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Abstract

Classifying ground-glass lung nodules (GGNs) into atypical adenomatous hyperplasia (AAH), 

adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive 

adenocarcinoma (IAC) on diagnostic CT images is important to evaluate the therapy options for 

lung cancer patients. In this paper, we propose a joint deep learning model where the segmentation 

can better facilitate the classification of pulmonary GGNs. Based on our observation that masking 

the nodule to train the model results in better lesion classification, we propose to build a cascade 

architecture with both segmentation and classification networks. The segmentation model works as 

a trainable preprocessing module to provide the classification-guided ‘attention’ weight map to the 

raw CT data to achieve better diagnosis performance. We evaluate our proposed model and 

compare with other baseline models for 4 clinically significant nodule classification tasks, defined 

by a combination of pathology types, using 4 classification metrics: Accuracy, Average F1 Score, 

Matthews Correlation Coefficient (MCC), and Area Under the Receiver Operating Characteristic 

Curve (AUC). Experimental results show that the proposed method outperforms other baseline 

models on all the diagnostic classification tasks.
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1. Introduction

Lung cancer is one of the leading causes of cancer-related deaths in the world. The Lung 

Cancer Staging Project of International Association for the Study of Lung Cancer (IASLC) 

[1] showed that there is a significant decrease in survival rate as tumor size increases, 

indicating that early detection and diagnosis is very effective to reduce the death of patients 

due to lung cancer. Therapy options for treatment of lung cancer also depend on the type of 

lung nodules. To address the problem of accurate classification of lung nodules, the IASLC, 

the American Thoracic Society (ATS), and the European Respiratory Society (ERS) 

proposed a new classification scheme for lung adenocarcinoma classification [2] in 2011, 

according to which Ground-glass nodules (GGNs) are classified as atypical adenomatous 

hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma 

(MIA), or invasive adenocarcinoma (IAC) based on the size of the lesion and the presence of 

a solid component on pathology analysis (as shown in Fig. 1). The new classification has a 

significant impact on patient therapy options and follow-up because prognosis varies widely 

among the different pathologic subtypes [3, 4]. It has been shown in recent studies that 

patients with early-stage AIS and MIA have a disease-free survival rate of almost 100%, 

while patients with IACs have a disease-free survival rate of 60–70% [5, 6, 7, 8], 

necessitating the need for accurate classification of GGNs for planning the therapy option 

and the extent of resection.

Traditional computer-aided diagnosis (CAD) methods utilize various feature extraction 

protocols to quantify the appearance of nodules on diagnostic computed tomography (CT) 

images, and machine learning algorithms have been employed to classify the nodules. 

Statnikov et al. [9] make a comprehensive comparison of random forests and support vector 

machines on 22 diagnostic and prognostic cancer datasets. In our previous paper [10], we 

extract 57 quantified heterogeneity metrics of GGNs and use them to train the SVM to learn 

and predict the lesion type. In a recent work [11], as many as 1117 features are extracted 

from 3D nodule CTs. Although these works have achieved impressive performance, 

extracting appropriate nodule features is very time-consuming and laborious, and these 

hand-craft features may not be enough for high-level tasks.

Recent deep learning methods can greatly reduce the difficulty of feature extraction and 

outperforms the methods of hand-crafted feature engineering. With the power of automatic 

representation learning and end-to-end training, deep learning has achieved remarkable 

success in several important computer vision tasks, such as image classification [12, 13, 14, 

15], object detection [16, 17], and segmentation [18, 19, 20, 21, 22]. Recently, such methods 

have been extensively applied to medical image analysis [23], especially to the diagnosis of 

pulmonary adenocarcinoma [24, 25, 26, 27, 28].

Despite different network architectures exploited in these works, one common characteristic 

among these deep learning models is that they are trained with the raw CT volume or data 

patch cropped from raw CT volume. Due to the proximity of the nodule to the chest wall or 

blood vessels passing through the nodule (as shown in the red boxes in Fig. 1), these 

additional structures on the CT images may result in misclassification of the nodules, 

leading to errors in diagnosis and therapy. To tackle this problem, deep learning networks 
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with auxiliary tasks, such as detection [24] and segmentation [25], have been integrated with 

the classification task. These approaches have built a two-branch architecture for the 

classification and auxiliary tasks respectively, and train the model in a multi-task learning 

setting. Such two-branch architecture networks solve the classification problem at the 

‘feature level’ since the auxiliary task will enforce the network to focus on the nodule region 

and less on the surrounding structures during the feature extraction step. However, due to the 

uncertainty and randomness of deep learning training, there is no guarantee that the 

interference from the surrounding structures will be eliminated.

