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Ulcerative colitis (UC) is a chronic and relapsing inflammatory bowel disorder in the colon and rectum leading to low life-quality
and high societal costs. Ursolic acid (UA) is a natural product with pharmacological and biological activities. The studies are aimed
at investigating the protective and treatment effects of UA against the dextran sulfate sodium- (DSS-) induced UC mouse model
and its underlying mechanism. UA was orally administered at different time points before and after the DSS-induced model.
Mice body weight, colon length, and histological analysis were used to evaluate colon tissue damage and therapeutic evaluation.
Intestinal transcriptome and microbe 16 s sequencing was used to analyze the mechanisms of UA in the prevention and
treatment of UC. The early prevention effect of UA could effectively delay mouse weight loss and colon length shorten. UA
alleviated UC inflammation and lowered serum and colon IL-6 levels. Three classical inflammatory pathways: MAPKs, IL-
6/STAT3, and PI3K were downregulated by UA treatment. The proportion of macrophages and neutrophils in inflammatory
cell infiltration was reduced in UA treatment groups. UA could significantly reduce the richness of intestinal flora to avoid the
inflammatory response due to the destruction of the intestinal epithelial barrier. The function of UA against UC was through
reducing intestinal flora abundance and regulating inflammatory and fatty acid metabolism signaling pathways to affect immune
cell infiltration and cytokine expression.

1. Introduction

Ulcerative colitis (UC) is a chronic and relapsing inflamma-
tory bowel disorder in the colon and rectum, which can
induce recurrent episodes of bloody diarrhea, abdominal
pain, and even colorectal cancer [1]. The unhealthy lifestyle,
gut microbiota, and genetic factors may be the main cause of
the pathogenesis of UC [2]. At present, many drugs are used
to treat UC including aminosalicylates, corticosteroids,
immunosuppressants, and biological reagents; however, a
large of patients are still ineffective or have more side effects
[3]. Therefore, new therapeutic strategies for UC need to be
developed.

Ursolic acid (UA), purified from medicinal plants and
foods such as lavender and apple peel, is a natural pentacyclic

triterpenoid carboxylic acid with pharmacological and bio-
logical activities [4]. The UA may possess broad-spectrum
anticancer effects by promoting the apoptosis and autophagy
of cancer cells to inhibit cell growth [5–9]. The anti-
inflammation mechanisms of UA are reported to inhibit
the production of proinflammatory cytokines such as IL6,
IL1β, and TNF and reduced the high nuclear level of NFκB
p65 [10–13]. UA can reduce transaminase (AST and ALT)
levels and fat accumulation to protect against liver diseases
[14–16]. Moreover, UA showed antibacterial activity to
reduce bacterial biofilm mass of Streptococcus mutants,
Pseudomonas aeruginosa, Actinomyces viscosus, etc. and
has a synergistic effect against both Staphylococcus aureus
and Bacillus cereus with ampicillin and tetracycline [17, 18].
The antibacterial activities of UA are realized by destroying
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the integrity of the bacterial membrane and inhibiting the
metabolic and protein synthesis pathway [19]. Meanwhile,
UA can improve intestinal flora imbalance and play a protec-
tive role in the intestinal tract of liver fibrosis mice [20–22].
The character of UC is intestinal immune imbalance and
intestinal microbial disorder [23, 24]. The infiltration of mac-
rophage, dendritic cells, and T cells plays crucially important
roles in the dextran sulfate sodium- (DSS-) induced mouse
UC model [25–27]. The commensal bacteria diversity in UC
patient pattern decreases, particularly in Firmicutes and Bac-
teroides, but some bacterial species are a relative increase like
Enterobacteriaceae [28–30].

In our study, we hypothesized that UA may improve the
microenvironment of intestinal flora and regulate the infil-
tration of immune cells to prevent ulcerative colitis. So, we
used the DSS-induced mouse UC model to investigate the
protective effects of UA against ulcerative colitis.

