignant clone
and its microenvironment.

Intensive induction chemotherapy regimens com-
bining cytarabine and anthracycline have been
the standard of care for the last 40years, and

cause significant toxicities, especially in older
patients.? Until the last decade, most clinical tri-
als evaluated cytogenetic and molecular features
through secondary or retrospective analysis. More
recently, a select few of these aberrations have
been targeted pharmacologically with resultant
clinical success,* emphasizing the importance of
upfront diagnostic testing to optimize treatment
options. In 2017, the European LeukemiaNet
(ELN) updated their risk classification groups by
incorporating more mutations, including those
associated with adverse clinical outcomes. The
adverse risk group now recognizes FLLT3-internal
tandem duplication (ITD) with high expression
(ITD high) with wild type NPMI, mutated
RUNX]1, mutated ASXLI and mutated TP533
(Table 1) as contributing to worse outcomes.

As we have continued to dissect the molecular
pathogenesis and pathophysiology of AML, we
are able to stratify patients on the basis of specific
clinical and molecular features in order to opti-
mize individual treatment strategies. Herein, we
describe selected factors associated with adverse
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Table 1. High-risk features in newly diagnosed AML.

Clinical factors

Age >60years
Antecedent hematological disorders

Treatment-related

Leukemia with persistence of minimal residual disease after induction chemotherapy?

Cytogenetic and molecular features

t(6;9)(p23;934.1); DEK-NUP214b

t(v;11923.3);KMT2A rearrangements, multiple fusion partners

1(9;22)(q34.1;q11.2); BCR-ABL1

inv(3)(q21.3926.2) or t(3;3)(q21.3;q26.2); GATA2.MECOM(EVI1)

-5 or del(5q); -7; -17/abn(17p)

Complex karyotype or monosomal karyotype

Mutations within ELN adverse risk stratification

FLT3-ITD high+ wild type NPM1
RUNX1¢

ASXL1¢
TP53

Proposed high risk mutations to be included in ELN

KIT mutations

RNA Spliceomes (NRAS and KRAS])

RNA splicing (e.g., SRSF2, SF3B1, U2AF1, and ZRSR?2)
DNMT3A

BCOR

Complex molecular genetic abnormalities involving three or more genes

aResidual disease defined by multiparameter flow cytometry or positive PCR for disease-specific genes describes a group
of patients with significant risk of early recurrence after consolidation therapy, including consolidation in the form of

allogeneic transplantation.

PMore recent data suggests that t(6;9)(p23;q34.1) should likely be re-classified within the intermediate risk group if treated

intensively with allogeneic HSCT.5¢

cShould not be used as an adverse prognostic marker if they co-occur with favorable-risk AML subtypes.
AML, acute myeloid leukemia; ELN, European LeukemiaNet; HSCT, hematopoietic stem cell transplantation;

PCR, polymerase chain reaction.

risk AML, focusing on high risk mutations,
including those not described in an ELN adverse
risk group (Table 2). We discuss selected newer
treatment options available for high-risk patients

that target specific genetic and microenviron-
mental factors as well as selected treatments cur-
rently under development for future early phase
clinical trials.
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Table 2. High-risk mutations, their functional class and mechanisms of leukemogenesis.

High-risk mutations Functional class

Mechanisms of leukemogenesis

Incidence in AML

FLT3, KRAS, NRAS, KIT Signaling and kinase

pathway

DNMT3A, ASXL1 Epigenetic modifiers
(DNA methylation and

chromatin modification)

SRSF2, SF3B1, U2AF1,and  Spliceosome complex

ZRSR2
RUNXT1 Transcription factors
TP53 Tumor suppressors

These mutations lead to the aberrant
activation and proliferation of cellular
signaling pathways.

Felt to be inciting mutations in
leukemogenesis and are often found in
age-related clonal hematopoiesis. These
mutations likely promote clonal outgrowth,
but require additional mutations to initiate
leukemic transformation.

Of note: DNMT3A mutations in conjunction
with mutation NPM1 confers particularly
poor prognosis. NPM1participates in a
variety of cellular functions, which include
protein formation, ribosome biogenesis, DNA
replication, and the cell cycle.

Spliceosome complex is important for RNA
splicing of mRNA precursors. Mutations

in RNA spliceosomes causes mis-splicing
of mRNA precursors leading to abnormal
epigenetic regulation, transcription, and
genome integrity, ultimately leading to
cancer. These are often seen in older
individuals with less proliferative disease.

This is an important core-binding factor
family of transcription factors involved

in embryogenesis of HSC generation and
regulation of HSC differentiation and
homeostasis. When mutated, may lead to a
stem cell phenotype characterized by early
HSC exhaustion.

Tumor suppression occurs via apoptosis,
DNA repair and cell cycle arrest/senescence,
and when disrupted, will lead to survival of
cancerous cells.

~2/3 of AML cases

~1/2 of AML cases

~1/10 of AML cases

~1/10 of AML cases

~1/6 of AML cases

AML, acute myeloid leukemia; HSC, hematopoietic stem cells.

Adverse risk molecular factors in the 2017

ELN risk stratification

The clinical and molecular factors associated with
a drug-resistant phenotype and overall poor prog-
noses are delineated in Table 1.

Cytogenetics

Cytogenetic findings are classified according to
favorable, intermediate, and unfavorable risk cat-
egories.? Unfavorable cytogenetics define adverse
ELN risk and thus provide critical prognostic
information that can inform treatment options.”