In this paper, we utilize the segmentation information to aid in the classification of lung 

nodules. We observe that when we use the expertly segmented CT volumes to training the 

classification model, the performance is much better than that trained with raw CT volumes. 

However, creating segmentation maps manually is very time-consuming and of high cost. 

Thus we propose to first train a segmentation model with the annotated CT data to 

automatically segment the nodule from raw CT data, which is then used to train the 

classification model. Motivated by other assembled models [29, 30], we propose to build a 

cascade architecture with both segmentation and classification models, where the 

segmentation model is used as a trained data preprocessing module for the classification 

model. The output of the segmentation model can be considered as the ‘attention’ weight 

map applied to the data indicating the importance of different regions for the classification 

task. We jointly fine-tune the whole model to further improve the performance. Since we use 

the segmentation map directly to mask the background region of raw CT data, the 

segmentation and classification tasks are done at the ‘data level’. Our model can provide a 

better trade-off between the classification performance and the cost of data preparation.

We have evaluated our method on 4 classification tasks, defined by different combinations of 

pathology types. First, we merge AAH and AIS into one class and classify nodules as AAH

+AIS, MIA, or IAC. The first two classes are combined because AAH nodules are too few in 

clinical practice and are usually considered as benign [25]. Second, we classify indolent 

nodules (AAH+AIS) and invasive nodules (MIA+IAC), which is of great clinical 

significance since the two types of nodules usually require different treatment plans [2]. 

Third, we specifically differentiate IAC from other 3 non-IAC (AAH+AIS+MIA) types, as 

patients with IAC nodules have a much lower disease-free survival rate and require more 

aggressive surgical treatment. Finally, we differentiate between AIS and MIA because these 

two types are similar in appearance and very difficult to distinguish even by expert 

clinicians.

We compare our method with other baselines using 4 classification metrics: Accuracy, 

Average F1 Score, Matthews Correlation Coefficient (MCC), and Area Under the Receiver 

Operating Characteristic Curve (AUC, only applied to 2-class problems). Experimental 

results show that applying segmentation information to the original data in the data level can 

help improve the performance, and the data-level method behaves more stable than the 

feature-level method.

The main contributions of this work are 1) Utilization of the segmentation annotation at the 

data-level for the classification of pulmonary nodules, 2) Training of a segmentation network 
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to mask the input CT data, 3) A cascade architecture consisting of the segmentation and 

classification models with joint training, 4) Extensive experiments with a large dataset and 

comparison with a series of baseline models to demonstrate the effectiveness. We also 

conduct a detailed analysis and explanation on the experimental results and their impact on 

clinical decision support for surgeons. We believe our paper makes a valuable contribution to 

the clinical field of classifying GGOs for determining the optimal therapy and the resection 

margins for sub-lobar resections.

The rest part of this paper is organized as follows: in Section 2 we describe our cascade 

architecture model consisting of the classification and segmentation models, and the way to 

assemble them. In Section 3 we present the experimental setting, data, results, and analysis. 

In Section 4 we present the conclusions and discuss our future work.

2. Method

In this section, we first describe in detail the classification and segmentation networks. Then, 

we introduce the entire architecture of the cascade model.

2.1. Classification Model

The classification model is composed of 8 convolution blocks, 3 downsampling blocks, and 

3 fully-connected blocks, as shown in Fig. 2a. Each convolution block consists of a 3D 

convolution layer with kernel size 3 × 3 × 3 and stride size [1,1,1], followed by batch 

normalization [31] layer and ReLU as the nonlinear activation function. Output channels of 

the 8 convolution blocks are 16, 16, 32, 32, 64, 64, 256 and 256, respectively. After every 2 

convolution blocks, we downsample the feature map by max-pooling of scale [2,2,2]. The 

output of the last convolution block is reshaped and input to 3 fully-connected (fc) blocks. 