2. Materials and Methods

2.1. Reagents. Reagent-grade DSS salt (MW, 36-50 kDa, MP
Biomedicals); UA (purity, 99.27%, MedChemExpress); Fast
DNA Spin Kit for feces (6570200, MP Biomedicals); Qiagen
RNeasy Kit (74104, Qiagen); BD™ Cytometric Beads Array
(BD).

2.2. DSS Induced the Mouse UC Model and UA Treatment.
The 6-week-old C57/BL6 (male, 18-20 g) were provided
and fed a basal diet at 24°C and 55% humidity with 14 : 10
light-dark cycle in SPF laboratory animal facility according
to the approval of the Animal Ethics Committee of Zhejiang
Academy of Traditional Chinese Medicine (KTSC20200058).
After a week of adaptation, mice were divided into 4 groups
(n = 8) according to the experimental plan. In our experi-
ment, all mice were randomly divided into four groups:
control group (Con group), model group (DSS group), pre-
ventive treatment group (UA+DSS group), and treatment
group (DSS+UA group) (Figure 1(a)). The DSS-induced
UC model was given 3% (w/v) DSS in the drinking water
for 5 days ad libitum. UA (200mg/kg body weight) was
administered by oral gavage once a day for 7 days, commenc-
ing 24 hours before changing 3% (w/v) DSS of the drinking
water in the UA+DSS group. In the DSS+UA group, UA
(200mg/kg body weight) was administered by oral gavage
once a day for 4 days, commencing 3 days after changing
3%(w/v) DSS of the drinking water. The vehicle was admin-
istered by oral gavage in the Con group and DSS group. The
mice were weighed daily. The mice were anesthetized to
collect whole blood from the hearts of mice and sacrificed
to collect rectal feces and colonic tissues for follow-up
experiments.

2.3. Histopathological Analysis and Serum Cytokine
Measurement. The colonic tissue of mice was fixed with 4%
formalin, embedded in paraffin, and then stained with hema-
toxylin and eosin (HE). The score of Nancy index was per-
formed according to the Marchal-Bressenot method [31].
The Nancy index is defined by 5 level classification ranging
from grade 0 (no significant disease activity) to grade 4

(severely active disease). The whole blood in the EP tube
was left at room temperature for more than one hour and
centrifuged at 1500 g for 20 minutes, and the supernatant
was the serum. The 9 cytokine (IL-6, IL-10, MCP-1, TNF,
IFN-γ, IL-17, IL-2, GM-CSF, and IL-4) levels were measured
using the BD™ Cytometric Beads Array (CBA) according to
manufacturers’ protocol.

2.4. Transcriptome Analysis of Colonic Tissues. Total RNA
was isolated from 3 colonic tissues of each group using the
Qiagen RNeasy kit following the manufacturers’ protocol.
RNA samples with good quality control (RIN values > 8)
were sequenced using Hiseq-2500 by Novogene. The raw
data of RNA-seq was inspected using FastQC and mapped
to the reference genome (GRCm38). The read count of genes
was calculated by Hisat2 [32]. The expression of genes was
analyzed by principal component analysis (PCA). According
to a different group, colon length, and Nancy index, all genes
were clustered by weighted gene coexpression network anal-
ysis (WGCNA) [33]. The clusters of genes were annotated by
GO and KEGG by clusterProfiler [34]. Based on the RNA-seq
data, the immune cell inflation was analyzed by seq-
ImmuCC, which is a tool of tissue transcriptome measuring
cellular compositions of the immune microenvironment
from mouse RNA-seq data [35].

2.5. Intestinal Microbiota 16S rRNA Sequence. The total DNA
of the rectal feces was isolated using the Fast DNA Spin Kit
for feces. The V4 region of the 16S rRNA gene was amplified
and sequenced with the 515F/806R primer set by Illumina
MiSeq platforms at Novogene. The operational taxonomic
units (OTUs) and representative sequences for each OTU
were obtained at 97% similarity by FLASH, QIIME, and
UPARSE software [36–38]. The species of OTUs sequence
were annotated at setting a threshold of 0.8~ 1 by theMothur
method and SILVA132 SSUrRNA database (http://www.arb-
silva.de/) [39]. And then, the abundance of species, Alpha
diversity of each group, was calculated by R software.