Nonetheless, =7, —5/del(5q), monosomal karyo-
types, and complex cytogenetics with at least
three abnormalities carry an adverse prognosis
independent of treatment type.® Adverse risk
cytogenetics often accompany secondary AMLs,
including myelodysplasia-related (MDS/AML) and
therapy-related (t-AML) variants, older age, high
risk molecular pathways implicated in leukemogen-
esis (e.g., TP53), and multidrug resistance.9

Of the high-risk cytogenetic translocations, we
have chosen to highlight mixed lineage leukemia
(MLL)-rearranged AML. AMLs with MLIL-based
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translocations are associated with poor outcomes
in adults and frequent relapses, despite initial
response to standard induction chemotherapy and
allogeneic hematopoietic stem cell transplantation
(HSCT).1° The MLL gene, located on chromo-
some 11923, encodes the histone-lysine-N- meth-
yltransferase 2A (KMT2A), which plays a critical
role in differentiation and homeostasis through
chromatin remodeling and regulation of home-
obox (HOX) genes. MLL-rearranged leukemia is
characterized by balanced translocation and fusion
with over 80 different partner genes including
AF4, Afadin, AF9, ELL, and ENL, with the result-
ant translocations t(4;11)(q21;923), t(6:11)
(927:923), t(9;11)(q22;q923), t(11;19)(g23;p13.1),
and t(11;19)(g23;p13.3).1! For leukemia to
develop, MLL fusion proteins must interact with
the protein menin, a tumor suppressor protein
responsible for regulating cell growth for endocrine
organs (encoded on the MEN I gene).!2 When co-
factor menin and MLL fusion proteins interact,
there is an upregulation of HOXA9 and MEISI
genes, which ultimately promotes leukogenesis
and proliferation. In fact, when menin is blocked
in MLL transformed leukemic blasts, HOX gene
upregulation and cell differentiation arrest ceases,
supporting menin’s crucial role for oncogenesis.!3
MULL-rearrangement is found more frequently in
t-AML (9.4%) than in de novo AML (2.6%,
$<<0.0001), with particular occurrence in the set-
ting of agents that freeze the topoisomerase
II-DNA complex, such as anthracyclines and
epipodophyllins.14

The histone H3K79 methyltransferase DOT 1L is
recruited in MLL-rearranged AML, leading to
methylation of oncogenic downstream targets
HOXA9 and Meisi1.1° In a murine model, inhibi-
tion of DOTIL led to the suppression of down-
stream MLL target genes with significant tumor
regression. The DOTI1L inhibitor Pinometostat
— a potent and selective small molecule inhibitor
of DOTIL methyltransferase activity — has the
ability to abrogate HOX cluster gene expression
in AML cells, which leads to leukemia cell apop-
tosis. A phasel study of Pinometostat in MLL-
rearranged relapsed/refractory (R/R) myeloid
malignancy patients demonstrated tolerability
and modest including morphologic changes in the
bone marrow consistent with myeloid differentia-
tion.!> An ongoing phase Ib/II open-label, single-
arm trial enrolling R/R MLL-rearranged AML
patients will evaluate the tolerability and early

efficacy of pinometostat in combination with
azacitidine.!6

New therapeutic agents targeting the menin-
KMT2A protein—protein interaction are being
investigated in early phase clinical trials.”
Preliminary results of KO-539 in a phase I/IIA
trial of adults with R/R disease, show that the
drug is generally well tolerated with no dose inter-
ruptions or discontinuations due to drug-related
adverse events. There is also some suggestion of
good anti-leukemic activity.1?

Genetic mutations

FLT3-ITD high+ and wild type NPM1. FLT3 is a
transmembrane ligand-activated receptor tyro-
sine kinase and is expressed on hematopoietic
progenitor cells.!® Mutations in FLT3 occur in
25-30% of all AMLs and result in aberrant acti-
vation of RAS/RAF/MEK/mammalian target of
rapamycin (mTOR) pathways, as well as through
phosphatidylinositol 3 kinase (PI3K)/AKT path-
ways, all of which lead to cell growth and survival.
Higher allele frequencies/ratios, have been associ-
ated with poorer outcomes, especially with wild
type NPM1.

Prior to ELN 2017, all FL'T3 mutations irrespec-
tive of allelic ratio were considered to be high risk.
Alow ITD allelic ratio is considered <0.5, whereas
a high allelic ratio is over =0.5. ELN now lists
patients with wild-type NPM1 without FLT3-
ITD or with FLT3-ITD¥ (without adverse-risk
genetic lesions) and mutated NPM1 and FLT?3-
ITDheh a5 intermediate risk.> Patients with
mutated NPM1 with FLT3-ITD"v are listed as
having a favorable risk. We do not have prospec-
tive data that suggests FLLT3 mutated patients in
favorable and intermediate risk groups have bet-
ter outcomes without allogeneic HSCT. Several
tyrosine kinase inhibitors (TKIs) have been stud-
ied either as monotherapy or in combination with
various chemotherapies. Midostaurin is now
approved in combination with 7+3 as front-line
treatment for newly diagnosed adults, who can
tolerate induction treatment.!® This phase III trial
found significantly improved event-free survival
(EFS) and OS in the combination midostaurin
and daunorubin/cytarabine (7+3) arm compared
with the 7+3 arm alone (Table 3). Interestingly,
the CR rates were similar in both arms, suggest-
ing that the improvement in OS could reflect a
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greater depth of CR and/or an increased number
of patients able to go to HSCT.

Sorafenib has been most successful in the post-
transplant setting for patients in CR after alloge-
neic HSCT.#! Sorafenib was instituted between
30days after induction/consolidation and 120 days
post-transplant once patients achieved count
recovery. The OS at 24, 36, and 48 months was
76% [95% confidence interval (CI), 63-91%],
76% (95% CI, 63-91%), and 57% (95% CI, 31—
91%), respectively. The EFS at 24, 36, and
48 months was 74% (95% CI, 62-90%), 64%
(95% CI, 48-85%), and 64% (95% CI, 48-85%),
respectively. Sorafenib in this study population
was well tolerated and did not impair engraft-
ment, with a non-relapse mortality rate at 3 years
post-transplant of 10% (95% CI, 1-20%). The
phaseII SORMAIN trial (N=83) evaluated the
use of sorafenib for 24months in adults with
FLT3-ITD positive AML after obtaining com-
plete hematologic remission with HSCT.42 At a
median follow up of 41.8 months, they found a
24-month relapse free survival of 53.3% (95%
CI, 0.36-0.68) in the placebo group wversus 85.0%
(95% CI 0.70-0.93) with hazard ratio (HR) of
0.26 (95% CI 0.10-0.65, p=0.002).