Output dimension of the first two fc blocks is 256 and the nonlinear activation function is 

ReLU. Output dimension of the last fc block is equal to the number of nodule pathology 

types and softmax function is exploited as the activation function. The classification model 

outputs the probability vector indicating the probability that the input data belongs to each 

nodule type. Dropout [32] with zero rate of 0.1 is exploited after the first two fc blocks to 

avoid overfitting. Training is performed by minimizing the cross-entropy loss Lcla between 

the model output and true class label in one-hot form as follows:

Lcla = − 1
N ∑

N
∑

c
lgt
c loglpre

c
(1)

where lgt
c  and lpre

c  are the cth element of ground-truth class label and model prediction, 

respectively, N is the number of training samples.

2.2. Segmentation Model

We build a 3D U-Net [20] architecture for automatic lung nodule segmentation, as shown in 

Fig. 2b. The segmentation model consists of 15 3D convolution blocks, with 8 in the encoder 

(contracting) path and 7 in the decoder (expanding) path. Each convolution block contains a 

3D convolution layer with kernel size 3 × 3 × 3, which is followed by a batch normalization 
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layer and ReLU as the nonlinear activation function except for the last block where kernel 

with size 1 × 1 × 1 and softmax function are used. Dilated convolution is exploited in the 

segmentation model to increase the receptive field thus making full use of spatial context. 

Dilation factors are set as [1,1,2,2,2,2,4,4,2,2,2,2,1,1,1] in the 15 convolution layers, 

respectively. The stride and padding are chosen accordingly to make the size of the output 

feature identical to that of the input. There are 3 max-pooling and 3 up-sampling layers of 

scale [2,2,2] in the encoder and decoder paths. The feature map before each max-pooling 

layer in the encoder path is skip-connected and concatenated to the corresponding feature 

map after the up-sampling layer in the decoder path. The last convolution layer uses the 

channel-wise softmax function to output a dense segmentation map with C channels (with 

background included as 1 channel). Dice loss [21] Lseg is used for the segmentation model 

training, and is given as:

Lseg = − 1
N ∑

N

2∑i sgti sprei

∑i sgti 2 + ∑i sprei 2 + n
(2)

where sgti  and sprei  are the ith element of ground-truth and model predicted nodule 

segmentation map, respectively, n is a small value used for numerical stability and N is the 

number of training samples.

2.3. Assembling Classification and Segmentation Model

Existing deep learning models for classifying pulmonary nodules are trained with raw CT 

volume or data patch cropped from raw CT volume, as is shown in Fig. 3a. The input CT 

volume contains not only the lung nodule but also other interference regions, such as blood 

vessels, chest wall, and rib. The existence of these regions could introduce erroneous 

features in the training and test data, which will lead to misclassification of the lung nodules 

and poor generalizability of the model.

In this paper, we utilize the segmentation mask to remove the interference information. The 

segmentation map of the nodule annotated by an expert clinician is used to mask the 

background in the original CT data, which is performed as follows:

d = draw ⊙ s (3)

where draw denotes original CT data, s denotes the binary segmentation map, 0 corresponds 

to the background region and 1 corresponds to the nodule region, and ⊙ denotes element-

wise (Hadamard) product. We observe that when we use the masked data to train and 

evaluate the classification model, its performance is significantly better than that of the 

model trained with the original data, as shown in Fig. 3b. However, this method requires 

manual lung nodule segmentation by an expert before diagnosis, which is time-consuming 

and tedious. Based on this observation and motivated by other assembled models [29, 14, 

30], we propose to build a cascade model with both the segmentation and classification 

networks. We first train a segmentation model with the provided segmentation map and then 

freeze its parameters. The output of the segmentation model is a volume with values 

between 0 and 1 indicating the probability that each pixel belongs to the nodule region. We 
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use it, in the same way, to mask the original data and use the masked data to train and 

evaluate the classification model, as shown in Fig. 3c. Finally, we jointly fine-tune the whole 

model by minimizing the weighted sum of Dice loss of segmentation network and cross-

entropy loss of classification network as follows (see Fig. 3d):

Ljoint = Lcla + λ ⋅ Lseg (4)

In the joint model, the output of segmentation model can be considered as the ‘attention’ 

weight map applied to the data, indicating the importance of different regions. Through joint 

training, the segmentation model will be trained to not only provide an accurate 

segmentation map of a nodule but also focus more on the region that is more useful for the 

classification task (such as the regions that are more discriminative between different types), 

making it easier to train the classification model.