2.6. Real-Time RT-PCR. Briefly, 1μg of extracted RNA was
reverse transcribed (Applied Biosystems) and amplified
using the SYBR green PCR master mix (Roche 480). The
relative quantification of the gene expression was calculated
with the 2−ΔΔCt method referring to Gapdh.

2.7. Immunoblot Analysis. The colonic tissues were washed
with ice-cold PBS and lysed with lysis buffer (20mM Tris at
pH7.5, 1mM PMSF, 0.1% Triton X-100, and 10μg/ml apro-
tinin). The concentration of protein was determined using a
BCA assay (Sangon Biotech), and 20μg of protein per lane
was added on an 8-12% SDS-polyacrylamide gel. The protein
electrophoretically transferred to a nitrocellulose membrane
(0.1-μM pore size). The proteins were detected using rabbit
polyclonal antibodies against mouse Tgfb-1, Col1a1, Itga5,
and Gapdh (Proteintech Group) as primary antibodies and
peroxidase-conjugated anti-rabbit IgG (Proteintech Group)
as a secondary antibody. Protein was detected by an
enhanced chemiluminescence system (ECL) and exposure
to X-ray film.
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2.8. Statistical Analysis. The Image-Pro Plus software was
used to calculate the score of Nancy index. Image production
and data analysis were performed using GraphPad Prism and
R software. All data are presented asmean ± SD or SEM. The
number of each experimental group was at least 3 samples to
ensure confidence in the results. Student’s t-test and Kruskal-
Wallis H test were used to analyze the significant differ-
ences between groups. ∗P < 0:05 was considered significant.
∗∗P < 0:01 was considered extremely significant.

3. Results

3.1. Ursolic Acid Attenuated DSS-Induced Ulcerative Colitis of
Mice. To investigate the effect of UA on prevention and treat-
ment for UC, the DSS-induced mouse UC model was per-
formed by oral administration of UA before and after DSS
treatment. Early intervention with UA (UA+DSS group)
was able to alleviate DSS-induced weight loss and shortening

the colon in mice (Figure 1). However, the DSS+UA group
only reduced DSS-induced shortening of the colon in mice
for UA treatment five days (Figure 1). The histopathology
of the colon was evaluated by the score of Nancy index and
HE. The Nancy index of the UA+DSS group and DSS
+UA was significantly lower than the DSS group
(Figure 2(b)). The 3% DSS induced severe mucosal and epi-
thelial cell structural damage and inflammation response
(Figure 2). However, the mucosal epithelium was more intact
and regularly arranged between the UA+DSS and DSS+UA
groups than the DSS group (Figure 2(a)). The UA also
reduced the level of proinflammatory factor IL6 in serum
(Figure 2(c)). So, our results implied that UA had protective
and therapeutic effects on colon damage and inflammation.

3.2. Core Gene Expression Characteristics of UA Attenuated
DSS-Induced Mouse UC. To state the molecular mechanism
of UA treatment on UC, we analyzed the transcriptome of
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Figure 1: Effects of the UA on DSS-induced UC model. (a) Flow chart and time point of the DSS-induced UCmodel and UA treatment. The
blue frame represented a 3% DSS drinking solution for one day. (b) The daily record of body weight in the DSS-induced UC model and UA
treatment groups (n = 8). (c) The morphology and length of the colon in the DSS-induced UC model and UA treatment groups. (d) The box
plot of colon length in the DSS-induced UC model and UA treatment groups (n = 8). Data represent the mean ± SD of values per group.
Statistically significant results in different groups are marked by ∗P < 0:05 and ∗∗P < 0:01. There was no significant difference in the
unmarked group.
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four groups (Con, DSS, UA+DSS, and DSS+UA) by high
throughput sequencing (GSE150688). The Con and UA
+DSS groups were clustered, while DSS and DSS+UA
groups were individually separated according to transcrip-
tomic data by PCA analysis (Figure 3(a)). The specific gene
coexpression modules of four different treatment groups
were analyzed by WGCNA. The 15 gene coexpression mod-
ules were found using calculating parameter (power = 14 and
mergecutheight = 0:25) (Figure 1S and Table 1S). The gene
expression profile of the black module was significantly
positively correlated with the DSS group (correlation = 0:97,
P value = 2e − 07). The genes of the black module were
clustered into inflammation signaling pathways such as
PI3K-Akt, MAPK, and cytokine interaction (Figure 3(b)).
The ECM (extracellular matrix) and TGF-β signaling
pathway were activated by DSS (Figure 3(c)). The blue
module was significantly positively correlated with the UA
+DSS group (correlation = 0:64, P value=0.02) and
negatively correlated with the DSS group (correlation = -

