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A sparse principal component analysis of Class III malocclusions

Tae-Joo Kanga; Soo-Heang Eob; HyungJun Choc; Richard E. Donatellid; Shin-Jae Leee

ABSTRACT
Objectives: To identify the most characteristic variables out of a large number of anatomic
landmark variables on three-dimensional computed tomography (CT) images. A modified principal
component analysis (PCA) was used to identify which anatomic structures would demonstrate the
major variabilities that would most characterize the patient.
Materials and Methods: Data were collected from 217 patients with severe skeletal Class III
malocclusions who had undergone orthognathic surgery. The input variables were composed of a
total of 740 variables consisting of three-dimensional Cartesian coordinates and their Euclidean
distances of 104 soft tissue and 81 hard tissue landmarks identified on the CT images. A statistical
method, a modified PCA based on the penalized matrix decomposition, was performed to extract
the principal components.
Results: The first 10 (8 soft tissue, 2 hard tissue) principal components from the 740 input variables
explained 63% of the total variance. The most conspicuous principal components indicated that
groups of soft tissue variables on the nose, lips, and eyes explained more variability than skeletal
variables did. In other words, these soft tissue components were most representative of the
differences among the Class III patients.
Conclusions: On three-dimensional images, soft tissues had more variability than the skeletal
anatomic structures. In the assessment of three-dimensional facial variability, a limited number of
anatomic landmarks being used today did not seem sufficient. Nevertheless, this modified PCA
may be used to analyze orthodontic three-dimensional images in the future, but it may not fully
express the variability of the patients. (Angle Orthod. 2019;89:768–774.)
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INTRODUCTION

When a data set has a large number of variables,

principal component analysis (PCA) is a popular

method of summarizing the information.1–8 PCA com-
presses original variables into several sets of linear
combinations of variables. In theory, the reduced set of
variables, known as the principal components (also
called latent variables), enable focusing the information
in a data set with a large number of variables into only
a few underlying factors.9 In reality, however, compli-
cated multivariate statistical methods such as PCA
almost always have very complicated results to
interpret. While the primary purpose of a PCA is to
reduce the number of variables, a data set with a large
number of measurement variables produces still a
larger number of principal components, which entails
difficulties in interpretation. For example, in theory, the
data of the present study including 740 variables could
produce 740 nonzero principal components. In this
regard, a method that can simplify the resulting
interpretation is necessary. The current study directed
its attention to modification of the loading matrix via
sparse PCA. If reducing the number of loading
matrices in each principal component could be
possible, this might help pinpoint which variables
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played a more important role than others in each
principal component. This method could potentially be
used by orthodontists to analyze more complex three-
dimensional images, such as those obtained by
computed tomography (CT).

The purpose of the present study was to identify the
most characteristic variables out of a large number of
anatomic landmark variables on three-dimensional CT
images collected from 217 patients with severe skeletal
Class III malocclusions. By applying a modified PCA,
an attempt was made to identify which anatomic
structures would demonstrate major variabilities char-
acterizing the patients.

MATERIALS AND METHODS

Study Sample

As material of this study, three-dimensional CT
images were chosen from a total of 217 patients (108
women and 109 men) with skeletal Class III malocclu-
sions who had undergone orthognathic surgery. All
were adult, nongrowing patients with an average age of
22.2 6 3.7 years who demonstrated severe mandibular
prognathism. On average, men had a greater degree of
mandibular prognathism than women. For example,
the mean overjet was�4.3 mm in women and�6.6 mm
in men. A descriptive summary of the study sample is
shown in Table 1. The exclusion criteria for this sample
were cleft lip and palate, injury, or craniofacial
syndrome.

The institutional review board for the protection of
human subjects reviewed and approved the research
protocol (IRB No. S-D20140025).

The three-dimensional CT images were obtained
using multidetector spiral CT (Somatom Sensation 10,
Siemens, Erlangen, Germany). These images were
analyzed by Invivo 3D Imaging Software (Anatomage,
San Jose, Calif). The reference-coordinate system
used in this study was based on the framework
developed by Muramatsu et al.,10 as follows: basion,
a skull-base landmark, was set as the origin of the
coordinate system (x, y, z) ¼ (0, 0, 0); the X plane
indicated the transverse (right or left) position of each
landmark; Y indicated its sagittal (anterior or posterior)
position; and Z indicated its vertical (upper or lower)
position.10

Study Variables

Input variables. The input variables were composed
of a total of 740 variables extracted from 185
anatomical landmarks identified on the CT images.
To fully describe each anatomic position and to
represent facial structures with as smooth as possible
curves connecting the landmark points, 104 soft tissue

and 81 hard tissue landmarks were identified (Figure
1). The three-dimensional Cartesian coordinates of the
185 facial landmarks (185 3 3¼ 555 variables) and the
Euclidean distance measures (185 variables) from the
origin (0, 0, 0) that were obtained by calculating the
square root of x2 þ y2 þ z2 for each landmark were
added to give a total of 740 variables and were entered
into the sparse PCA.