The idea of our method is similar to that of [24, 25], as we use additional supervisory 

information to assist in the training of the classification model. Existing works build a two-

branch architecture for the classification task and the auxiliary task respectively and train the 

model in a multi-task learning setting. The auxiliary task will enforce the network to focus 

on the nodule and less on the surrounding anatomy in the feature extraction step, therefore 

attempting to improve the classification accuracy at the ‘feature level’. However, in this 

paper, we apply the segmentation map directly to raw CT data by Hadamard product to 

reduce the influence of background region for the classification problem, therefore working 

at the ‘data level’ to improve the classification.

In this paper, we also build a network with two branches for classification and segmentation 

respectively for comparison. We use the same U-Net architecture shown in Fig. 2b for 

segmentation and add a branch after the bottleneck convolution layer (the 8th convolution 

layer shown in Fig. 2b for classification. The classification branch consists of 3 fully-

connected blocks similar to the architecture shown in Fig. 2a. The multi-branch model is 

trained by minimizing the sum of classification and segmentation loss, see Fig. 3e.

3. Experiments

3.1. Data Collection and Preprocessing

In this study, non-contrast enhanced CT images of the patient before surgery are collected, 

with the mean interval between the CT examination and surgery of 13 days. The CT volume 

is acquired with the patients in the supine position, covering the area from the top to the base 

of the lung, including the chest wall and axillary fossa. The chest CT imaging is performed 

using 4 scanners: GE Discovery CT750 HD, 64-slice LightSpeed VCT (GE Medical 

Systems), Somatom Definition flash and Somatom Sensation-16 (Siemens Medical 

Solutions). The scan parameters were: section width, 1.25 mm; reconstruction interval, 1.25 

mm; tube voltage, 120 kV; tube current, 100 – 200 mAs; pitch, 0.75 – 1.5; collimation, 1 – 

1.25 mm; display FOV, 28 × 28 cm to 36 × 36 cm; matrix size, 512 × 512; and pixel size, 

0.55 – 0.7 mm, respectively. All CT volumes are reconstructed with a medium sharp 

reconstruction algorithm with a thickness of 1 – 1.25 mm.
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3D Slicer [33] (version 4.8.0), a medical image processing and navigation software, is used 

to segment the volume of interest (VOI) of the nodules. Segmentation is performed by one 

experienced radiologist and then confirmed by another. Large vessels and bronchioles are 

excluded as much as possible from the volume of the nodule. The lung CT data is first 

loaded into the Slicer software in DICOM (Digital Imaging and Communications in 

Medicine) format for segmentation, and then the images with VOI information are converted 

to NII format for the next step of processing. Each segmented nodule is given a specific 

pathology label (one of AAH, AIS, MIA, and IAC), according to the detailed pathology 

report post surgical resection of the nodule.

A total of 740 CT volumes of subcentimeter nodules with nodule segmentation maps and 

pathology labels are collected for experiments. To keep the physical meaning behind the 

voxel identical over all the cases, we first resampled the data to 0.7mm×0.7mm×1.0mm 

spacing. The CT volumes and ground-truth segmentation maps are resampled with trilinear 

and nearest-neighbor interpolation methods respectively. We then cropped a cubic patch of 

size 32 × 32 × 32 around the center of the lung nodule indicated by the expertly annotated 

segmentation map. To reduce the ambiguity of the grayscale distribution in the data, 

intensities are first clipped between [−1024, 400] and normalized to the range of [−1,1] by

D = Draw − −1024
400 − −1024 ∗ 2 − 1 (5)

3.2. Deep Learning Model Setting

The distribution of the 740 nodules is: 32 AAH, 193 AIS, 335 MIA, and 180 IAC nodules. 

We randomly select 70% samples of each category for training and the rest 30% for testing. 

In total, we get 515 training samples and 225 test samples. Detailed numbers of data for 

training and testing of each category are listed in Table 1. In the training dataset, we 

randomly choose 20% as the validation set. In other words, we have 56%, 14%, and 30% for 

training, validation, and testing. We carefully adjust part samples of each set to make sure 

each set contains nodules from different patients.