Next-generation TKIs (crenolanib, quizartinib,
and gilteritinib) have more specific activity with
fewer off-target effects.¥> Of these TKIs, gilteri-
tinib demonstrates the greatest clinical benefit to
date, as seen in the R'/R AML ADMIRAL trial,**
and is approved for R'/R AML. Compared with
salvage chemotherapy, gilteritinib had a higher
CR rate (34% versus 15.3%) and OS of 9.3 months
versus 5.6 months (p<<0.001). Post hoc analyses of
phasell and III combination trials suggest
improved efficacy in the subgroup of patients with
FL'T3 mutations relative to standard approaches.
Combinations of TKIs with diverse chemothera-
pies (CPX-351, azacitidine, 7 + 3, cladribine) and
targeted agents such as venetoclax are in clinical
trials, with over 20 open and recruiting trials
within the United States for FLT3-positive AML.
Other studies with subgroup analysis of FLT?3
positive patients are listed in Table 3.

RUNX1

RUNZXI1, located on chromosome 21g22, is an
important transcription factor involved in hemat-
opoietic stem cell (HSC) growth, differentiation,
and homeostasis. Different types of RUNXI

mutations are found in AML, including missense
mutations, deletions, truncation mutations, and
frameshift mutations in the “Runt” homology
domain.#>46 These diverse mutations lead to loss-
of-function mutations with attendant chemother-
apy resistance and poor prognosis.?” RUNXI
mutations are typically associated with older age,
male gender, more immature morphology, and
MDS/AMLs. 48

RUNXI1 mutations are seen in approximately
8-16% of AML patients and are typically associ-
ated with ASXL 1 mutations and other epigenetic
modifiers IDH2, KMT2A, EZH?2) as well as spli-
ceosome mutations.*8 They are typically inversely
associated with NPMI and CEBPA mutations,
and are associated with lower CR rates, shorter
disease-free survival (DFS), EFS, and OS.%
Co-mutation with ASXIL.1, SRSF2, or PHF6 con-
fers a significantly worse prognosis relative to pair-
ing with other mutations such as IDH2.48

To date, there are no approved targeted agents for
mutated RUNX1 (mtRUNXI1), but preclinical
studies demonstrate that the depletion of RUNX1
by short-hairpin RNA as well as editing-out
RUNXI1 eR1 (CRISPR/Cas9-mediated) leads to
AML cell death.*® In vitro treatment with bromo-
domain and extraterminal (BET) protein antago-
nists has also proven efficacious in causing
mtRUNX1AML cell death. BET proteins recog-
nize acetylated lysine moieties on histones and act
as a scaffold to recruit promoters and enhancers to
co-activate expression of genes involved in cell
growth and survival. AML mtRUNXI1 cell
engrafted in mice treated with a BET protein
inhibitor exhibited increased apoptosis and subse-
quently improved survival. A phasel trial of the
BET inhibitor OTXO015 in 41 patients yielded CR
or CR with incomplete recovery (CRi) in 3, but
did not detect a correlation between response and
mtRUNX1.50 Other early trials with other BET
inhibitors have shown similar findings.51:52 The
first generation BET protein inhibitor, ABBV-
075, in combination with venetoclax, was found
to significantly reduce AML cell-burden and pro-
long survival in AML engrafted immune depleted
mice,>? which may provide a springboard for BET
inhibitor/venetoclax combination trials.

ASXL1
Additional sex comb-like 1 (ASXL.1) is a chroma-
tin-binding polycomb protein required for normal
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embryogenesis through epigenetic activation and
repression of gene transcription, and is located on
chromosome band 20ql11.5% ASXIL.1 mutations
are detected in 10—20% of AMLs and consist pre-
dominantly of heterogenous nonsense/frameshift
mutations that appear to result in loss of func-
tion.>5-3% Nonetheless, gain-of-function mutations
have also been suspected with homozygous muta-
tions. Similar to RUNXI1, they are found in older
patients, those with secondary AML, and are
often co-mutated with RUNXI1 and spliceosome
mutations.>* They are inversely associated with
FLT3 ITD mutations, mutually exclusive with
NPMI1 mutations, and associated with lower rates
of CR and overall poorer prognosis when com-
pared with wild type ASXL.1.5557 There are cur-
rently no targeted agents that have shown
improved outcomes in this subgroup of patients.
Nonetheless, BET inhibitors may afford comple-
mentary effects on chromatin remodelling.>1:52

Tumor protein 53

The tumor protein 53 (TP53) gene, located on
chromosome 17pl13.1, is a prototypical tumor
suppressor gene, and is mutated in up to 50% of
cancers.>® The encoded TP53 protein is involved
in transcriptional regulation of downstream path-
ways crucial in tumor suppression through apop-
tosis, DNA repair, and cell cycle arrest/senescence.
Multiple forms of 7P53 mutations are detected in
AML, including missense mutations, deletions,
insertions, and nonsense mutations.?® TP53 gain-
of-function mutations can also lead to prolifera-
tion and survival of tumor cells, as well as
angiogenesis and metastasis.®® The most com-
mon 7P53 mutations are missense alterations
occurring in the DNA-binding domain.%! Though
mutations in other domains also impact TP53
protein function, the implication of these muta-
tions remains uncertain.