Outcome variables. The outcome variables were the
first 10 principal components accounting for as much
variability in the three-dimensional landmarks as
possible. Having extracted the principal components,
to identify which set of variables contributed to each
principal component, the loading matrix of each principal
component was analyzed and then interpreted as what
the component represented (Figure 2).

Statistical Analysis

The sparse PCA was applied using the penalized
multivariate analysis R package11 under version 3.5.1
of the R environment (Vienna, Austria).12 Although
some mathematical details would have been needed,
an attempt was made to focus on a qualitative
interpretation and results. Instead, in the Appendix,
technical details are briefly described as to how to
determine the number of principal components, and
the background of the sparse PCA is summarized.
Further details of the statistical calculations may be
obtained by contacting the authors.

RESULTS

Of the 740 input variables, the first 10 principal
components are qualitatively described in Table 2. The
first five principal components were interpreted as
related to the soft tissue landmarks. The first and

Table 1. Descriptive Summary of the Study Sample

Variable

Women

(n ¼ 108)

Men

(n ¼ 109) Difference

Mean SD Mean SD P Valuea

Age, y 23.6 5.0 23.8 4.2 .7574

SNA, 8 80.2 3.2 80.5 3.8 .5908

SNB, 8 82.1 3.5 84.3 4.4 .0001

ANB, 8 �1.9 2.6 �3.8 3.4 ,.0001

Nasion perpendicular to

point A, mm

�3.8 3.7 �3.7 4.7 .9480

Nasion perpendicular to

point B, mm

�2.4 6.8 1.9 9.2 .0001

Nasion perpendicular to

Pogonion, mm

�1.1 7.9 3.9 10.5 .0001

Overjet, mm �4.3 3.5 �6.6 4.2 ,.0001

Overbite, mm �0.2 1.5 �0.1 2.1 .7569

Molar relationship, mm 4.6 3.1 7.6 4.5 ,.0001

a Result of t-test to compare the mean values between the two
groups.
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Figure 1. Landmarks identified in the present study: landmarks on soft-tissue outline (top left); cheek and chin area (top right); eyes, nose, and lips

(bottom left); and hard tissue landmarks (bottom right).
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second principal components seemed to represent the

anteroposterior and vertical positions of the base of the

nose variables. The third and fourth principal compo-

nents signified the upper lip and lower lip related

variables, respectively. The fifth principal component

was a latent variable that is related to the anteropos-

terior position of the eyes and nasal bridge (Table 2).

The first six principal components appeared to be

similar between genders. From the seventh to the ninth

principal component, for women and men, the principal

components had a slightly different order. From the

eighth onward, sexual dimorphism was noted, but the

difference was not as evident. Specifically, the ninth

component showed the most notable difference be-

tween the sexes. For women, the ninth component

comprised variables relating to the width of the cheek

area, whereas, for men, variables relating to the lower

jaw border contributed to the ninth component. It may

be conjectured that a prominent lower-jaw border might

be a peculiar masculine characteristic of patients with

mandibular prognathism, and a well-developed cheek

area might be considered a common feature of women

included in the present study. However, this explana-

tion might be insignificant considering the ninth

Figure 2. Flowchart illustrating the methods used in this study. Please refer to the text for the explanation.
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component had a proportion of variance explaining

only approximately 4% (Table 3).

The number of nonzero variables that contributed to

each principal component ranged from 83 to 156 for

women and from 85 to 144 for men. The first 10

principal components explained 63% of the total

variance for both women and men (Table 3).