To avoid overfitting, we perform several ways of data augmentation: 1) flipping the volume 

by a random axis with 50% probability, 2) rotating the volume around a random axis by 90 

increments, 3) adding Gaussian noise. For the full use of training data, augmentation is 

performed on the fly during the training process.

We use Adam optimizer [34] to train all the models. For the training of segmentation and 

classification models, the initial learning rate is set to 0.0001 and is reduced by a factor of 

0.8 if the model performance on the test dataset doesn’t increase in 10 epochs. For joint fine-

tuning, the initial learning rate is set to 0.00001 and is reduced by 0.5 every 30 epochs. The 

maximum number of training epochs for the segmentation model, the classification model, 

and joint fine-tuning is 150, 120, and 120, respectively, and training is stopped if the 

maximum training epoch is reached or the performance doesn’t increase within 50 epochs. 

To avoid overfitting, dropout [32] with zero rate of 0.1 is used for the first two fc blocks of 

the classification model and L2 regularization with weight 0.0001 is applied to all models. 
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No dropout is used in the segmentation model. The parameters of the weight are randomly 

initialized by the He method [35] and bias is initialized to zero, except for the last 

convolution layer of the segmentation model, where we follow the initialization in [36] to 

tackle the imbalance in the number of pixels between the lung nodule and background 

region. During training, we use a mini-batch of 24 volumes and after each training epoch, 

we evaluate the model on the test dataset. The best test result is recorded. For each model, 

we repeatedly ran the experiments for 5 times and the best results are reported.

3.3. Evaluation Metrics

We applied our method on 4 classification tasks, defined by different combinations of 

pathology subtypes:

1) AAH+AIS, MIA, IAC: We merge AAH and AIS into one class and classify AAH+AIS, 

MIA, and IAC nodules. This is because AAH nodules are relatively less compared to the 

other three subtypes and the trained model may not work well on this category, which will 

influence the evaluation of the model’s overall performance. Further, merging the two 

subtypes is still reasonable from a clinical point of view [2, 25].

2) AAH+AIS, MIA+IAC: We classify indolent nodules (AAH+AIS) and invasive nodules 

(MIA+IAC) in this task. This is of great clinical significance since the two types of nodules 

usually require completely different treatment options [2].

3) AAH+AIS+MIA, IAC: We differentiate IAC from other 3 non-IAC (AAH+AIS+MIA) 

types in this task, as patients with IAC nodules have a much lower disease-free survival rate 

and thus require more aggressive surgical treatment and subsequent adjuvant chemotherapy 

treatment [2, 25].

4) AIS, MIA: In this task, we differentiate between AIS and MIA types. As mentioned 

above, these two types of nodules require different treatment plans. However, on the 

preoperative CT images, they are similar in appearance and difficult to distinguish, even by 

expert radiologists.

We evaluate our method and compare it with other baselines using several metrics: 

Accuracy, Average F1 Score (AveF1), and Matthews Correlation Coefficient (MCC). For the 

two-category task, we also use the Receiver Operating Characteristic Curve and calculate the 

area under the curve (AUC).

3.4. Results and Discussion

We evaluate 5 different models, as shown in Fig. 3, for the 4 classification tasks using the 4 

metrics. Note that the weight factor of the joint training model is set to 1 here and the effect 

of different values is evaluated in the following part. In order to prove the generalizability of 

our method, we have conducted experiments using two different data splits. The results of 

the two data splits are listed in Table 2 and 3 respectively. From the results, we can see that 

when we use the ground-truth nodule segmentation map to mask the data and then use them 

to train the classification model, the performance is much better than that of the model 
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trained with the original data for all 4 metrics (see columns (a) and (b) under each metric). 

Using the segmentation mask for the nodule helped improve the accuracy of classifying the 

nodules. The model trained with the data masked by generated segmentation map performs 

better than that trained with original data but is not as good as the expertly annotated 

segmentation map (see column (c) under each metric). This is understandable because the 

automatic segmentation is not as accurate as the expert segmentation. Accurate segmentation 

of the lung nodule will extract all the nodule features. The segmentation map generated by 

the U-Net model is not as accurate as the ground-truth, thus some nodule features are 

missing or additional interference information from the surrounding anatomy is included. 