While germline 7P53 mutations define the arche-
typal familial cancer syndrome known as
Li-Fraumeni, only 1.1% of AML cases have a
germline 7P53 mutation On the other hand,
abnormalities in 7P53 arise as somatic mutations
in 10% of de novo AMLs 20% in t-AMLs, and up
to 90% in erythroleukemias.’® Prognosis with
TP53 mutations is dismal, with high rates of dis-
ease refractory to both chemotherapy and HSCT
with CR rates <30% and 3-year OS <15%.58:62 A
recent study showed that patients with 7TP53

mutations with variant allele frequency (VAF)
>40% had significantly worse cumulative inci-
dence of relapse (p=0.030), relapse-free survival
(RFS [p=0.001]) and OS (»p=0.003) than
patients with a VAF <40%.93 In patients treated
with a cytarabine-based regimen, the median OS
of patients with a VAF >40% was 4.7 months ver-
sus 7.3months for patients with a VAF <40%
(»p=0.006). In patients treated with HMA, the
VAF did not affect OS significantly. Interestingly,
patients with VAF <40% treated with cytarabine
based regimen, had improved OS compared with
those treated with HMA (1-year OS rates of 44%
and 31%, respectively; p=0.04) whereas patients
with VAF >40% had poorer OS regardless of
treatment choice (l1-year OS rate <25% in all
groups). Similarly, Sasaki ez al. assessed VAF in
various common driver mutations in 421 patients
with newly diagnosed AML.%* TP53 mutations,
found in 20% of their cohort, were the major con-
tributor to decreased OS with each increasing
increment in VAF associated with a 1% higher
risk of death. The median VAF in their cohort
was 45.7% (range 1.15-93.74%).

APR-246 (PRIMA-1MET) is a small molecule
that restores wild-type TP53 transcriptional activ-
ity of unfolded wild-type or mutant TP53 protein,
resulting in apoptosis of 7P53 mutated cancer
cells. Preliminary results from a phasell trial of
APR-246 in combination with azacitidine in 45
treatment naive patients with intermediate/high/
very high risk MDS, myeloproliferative neoplasms
(MPNSs) or oligoblastic AML (blasts <30%) har-
boring TP53 mutations yielded an overall response
rate (ORR) of 87% and CR rate of 53%.2° The
median duration of response was 6.5 months with
intent-to-treat OS of 11.6months (95% CI 9.2—
14). The median VAF of TP53 (25% at the start
of the trial) was serially assessed during treatment
using next generation sequencing (NGS). At a
VAF cut off of 5%, 39% achieved NGS negativity
with treatment, which was associated with
improvement in OS (12.8 wversus 9.2months, p=
0.02). Additionally, the median VAF at maximum
mutation clearance was 0.63% (0.0-5%), with 5
(11%) becoming minimal residual disease (MRD)
negative. There is an ongoing phaselll trial with
APR-246/azacitidine [ClinicalTrials.gov identi-
fier: NCT03745716]. In addition, APR-246 is
being studied in a phasel trial in combination with
azacitidine and venetoclax [ClinicalTrials.gov
identifier: NCT04214860].
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Magrolimab (Hu5F9-G4) is a blocking antibody
directed against CD47, which is also known as
the macrophage immune checkpoint or the “don’t
eat me” signal on cancer cell surfaces.3° This anti-
body induces phagocytosis and AML cell death,
particularly in TP53 mutated patients. A phaseIb
study combining magrolimab and azacitidine in
34 treatment-naive AML patients unfit for inten-
sive chemotherapy resulted in transfusion inde-
pendence in 56%, ORR 65%, CR 44%, and
CRi 12%, with a median time to response of
2.04months.®> Of the 19 patients achieving CR/
CRi, 37% (7/19) became MRD negative by flow
cytometry. Importantly, patients with a 7TP53
mutation had a 71% objective response (15/21)
with CR 48% (10), and 1 CRi, with a median
duration of response of 9.9 months. The median
OS for the TP53 mutated patients was 12.9 months
(95% CI: 6.24months—not reached) compared
with 18.9months for 7P53 wild-type patients
(95% CI: 4.34 months—not reached).

Pevonedistat (MILN4924) is a first-in-class small
molecule inhibitor of Nedd8-activating enzyme
(NAE), thereby inactivating E3 ubiquitin ligases
known as ring ligases (CRLs), which in turn leads
to accumulation of CRL protein substrates such
as ¢-MYC, leading to eventual cell death though
activation of pro-apoptosis pathways. CRLs are
crucial for cell proliferation and survival. Based on
clinical efficacy as a single agent in the R/R setting,
a phaselb study combining pevonedistat with
azacitidine in adults aged =60years with newly
diagnosed AML showed an ORR of 50% in the
intent-to-treat analysis, with a median duration of
response of 8.3 months in 44% who were able to
receive at least six cycles of the combination.% Of
the five patients with 7P53 mutation identified at
baseline, CR or PR was achieved in four. A total
of six out of eight (75%) total TP53-mutated
patients achieved CR/CRi. There is an ongoing
phaselb trial in adults =50years with de novo or
secondary AML including those with adverse
cytogenetics and/or TP53 mutations, combining
venetoclax and azacitidine with escalating doses of
pevonedistat (PAVE) [ClinicalTrials.gov identi-
fier: NCT04172844].

Flotetuzumab, a bispecific DART (dual-affinity
retargeting agent) antibody-based molecule to
CD3¢ and CD123, is being investigated as mono-
therapy in the R/R setting, and early findings sug-
gest that the 42 patients with TP53 mutations
have higher rates of CD+ T cell infiltration,

expression of immune checkpoints, and IFN-y
signalling than patients with other risk defining
mutations such as ASXL1, TET2, and
DNMT3A.7 CR was achieved in 47% (7/15) of
patients with R/R AML and TP53 abnormalities,
with 2 remaining in CR >6 months. Responders
exhibited significantly higher tumor inflammation
signature at baseline defined by FOXP3, CDS8,
inflammatory chemokine, and PD1 gene expres-
sion scores, compared with nonresponders.
Immune infiltration in the tumor microenviron-
ment is an important predictor of treatment out-
comes with immunotherapy, and is discussed
further in the section Microenvironmental Targets:
Immunotherapy below. Patients with TP53 muta-
tions who achieved CR had a median OS of
10.3 months (range 3.3-21.3 months), suggesting
that flotetuzumab immunotherapy could improve
treatment outcomes in this high-risk group com-
pared with standard of care — a hypothesis that
needs to be tested. Other studies with TP53
mutations analysis are listed in Table 3.