DISCUSSION

At the beginning of this study’s formulation, it was

anticipated that skeletal landmarks related to mandib-

ular anatomy would be found as the major principal

components characterizing the patients because the

study subjects were orthognathic surgery patients with

mandibular prognathism. However, different from this

expectation, groups of soft tissue landmarks on the

nose, lips, and eyes showed greater variability than the

skeletal variables did and were consequently more
representative of the individual facial variabilities of
those patients. A previous study using PCA on two-
dimensional images (lateral cephalometric radio-
graphs) showed that the first two principal components
accounted for 84% of skeletal variation. Those two
principal components were groups of cephalometric
variables representing both anteroposterior and verti-
cal skeletal relationships. In addition, two-dimensional
skeletal configuration had been abstracted as a
quadrangle that comprised point A, point B, gonion,
and gnathion.13 The result of the two-dimensional PCA
study motivated the current performance of a three-
dimensional PCA study in the hopes of identifying a
few number of principal components that might
concisely explain major variabilities in skeletal Class
III patients. However, unlike the PCA results of the two-
dimensional study, the cumulative proportion of vari-
ance explained by the first 10 principal components
reached only 63% in the present study. This was a
smaller proportion than what was expected to be seen
as a result of the previous two-dimensional PCA study.
In the present study of three-dimensional images,
contrary to the results on two-dimensional images, the
principal components could not pinpoint important
skeletal or soft tissue landmarks that could deliver a
concise explanation for the variability characterizing
the patients. That might be indicative of the inherent
complexity of three-dimensional images.

Methods of interpreting three-dimensional images
are currently at an early stage of development. With the
advent of three-dimensional technology, orthodontic
clinicians have access to an incredible amount of
information to better analyze, diagnose, and treat
patients.14,15 Consequently, modern orthodontists are

Table 2. Variables That Contributed to Each Principal Component

Principal

Component Women Men

1 Anteroposterior position of the nose base variables (soft

tissue landmarks)

Anteroposterior position of the nose base variables (soft

tissue landmarks)

2 Vertical position of the nose base variables (soft tissue

landmarks)

Vertical position of the nose base variables (soft tissue

landmarks)

3 Upper lip–related variables (soft tissue landmarks) Upper lip–related variables (soft tissue landmarks)

4 Lower lip–related variables (soft tissue landmarks) Lower lip–related variables (soft tissue landmarks)

5 Anteroposterior position of the eyes and nose bridge (soft

tissue landmarks)

Anteroposterior position of the eyes and nose bridge (soft

tissue landmarks)

6 Mandibular asymmetry–related variables (skeletal

landmarks)

Mandibular asymmetry–related variables (skeletal

landmarks)

7 Chin area–related variables (skeletal landmarks) Vertical position of the eyes and nose bridge (soft tissue

landmarks)

8 Vertical position of the eyes and nose bridge (soft tissue

landmarks)

Chin area–related variables (skeletal landmarks)

9 Facial width–related variables (soft tissue and skeletal

landmarks)

Anteroposterior position of the mandible (skeletal landmarks)

10 Facial height–related variables (soft tissue and skeletal

landmarks)

Facial height–related variables (soft tissue and skeletal

landmarks)

Table 3. The First 10 Principal Components Extracted From the

740 Variables, Number of Nonzero Variables, and Their Cumulative

Proportions of Variance Explained (%)

Principal

Component

Number of

Nonzero Variables in each

Principal Component

Cumulative Proportion of

Variance Explained by the

Principal Components, %

Women Men Women Men

1 85 83 9.2 9.2

2 95 94 17.7 17.8

3 94 89 25.9 26.0

4 97 95 34.2 34.5

5 99 104 40.6 41.3

6 110 102 45.9 45.9

7 97 103 51.7 51.0

8 100 105 56.5 56.8

9 123 134 60.5 60.3

10 144 156 62.6 62.9
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becoming more acquainted with three-dimensional
images. Using numerous cephalometric analyses,
orthodontists have become very skilled at interpreting
the variables within two-dimensional lateral cephalo-
graphs. However, unlike conventional two-dimensional
cephalometric x-rays, there seems to be no accepted
consensus yet upon which three-dimensional variables
should be relied. This is likely partly because three-
dimensional images have a greater number of anatom-
ical landmarks and far more information than two-
dimensional images have. For example, two-dimension-
al cephalographs may have 100 landmarks at the
most.2,3,13,16,17 On three-dimensional images, however,
additional landmarks are necessary to express three-
dimensional curves as smoothly as possible. The
number of variables can reach hundreds of landmarks.
Furthermore, each three-dimensional landmark includes
coordinate information of all three planes of space.
Consequently, the number of variables triples.