This is the reason why the model trained with generated segmentation masked data performs 

worse. In most cases, jointly fine-tuning the segmentation and classification model together 

can further improve the performance. Although there exist some exceptions (such as the 

AUC of task ‘AIS, MIA’ of data split 1 and the ‘MCC’ of task ‘AAH+AIS, MIA+IAC’ of 

split 2), such situations are very few, and the degradation of performance is not obvious (see 

column (d) under each metric). The multi-task learning model with segmentation can help 

improve the classification task, but the improvement is not as large and stable as our model 

(see column (e) under each metric). The 3-class confusion matrices of different models are 

shown in Fig. 4 and ROC curves of the 3 two-class tasks are shown in Fig. 5.

To further prove the effectiveness of our proposed method, we conduct another comparative 

experiment. We first train a classifier with manually segmented CT data. Then we train an 

automatic segmentation model. Finally, we apply the classifier to the output of the 

segmentation model. We follow the same training setting and evaluate on the same 2 data 

splits for a fair comparison. The results are listed in Table 4. This method can also provide 

better results than those of the model trained with raw CT data. In most cases, however, our 

model still performs the best.

To evaluate the effect of the weight factor λ in our joint training model, we test 5 different 

values, which are 0.5, 0.7, 1.0, 1.3, and 1.5. We only evaluate on the first classification task 

(AAH+AIS and MIA+IAC) with data split 1 for simplicity. The results are listed in Table 5. 

We can see that the variation between different values of weight is not obvious, meaning that 

our proposed method is not very sensitive to the weight within a certain range.

We also compare with a traditional method proposed in [10], which collects 248 lung 

volumes for experiments and exploits the SVM as the classifier. We evaluate our model with 

the same dataset and on the same 3 tasks as [10] for a fair comparison. The results are listed 

in Table 6. It can be seen that our model consistently outperforms the traditional method as 

well as the radiologists.

To explore the relationship between the segmentation and classification tasks in the joint 

training, we illustrate key segmentation results in Fig. 6. Here, we highlight the classification 

task of ‘AAH+AIS, MIA+IAC’ as an example. The green mask is the ground-truth 

segmentation while the red and blue masks are the automatic segmentation maps generated 

by the U-Net before and after joint training, respectively. The Dice and confidence scores of 

classification for each case are also given under each sample. From Fig. 6, we can see that 

the confidence scores of classification for all samples increases, which indicates the 
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effectiveness of the joint training. In the cascade model, the output of the segmentation 

model can be considered as the ‘attention’ weight map applied to the data, indicating the 

importance of different regions for the classification. However, not all features are useful for 

the classification task. For example, some features are shared by all the nodule categories. 

These features are not discriminative and will not contribute to the training of the 

classification model. Through joint training, the segmentation model will be trained to focus 

more on the discriminative region of the nodule and ignore the region with a similar 

appearance between different nodule types that are less useful for classification. In this case, 

the Dice score after joint training will decrease. On the other hand, the joint training will 

also help the segmentation model find some region that is important for classification but is 

not correctly segmented before joint training. In this case, the Dice score will increase.

4. Conclusion and Future Work

In this paper, we find that the best classification result is obtained when the segmentation 

map is used as a mask to remove the interference information around the nodule on the CT 

volume. When we train a segmentation model with the provided segmentation maps and use 

its output to mask the original data, the classification model trained with such data still 

performs better than the model trained without the segmentation mask. Using this insight, 

we build a cascade architecture with both segmentation and classification networks, and 

jointly fine-tune the whole model. The cascade model in the data level performs better and 

more stable than the multi-task learning model. The limitation of our method is that the 

performance of the segmentation model can’t be maintained after the joint training, as is 

shown above. This makes our method not suitable for the situation where both good 

segmentation and classification are required. So, in the future, we will explore more 

advanced methods in the multi-task learning field to aggregate the two tasks to obtain better 

results in both of them. Since we may consider the data masked by ground-truth 

segmentation map and generated segmentation map as the source data domain and target 

domain, we can also combine our method with transfer learning or domain adaptation 

techniques, which will also be part of our future work.
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Figure 1: 
Subtypes of lung nodules - AAH, AIS, MIA and IAC. Green mask is the segmentation mask 

annotated by experts. Red box contains some interference area for the nodule detection and 

classification, such as blood vessel, chest wall and rib.
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Figure 2: 
The classification model (a) is 3D CNN containing 8 convolution blocks, 3 max-pooling 

layers and 3 fully-connected blocks. The segmentation model (b) is a 3D U-Net with 15 

convolution blocks, 3 max-pooling layers and 3 up-sampling layers. Dilated-convolution is 

exploited in the segmentation model to increase the receptive field.
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Figure 3: 
Different deep learning models used in this paper. (a) Train classification model with raw 