Mutations not included in the 2017
ELN risk stratification

KIT
Some chromosomal abnormalities seen in AML
are t(8;21)(q22;q22) and inv(16)(pl13;q22),

known as core binding factor-AML (CBF-AML),
which produce corresponding abnormal fusion
genes RUNXI-RUNXI1T1 and CBFB-MYH]1.68:69
CBF-AML is seen in approximately 15-20% of
newly diagnosed AML cases and generally has a
better prognosis except in the presence of a c-kit
mutation; seen in approximately 60-80% of AML
patients, with activating mutations seen in 20% of
CBF-AML adult patients.#>68 KIT is located at
chromosome band 4q12 and encodes a transmem-
brane glycoprotein that activates downstream sign-
aling pathways involved in cell proliferation,
differentiation, and survival.”® Discrepancies exist
in terms of outcomes in patients with c-kit muta-
tions, with some studies showing worse OS and
decreased remission duration, while others show
similar outcomes in those with and without the
mutation.%871-75

Clinical trials have evaluated the effects of adding
a TKI to standard treatment options in CBF-
AML. Dasatinib in combination with7 + 3 induc-
tion followed by consolidation and maintenance
treatment was studied in the CALGB 10801
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phaseIl trial.32 This trial enrolled 61 adult
patients with newly diagnosed CBF-AML, of
whom 19% harbored a c-kit mutation (Table 3).
In a post hoc analysis of this limited cohort,
patients with c-kit mutations had similar out-
comes to those with wild-type KIT with 3-year
rates of DFS (67% wersus 75%) and OS (73%
versus 76%), and there were no differences related
to the magnitude of KIT wildtype expression.

The phasell AMLSG 11-08 trial also examined
the effects of dasatinib in combination with inten-
sive induction and consolidation chemotherapy in
newly diagnosed CBF-AML.?3 In contrast to
CALGB 10801, patients with c-kit mutation
(n=19) had inferior outcomes compared with c-kit
wild type (n=70). There is an ongoing phaseIll
trial of intensive chemotherapy with or without
dasatinib in newly diagnosed adult patients with
CBF AML with RUNX1-RUNXI1T1 (or variant
form) or CBFB-MYHI11 fusion transcripts
[ClinicalTrials.gov identifier: NCT02013648].
Additionally, there is a phasell study combining
midostaurin with standard induction, consolida-
tion, and maintenance therapy in adult patients
<65years of age with de novo AML harboring rear-
rangements in CBF-AML genes (RUNXI-
RUNXI1T1 and CBFB-MYH11); [ClinicalTrials.
govidentifier: NCT03686345] and [ClinicalTrials.
gov identifier: NCT01830361].

RAS

RAS genes encode a family of proteins that are
crucial in cell signaling networks that regulate cell
function across multiple tissue types.”® RAS onco-
genes are the most common somatic mutations in
human cancer and occur in 12-27% of patients
with AML. In AML, the incidence of NRAS
mutations is about 11%, compared with approxi-
mately 5% in KRAS mutations. The RAS path-
way is activated by mutations in upstream receptor
tyrosine kinases (FL'T3 or ¢-KIT) or mutations/
overexpression of downstream effector pathways
in RAS/RAF/IMEK/ERK kinase pathways.””
Therefore, patients without RAS mutations but
with FL'T3, KIT or PDGRF mutations have acti-
vation of RAS-dependent pathways, thereby
increasing proliferation and preventing apoptosis
of leukemic cells. The exact prognostic implica-
tion of RAS mutations is unclear, particularly in
the newly diagnosed setting.’®8% Nonetheless, a
retrospective study found decreased median EFS

in AML patients that harbored NRAS or KRAS
mutations (4.9 months) compared with RAS wild-
type patients (11.4months; p<<0.01) at a median
follow up of 25months.85 RAS was associated
independently with increased risk of death with
HR of 1.85 (»p=0.016). Interestingly, relapse
occurred despite ongoing RAS mutation clearance
in 6 out of 10 patients.

Acquisition of RAS or FLT3 ITD mutations at
the time of progression from MDS to AML clearly
leads to worse outcomes.30 The median OS after
leukemia transformation in those with a detecta-
ble RAS and/or FLT3-ITD mutations was
2.4months compared with 7.5 months in patients
with wild type RAS and FLT3 (HR: 3.08, 95% CI
1.9-5.0, p<0.0001). For RAS mutation alone,
the median survival after leukemic transformation
was 3.6months compared with 7months in
patients with wild-type RAS (p=0.0008).