Traditionally, principal components are computed
mathematically via the singular-value decomposition of
the data matrix. However, when the number of input
variables and the number of significant principal
components are increased, it is hard to interpret the
resultant matrix loadings.18 In the present study, the
number of input variables (p ¼ 740) exceeded the
number of subjects (n ¼ 217), which was a typical
‘‘small n, large p’’ situation. A modification of conven-
tional PCA was necessary to solve the ‘‘small n, large
p’’ problem by shrinking the principal component
loadings. A recently published sparsity algorithm was
investigated in which an L1 penalty is applied to the
singular-value decomposition.19 This method, also
known as the penalized matrix decomposition, was
found to be computationally efficient and capable of
preventing the misidentification of important variables
during the selection process.20 The major advantages
of the sparse PCA are the following: First, it facilitates
the interpretation of data. Traditional methods yield an
extremely large number of nonzero loadings, which
makes it difficult to interpret what the extracted
principal components represent. Second, artificially
setting threshold values and treating loadings below
a given threshold as null might be arbitrary and
potentially misleading. Third, the ‘‘small n, large p’’
problem may be increasingly prevalent in the future,
particularly when obtaining a large number of subjects,
which will be difficult for ethical and funding reasons.
The number of research variables will probably grow
because of the advancement in three-dimensional
technology and digital data acquisition devices. Apply-
ing the sparse PCA might be an objective tool for
reducing the complexity while ensuring that the
information within the data are as intact as possible.

The results of the present study might imply that
when a commonly accepted and used three-dimen-
sional analysis similar to the two-dimensional cepha-
lometric analysis method is to be developed, unlike the
relatively limited number of landmarks used in two-
dimensional cephalometrics, a fairly large number of
three-dimensional landmarks or groups of variables
might be necessary. Limited numbers of simple
cephalometric measurements being used today might
not fully express and assess the facial variability in all
three planes of space. With the advantages of three-
dimensional imaging becoming available, more com-
plex measurements and better analyses are needed to
more thoroughly describe and consequently customize
orthodontic treatment planning. It is hoped that the
method proposed in this study may be helpful in
handling complicated three-dimensional image data.

This study seems to be the first application of the
sparse PCA on a large number of variables found on
three-dimensional CT images. Consequently, it was not
possible to compare this study’s results with those of
other studies published on the topic. A limitation of the
study was that the subjects were not representative of the
general population but were patients with severe skeletal
Class III malocclusions who received orthognathic
surgery. This was because CT images from all types of
patients have not yet been obtained. Another limitation is
that one understanding of facial variability might not
accurately be applied to other ethnic populations.

CONCLUSIONS

� On three-dimensional images, soft tissues had more
variability than skeletal anatomic structures.

� In the assessment of three-dimensional facial vari-
ability, the limited number of anatomic landmarks
being used today did not seem sufficient.
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APPENDIX

We considered a data set comprising information on

the three-dimensional coordinates and Euclidean

distances of n samples, denoted as data matrix X with

dimensions n by p. We assumed that the data were

centered. Matrix X was decomposed by singular-value

decomposition, as follows:

X ¼ UDV T ;UT U ¼ Ip ;V
T V ¼ In: ð1Þ

The method of penalized matrix decomposition

proposed by Witten et al.19 was constructed by

imposing additional constraints on the singular-value

decomposition, as follows1:

maxd ;u;v
1

2
jjX � duvT jj2F

s:t :jjujj22 ¼ 1; jjv jj22 ¼ 1;P1ðuÞ � a1;P2ðvÞ � a2; d � 0;

ð2Þ

where u is a column of U, v is a column of V, d is a

diagonal element of D, jj jj is the Frobenious norm, and

P1 and P2 are penalty functions. A reasonable value of

a gives a sparse loading matrix, V, with many zero

entries. The parameter for the penalty function is

determined by fivefold cross-validation.

To find the first K sparse principal components, the

penalized matrix decomposition was applied to a

covariance matrix with symmetrical L1 penalties, as

follows:

argmaxu;v u
T

X
T

Xv

s:t :jjujj22 � 1; jjujj1 � c; jjv jj22 � 1; jjv jj1 � c: ð3Þ

where the vector uk denotes the sparse principal

components for k ¼ 1, 2, . . . K. This problem was

solved by biconvexity optimization using an iterative

algorithm. For more details, please refer to Witten et

al.19
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