CT data. (b) Train classification model with data masked by ground-truth segmentation. (c) 

Train segmentation model first, then train classification model with data masked by 

automatically generated segmentation map, dash rectangle means the model parameters are 

fixed. (d) Jointly train classification model and segmentation model. (e) Multi-task learning 

model with segmentation and classification.
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Figure 4: 
Confusion matrices of the task ‘AAH+AIS, MIA, IAC’ of 5 different models in data oplit 1. 

Element (i, j) means the number of cases that belong to the class i but are identified as class 

j.
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Figure 5: 
ROC curves of 5 different models of the 3 two-class task: ‘AAH+AIS, MIA+IAC’, ‘AAH

+AIS+MIA(nonIAC), IAC’ and ‘AIS, MIA’.
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Figure 6: 
Relationship between the segmentation and classification results of joint training (Take task 

‘AAH+AIS, MIA+IAC’ as an example). For each case, the first image is the original data. 

The green mask is the ground-truth segmentation. The red mask and blue mask are the 

automatic segmentation map generated by the U-Net before joint training and after joint 

training, respectively. The Dice score and confidence score of classification of each case are 

also given.
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Table 1:

Number for training and test cases for each category.

Training Testing Total

AAH 21 11 32

AIS 135 58 193

MIA 234 101 335

IAC 125 55 180

Total 515 225 740
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Table 2:

Statistical Results of Different Models on Different Metrics with Data Split 1. (a) Train classification model 

with raw CT data. (b) Train classification model with data masked by ground-truth segmentation. (c) Train 

classification model with data masked by automatically generated segmentation map (ours1). (d) Jointly train 

classification model and segmentation model (ours2). (e) Multi-task learning model with segmentation and 

classification.

Accuracy(%) AveF1(%)

(a) (b) (c)(ours1) (d)(ours2) (e) (a) (b) (c)(ours1) (d)(ours2) (e)

1) 55.73±0.34 59.11±0.33 57.78±0.24 58.67±0.27 57.33±0.51 55.19±0.35 58.88±0.38 58.04±0.31 58.30±0.31 56.72±0.46

2) 74.22±0.37 78.22±0.31 76.89±0.25 78.22±0.27 74.33±0.31 74.27±0.31 78.62±0.37 75.69±0.29 77.53±0.25 72.06±0.42

3) 82.22±0.31 83.56±0.35 82.67±0.27 82.67±0.27 81.33±0.45 80.74±0.31 82.27±0.39 81.12±0.25 81.32±0.25 80.74±0.41

4) 67.29±0.51 72.32±0.38 71.70±0.31 72.30±0.30 67.67±0.33 67.29±0.43 72.95±0.35 70.34±0.35 72.22±0.21 65.78±0.49

MCC(×10−1) AUC(×10−1)

(a) (b) (c)(ours1) (d)(ours2) (e) (a) (b) (c)(ours1) (d)(ours2) (e)

1) 3.259±0.057 3.561±0.054 3.415±0.037 3.430±0.035 3.238±0.047 - - - - -

2) 4.121±0.039 5.128±0.031 4.467±0.041 4.828±0.037 4.239±0.045 7.441±0.031 8.140±0.038 7.943±0.039 8.129±0.031 7.483±0.045

3) 4.692±0.033 5.134±0.031 4.819±0.025 4.852±0.021 4.548±0.038 7.852±0.031 8.044±0.036 7.884±0.039 7.998±0.041 7.802±0.046

4) 3.000±0.039 4.051±0.039 3.931±0.021 4.029±0.021 3.120±0.048 6.557±0.023 7.542±0.035 7.437±0.031 7.412±0.034 6.809±0.048
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Table 3:

Statistical Results of Different Models on Different Metrics with Data Split 2. (a) Train classification model 

with raw CT data. (b) Train classification model with data masked by ground-truth segmentation. (c) Train 

classification model with data masked by automatically generated segmentation map (ours1). (d) Jointly train 

classification model and segmentation model(ours2). (e) Multi-task learning model with segmentation and 

classification.