For patients with IDH mutations, co-mutations
with RAS have been associated with higher rates
of resistance to monotherapy with targeted treat-
ments.87 Proposed mechanisms include constitu-
tive activation of RAS pathway, bypassing the
differentiation induced by IDH1/2 inhibitors, or
RAS mutation being a marker of higher muta-
tional burden, which increases rates of resistance.
These associations have not been consistently
identified, and, more recently, the AG221-
AML-005 trial reported that co-mutations with
RAS/FLT3 have not affected response rates to
combination treatment with the IDH 2 inhibitor
enasidenib plus azacitidine in newly diagnosed
patients being treated with this regimen in the
front line setting.8 However, a recent phase Ib/I1
trial combining the IDH1 inhibitor ivosidenib,
venetoclax +/— azacitidine in advanced myeloid
malignancies, found that active signaling co-
mutations (including RAS) were seen in 66% of
patients who had no response or had relapsed.8®

The emergence of AML subclones with new RAS-
MAPK pathway mutations in patients who relapse
after the FLL'T3 inhibitor gilteritinib has also been
detected.®%-°1 At least in theory, combinations of
FLT3 inhibitors and inhibitors of MEK inhibitors
or other downstream intermediaries might pre-
vent or overcome FLT3 inhibitor resistance. In
this context, preclinical data have supported the
notion that inhibition of downstream pathways
such as the mitogen-activated protein Kkinase
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(MAPK) and/or PI3K/AKT pathway could abro-
gate net RAS signalling.””

RNA spliceosomes

Normal cells require functional RNA splicing of
mRNA precursors by a multiprotein spliceosome
complex for complete gene expression. Mutations
in RNA spliceosomes leads to mis-splicing of
mRNA precursors leading to abnormal epigenetic
regulation, transcription, and genome integrity,
ultimately leading to cancer.®%°3 RNA splicing
mutations (e.g., SRSF2, SF3B1, U2AFI, and
ZRSR2) are frequently identified in MDS and
chronic myelomonocytic leukemia (CMML),
with about 10% of AML patients harboring these
mutations.?> These mutations are usually exclu-
sive of one another and are expressed with its wild
type allele, suggesting the requirement of the
wild-type allele function for survival of the cancer
cell. These mutations are typically found in older
patients with less proliferative disease, and are
associated with refractory disease.

H3B-8800 — a small molecule agent that binds to
SF3b complex leading to alternative splicing
changes — has been studied in patients with MDS,
AML, or CMML.34 Pharmacodynamic correlates
detected dose-dependent alterations in mature
mRNA transcripts in blood mononuclear cells
with good overall patient tolerability (mostly
grade 1 or 2 toxicities). While there were no
objective responses seen in the 84 patients (24
with AML), there were measurable improve-
ments in red blood cell (RBC) transfusion
requirements.

In addition to preclinical studies looking at small
molecule inhibitors to target the core spliceo-
some, RNA-binding proteins (RBPs) have also
become targets of interest in myeloid leukemias
with RNA splicing mutations.®* Specifically,
RBM39 is a suspected RBP molecular target of
sulfonamide compounds (such as indisulam,
E7820, and chloroquinoxalin). RBM39 is an
RBP, which has important functions in transcrip-
tional coactivation and pre-mRNA splicing.
Hypothetically, depletion or inhibition of RBM39
should lead to splicing alterations that, in turn,
lead to cell death. Indisulam, a sulfonamide com-
pound, has been shown to recruit RBM39 to the
CUL4-DCAF15 E3-ubiquitin ligase, leading to
its degradation and ultimately aberrant splicing.

Finally, anti-sense oligonucleotide based-thera-
pies hybridize with RNA and may thereby affect
splicing events of pre-mRNA or promote RNA
degradation. Early trials in this field are currently
underway.

DNMT3A

DNMT3A is a pivotal regulator of the epigenetic
processes of DNA methylation and chromatin
modification and is mutated in about 20% of
de novo AML cases.”® DNMT3A found on human
chromosome 2p23, which encodes a 130-kDa
protein that is expressed in two major forms: a
long isoform known as DNMT?3A1, and a short
isoform known as DNMT3A2. Both isoforms
catalyze the methylation of cytosine residues in
cytosine guanine dinucleotide islands with result-
ant silencing of diverse genes involved in the pro-
cesses of differentiation and self-renewal.
DNMT3A mutations are detected mainly in
older patients, and are associated with higher
white blood cell counts, normal cytogenetics, and
myelomonocytic or monocytic morphology.
DNMT3A is often co-mutated with NPMI,
IDH1, and FLT3-ITD and, although not yet
incorporated into the ELN risk score, confers a
poor prognosis.?>%5-97 The DNMT3A-R882
mutation has been associated with poor prognosis
in patients over age 60years old, while other
DNMT3A mutations have been associated with
adverse prognosis in younger patients.’® A recent
Chinese study of 870 adults with AML, found
that prognosis of DNMT3A R882 was associated
with a mutant-allele ratio, with higher allele ratios
predicting a relatively poor prognosis.?

The frequency and adverse prognostic features of
DNMT3A mutations suggest that the ability to
target these mutations directly or through down-
stream intermediaries could have significant clini-
cal impact. In this regard, the H3 lysine
methyltransferase DOTIL as a critical down-
stream mediator of growth and survival-promot-
ing HOX genes, is a potential therapeutic target
for the treatment of DNMT3A-mutated AML,35:100
with interest in DOTLI1 inhibitor Pinometostat
(discussed above in regards to MLL-rearranged
leukemia).

Variants in the DNMT3A gene have also been
associated with clonal hematopoiesis of indeter-
minate potential (CHIP), and clonal cytopenias
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of undetermined significance (CCUS), which
have been identified as pre-malignant conditions,
often associated with older age.l°1-103 Though
several variants in DNMT3A have been identified
in CCUS and CHIP, not every mutation has been
later linked to the development of AML, and the
recommendation has been to monitor such
patients.

Number of driver mutations: combining
cytogenetics and mutations

While complex karyotypes or combined chromo-
somal abnormalities are present in approximately
10-12% of AML and are associated with adverse
prognosis, older age, and treatment resistance in
AML,, little is known regarding the impact of spe-
cific co-mutations on prognosis.>»10%105 The
tumor-mutational burden is relatively low in
AML relative to solid tumors, and, as such, there
may be less neoantigen presentation and T cell
mediated immune response compared with other
malignancies.1% Nonetheless, data suggest that
increasing number of mutations is associated with
poorer prognosis.103

Metzeler et al. sequenced the entire coding
sequences of 37 genes and recurrently mutated
regions in 664 untreated AML patients who
received intensive induction chemotherapy
between 1999 and 2012.197 The majority (97%) of
patients had at least one identified driver mutation,
and an additional 15 patients had recurrent bal-
anced chromosomal translocations. The number
of mutated genes per patient was 4 (range 0-10).
The median number of driver gene mutations
increased with age (p<<0.001). Patients with inter-
mediate-risk cytogenetics had a higher number of
mutated driver genes (median of 4) compared with
patients with favorable or adverse cytogenetics
(median of 1 and 2, respectively). Additionally,
they found that patients with secondary AML or
t-AML had fewer mutations in genes covered,
compared with those with de novo AML.

In a prospective study looking at 28 frequently
mutated genes in 271 patients with de novo AML,
patients in the intermediate cytogenetic risk group
had an average of 2.76 mutations, with co-muta-
tions associated with shorter OS (p=0.006).
Mutations in NPMI1 (p<0.0001), DNMT3A
(p<0.0001), FLT3-ITD (p<0.0001), TET2
(p=0.0001), and IDH1/2 (p=0.0048) were found

in higher rates in complex molecular genetic
abnormalities involving three or more genes
(CMGASs) in the intermediate cytogenetic risk
group. Mutations in W71 and KMT2A-PTD
were also seen at higher rates in CMGAs at a high
frequency and were mutually exclusive with prog-
nostically favorable CEBPA double mutations
(dm) (p=0.0019). CMGAs were detected in
63.0% of patients within intermediate cytogenetic
risk and they carried a shorter 5-year OS in
CMGA patients (18.1% versus CMGA-negative,
45.9%; p=0.0006) and higher 5-year cumulative
incidence of relapse (CIR) (CMGA-positive,
83.2% wersus CMGA-negative, 52.6%; p=
0.0052). CMGAs were also associated with sig-
nificantly worse OS and CIR in patients with nor-
mal cytogenetics. These trends persisted in
patients aged <65years who were also FLT3-
ITD negative (OS: p=0.0010; CIR: p=0.1800).
The increasing use of NGS (discussed below) will
likely allow CMGA positivity to become a strong
prognostic marker, which could be incorporated
in the adverse risk ELN group.

Microenvironmental targets:

immunotherapy

The multifaceted bone marrow microenviron-
ment exerts a critical influence on leukemia
pathogenesis, pathophysiology, and the ability to
eradicate the leukemic clone.l98 A key determi-
nant in leukemia generation wversus eradication is
the multicompartmental immune system.
Dysfunction of this system can lead to immune
escape of AML cells throughout the course of the
disease. Additionally, dysfunction within CD8+
T cells, and increased regulatory T cells in the
peripheral blood has pointed towards important
dysregulation of T cells in AML.

Both phenotype and genotype features of exhaus-
tion and senescence are seen in CD8+ T cells
identified in AML patients.!%® Furthermore, dif-
ferent phenotypes are also seen in patients who
respond and those who do not respond to induc-
tion treatment. Patients who do respond to treat-
ment have upregulation of co-stimulatory T cell
signaling pathways, and downregulation of apop-
totic T cell signaling pathways. Additionally,
increased levels of regulatory T cells have been
associated with inferior outcomes. Preclinical
studies have shown that primary AML cells
express inducible T-cell co-stimulator (ICOS),
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which is a member of the CD28 family of co-
stimulatory molecules, and maintains durable
immune reactions when binding to ICOS
ligand.119 ICOS/ICOS ligand binding plays an
important role in Treg cell function and differen-
tiation. High levels of ICOS* regulatory T cells
secrete high interleukin (IL)-10, which promotes
AML cell proliferation. Pomalidomide in an
immunomodulatory imide drug (IMiD) that
induces T cell proliferation and enhances IL-2
and interferon y (IFNYy) production through its
interaction with cereblon — a substrate receptor
for E3 ubiquitin ligase complex.!!! This second
generation IMiD also inhibits regulatory T cells
and enhances both natural killer (NK) cell medi-
ated cytotoxicity and antibody-dependent cellular
cytotoxicity (ADCC) due to increased IL-2 pro-
duction. In an attempt to modulate this immune
response, investigators have done early trials with
pomalidomide after timed sequential therapy
induction treatment with AcDVP16 (cytarabine,
daunorubicin and etoposide) in newly diagnosed
AML patients and high risk MDS, at the begin-
ning of early lymphocyte recovery (days 14-21).
In 43 patients (AML n=39, remainder MDS),
the overall CR (CR + CRi) rate was 75% with a
median OS of 27.1months, and DFS of
20.6 months. Within the AML group, there was
an overall 86% CR/CRi rate in AML patients
with unfavorable-risk cytogenetics.

In addition to T cell dysfunction, AML cells in
the relapsed setting have been shown to have high
levels of PD-1 expression also contributing to
immune evasion.!!? Interestingly, PD-1 expres-
sion in CD4+ and CD8+ T cells in newly diag-
nosed patients is significantly less, and often not
observed. It is, however, seen more commonly
during therapy, after alloHSCT, and at disease
relapse. Having higher PD-1 expression is also
associated with poor prognosis.

Early findings in the R/R AML setting, as seen in
a single center azacitidine and nivolumab non-
randomized phasell study, found moderate
responses with an ORR of 33% (23/70 patients),
of which there were 22% overall CRs (CR/
CRi).113 A phasell trial of pembrolizumab given
post HIDAC salvage chemotherapy in R/R AML
(n=37), had an overall response (ORR:
CR+CRi+PR+MLFS) of 46% and composite
CR (CR+CRi) rates of 38%.!1* In the newly
diagnosed setting, a large randomized phasell

trial evaluated the efficacy and safety of azaciti-
dine and durvalumab versus azacitidine alone in
both high risk MDS and older and unfit AML
patients not eligible for intensive chemother-
apy.l15 Of the 129 enrolled AML patients, the
median OS and median PFS were not statistically
different between the two groups at 13.0 versus
14.4months and 8.1 wersus 7.2 months, respec-
tively. Though treatment was well tolerated, there
was no clinically relevant benefit to adding immu-
notherapy to treatment.