Accuracy(%) AveF1(%)

(a) (b) (c)(ours1) (d)(ours2) (e) (a) (b) (c)(ours1) (d)(ours2) (e)

1) 54.67±0.31 57.78±0.36 56.00±0.25 54.67±0.21 52.67±0.41 52.90±0.31 57.74±0.37 54.40±0.21 53.79±0.21 51.17±0.41

2) 72.00±0.33 74.67±0.36 72.89±0.29 73.78±0.21 72.56±0.31 70.31±0.31 73.86±0.25 71.00±0.21 71.48±0.23 70.75±0.46

3) 82.67±0.31 84.00±0.34 83.11±0.36 83.11±0.36 82.22±0.41 81.20±0.33 82.67±0.33 81.98±0.24 81.70±0.24 82.10±0.36

4) 64.78±0.41 71.07±0.33 67.92±0.29 67.29±0.35 65.41±0.35 64.33±0.31 69.10±0.32 64.69±0.27 66.33±0.29 64.94±0.34

MCC AUC

(a) (b) (c)(ours1) (d)(ours2) (e) (a) (b) (c)(ours1) (d)(ours2) (e)

1) 2.697±0.056 3.418±0.049 2.743±0.047 2.750±0.041 2.731±0.057 - - - - -

2) 3.204±0. 4.033±0.031 3.232±0.029 3.210±0.026 3.217±0.037 7.052±0.036 7.469±0.035 7.157±0.031 7.154±0.025 7.057±0.041

3) 4.819±0.033 5.263±0.033 5.018±0.029 4.978±0.024 4.821±0.031 7.921±0.043 8.106±0.044 7.942±0.047 8.008±0.041 7.934±0.055

4) 2.351±0.031 3.393±0.030 2.530±0.029 2.657±0.027 2.281±0.031 6.072±0.025 6.882±0.025 6.591±0.021 6.567±0.027 6.148±0.037
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Table 4:

Statistical results of applying classifier trained with manually segmented data to automatically segmented data.

split1 Accuracy(%) AveF1(%) MCC AUC

1) 57.67±0.31 57.91±0.30 3.399±0.045 -

2) 76.57±0.34 75.22±0.34 4.385±0.030 7.914±0.031

3) 82.47±0.31 81.05±0.37 4.823±0.025 7.815±0.025

4) 71.25±0.31 70.13±0.30 3.857±0.029 7.432±0.021

split2 Accuracy(%) AveF1(%) MCC AUC

1) 55.85±0.36 54.19±0.35 2.717±0.049 -

2) 72.97±0.24 70.90±0.24 3.215±0.031 7.132±0.023

3) 83.01±0.33 81.67±0.26 5.015±0.039 7.967±0.034

4) 67.55±0.39 64.27±0.35 2.507±0.029 6.574±0.031
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Table 5:

Statistical results of our joint training model (d) on the task 2) ‘AAH+AIS and MIA+IAC’ with different 

values of weight λ.

λ Accuracy(%) AveF1(%) MCC AUC

0.5 78.09±0.31 77.33±0.30 4.817±0.030 8.115±0.029

0.7 78.17±0.25 77.42±0.24 4.823±0.030 8.122±0.031

1.0 78.22±0.27 77.53±0.25 4.828±0.037 8.129±0.031

1.3 78.20±0.25 77.51±0.25 4.828±0.035 8.128±0.030

1.5 78.24±0.29 77.54±0.25 4.830±0.035 8.130±0.033
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Table 6:

Comparative results of 3 different tasks with radiologists and traditional SVM in Accuracy(%)

Task Radiologists[10] SVM[10] Ours

AAH, AIS, MIA, IAC 39.6 70.9 72.17±0.33

AIS, MIA 35.7 73.1 82.31±0.34

AAH+AIS, MIA+IAC 60.8 88.1 91.33±0.33
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