There are several large trials currently underway
evaluating pembrolizumab, nivolumab, and ate-
zolizumab in combination with various backbone
treatments including venetoclax, HMA, or induc-
tion chemotherapy in both R/R and newly diag-
nosed AML patients, largely in the post-transplant
and post remission setting, where PD 1 expres-
sion is likely to be higher than at baseline.!!12

Measuring the depth of AML cell kill:

a critical part of assessing efficacy

MRD is defined as the presence of residual leuke-
mia that was not detected through traditional histo-
pathologic methods and in the presence of <5%
blasts.!16 MRD positivity correlates with an
increased risk of relapse either at the end of treat-
ment or prior to allogeneic BMT.!17 Nonetheless,
MRD has not yet been standardized quantitatively
or qualitatively, which will be necessary for wide-
spread clinical application.!’® MRD can be identi-
fied using multiparametric flow cytometry (MPFC),
digital PCR, allele-specific oligonucleotide quantita-
tive polymerase chain reaction (PCR), and NGS,
depending on resources available and the genomic
abnormality being followed (Table 4).116:11 MPFC
can identify the presence of leukemia cells down to
levels of 1 X 1041 X 10°. It is fast and widely avail-
able, and provides an absolute quantification; how-
ever, MPFC has less sensitivity than other methods,
and variable antigen expression may yield false
negative results. Quantitative PCR methods detect
aberrant mutations in leukemic cells compared
with a housekeeper gene down to levels of 1 X 10—
1 X107, with variability depending on the muta-
tion. The problem with this technology is that there
is often no PCR target, especially in the elderly.

By comparison, NGS can detect the presence of
leukemia cells down to levels of <1 X 109, has a
high degree of sensitivity, and does not need
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Table 4. Technologies for MRD detection.

MRD method Description

MPFC

MPFC is based on immunophenotyping technologies. There are two

current techniques: (1) leukemia associated immunophenotype uses
individual-specific surface makers identified at diagnosis and follows
these markers in subsequent assessments. (2] The “different from
normal” method identifies aberrant surface marker profiles at follow-up
irrespective of profiles at diagnosis and can identify immunophenotype

shifts.12!

dPCR

Conventional PCR assays amplify a segment of DNA exponentially

creating multiple copies; therefore, these segments of nucleic acid can

be quantified by comparing the number of amplification cycles and the
amount of PCR copies with a reference sample. For dPCR, the exponential
signal of PCR is converted into a linear digital signal. It is designed to
provide an absolute nucleic acid quantification, making it superior for

detecting MRD.'22

ASO quantitative PCR

This technology uses an ASO probe for detection of specific mutations.

ASQO probes are synthetic DNA complementary to the sequence of a
variable target DNA. A fluorogenic probe is designed for each individual
tumor-specific MRD-PCR target.'?

NGS

NGS is also known as high throughput sequencing, and is a technology

that allows for massively parallel sequencing of multiple genes, whole
exomes and genomes. It can be done in a single day, and is precise. There
is a large variability in cost between whole genome sequencing, whole
exome sequencing and targeted sequencing, where only chosen regions
of interest are sequenced. There are a variety of different technologies
and companies that run this testing, each with a unique list of targeted

genes.'?0

ASQ, allele-specific oligonucleotide; dPCR, digital polymerase chain reaction; MPFC, multiparametric flow cytometry;
MRD, minimal residual disease; NGS, next generation sequencing.

patient-specific primers or probes as compared
with allele-specific olignonucleotide PCR.120 The
downside to NGS is that it remains expensive,
requires a high degree of expertise, and is not yet
standardized. Extensive discussion of these tech-
niques and upcoming technology is not the focus
of this review and is therefore not included.

All the methods listed above allow for detection
of significantly smaller amounts of residual dis-
ease compared with standard morphology.
Evidence now suggests that identifying patients
with MRD-positive disease can lead to early
intervention to prevent relapse with post remis-
sion therapy.!!® For patients who are MRD posi-
tive prior to transplant, outcomes remain poor.
As of yet, however, MRD is not a standardized
tool used in clinical setting, despite its crucial role
in prognosis and outcome. Current and future
prospective trials are crucial to examining the role

of specific post-induction strategies, including
maintenance therapies in HSCT or patients with
MRD positivity.

Conclusion

The molecular dissection of AML has uncovered
the genomic architecture and the interactive path-
ways that are essential for leukemia cell growth and
survival. Indeed, AML pathogenesis and patho-
physiology represent a complex symphony with
diverse components that harmonize to create and
sustain malignant cells that are programmed to
survive a multiplicity of existential threats includ-
ing cytotoxic therapies. These components exist
not only in the leukemia cells themselves but also
in diverse components of the microenvironment.

In this review, we have highlighted a few selected
molecular lesions where the development of
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targeted therapies to modulate those targets is
underway. In particular, we have focused on spe-
cific high-risk genetic mutations that play critical
roles in leukemogenesis and for which there are
drugs that are currently in the clinical arena,
either approved or under rigorous clinical investi-
gation. There are numerous pivotal genomic
lesions and molecular pathways that we have not
addressed, for instance the intermediaries that
regulate cell cycle progression and the diverse
pathways that are activated by DNA damage and
orchestrate the repair of such damage. In this
regard, optimal anti-AML therapy requires com-
plementary strategies, including diagnostic stand-
ards, aimed at interdicting multiple aberrations
and at preventing those mechanisms, whether
primary or in response to initial therapy, that con-
fer net resistance.
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