0.61, P value =0.04) (Figure 1S). The genes of the blue
module were mapped into fatty acid metabolism, bile
secretion, and virus infection pathways by KEGG analysis
(Figures 4(a) and 4(c)–4(e)). The red module was
significantly positively correlated with the DSS+UA group
(correlation = 0:59, P value = 0:05) and negatively correlated
with the DSS group (correlation = −0:65, P value = 0:02)
(Figure 1S). The genes of the red module were clustered
into neurological disease, oxidative phosphorylation, and
fatty acid metabolism in (Figure 4(b)). Interestingly, We
found gene modules (blue and red) associated with
phenotypes that can be enriched to fatty acid metabolism in
both the preventive treatment group (UA+DSS group) and
treatment group (DSS+UA group) (Figures 4(a) and 4(b)).
We also found that the gene expression of fatty acid
metabolism and fatty acid degradation in the UA-treated
group and the normal control group was higher than that
in the DSS model group (Figure 4(c)). Meanwhile, AMPK
and FOXO signaling pathways were downregulated in the
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Figure 2: Effects of the UA against colon inflammatory and injure. (a) The histopathology of the colon by HE stain in the DSS-induced UC
model and UA treatment groups. (b) Nancy index of each group according to the Marchal-Bressenot method in each group (n = 8). (c) Effects
of UA on serum levels of four cytokines in the DSS-induced UC model and UA treatment groups (n = 8). Data represent themean ± SEM of
values per group. Statistically significant results in different groups are marked by ∗P < 0:05 and ∗∗P < 0:01. There was no significant
difference in the unmarked group.
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DSS group compared with UA treatment and Con groups
(Figure 4(d)). These results suggested that the protection
and treatment effect of UA on UC is mainly through the
regulation of fatty acid metabolism.

3.3. UA Regulates Immune Cell Infiltration of DSS-Induced
Mouse UC. To understand the composition of infiltrated
immune cells in inflammatory microenvironments
Figure 5(h) of different treatment groups, the transcriptomic
data were analyzed by seq-ImmuCC. Compared with the
Con group, the proportion of macrophages and neutrophils
in the DSS group was significantly increased, while the pro-
portion of CD4 T and dendritic cells was decreased signifi-
cantly (Figures 5(a)–5(c)). The proportion of macrophages
and neutrophils was decreased, and the proportion of CD4 T
and dendritic cells was increased in the UA treatment group
including UA+DSS and DSS+UA (Figures 5(a), 5(b), and
5(k)). The proportion of NK and CD8 T cells was significantly
increased in the UA+DSS group (Figures 5(d) and 5(g)). The
proportion of mast cells was increased in the DSS+UA group

(Figure 5(h)). These results suggested that UA could regulated
immune cell infiltration in the UC mouse model.

3.4. UA Regulates the Microenvironment of the Intestinal
Flora of DSS-Induced Mouse UC. To investigate the regula-
tory effect of UA on intestinal microorganisms, the observed
species and diversity were analyzed by 16S rRNA amplicon
sequencing. We found that UA could significantly reduce
the community richness of bacteria and the Chao index
(P value = 0:038) in the gut (Figure 6(a) and 6(b)). However,
there was no significant difference in the Shannon index
(P value = 0:319) (Figure 6(c)) and the Beta diversity index
(data not shown). To determine the bacteria biomarkers of
each treatment group, the LDA (Linear Discriminant Analy-
sis) effect size of four groups was analyzed by LEfSe software.
The Con and DSS groups owned more biomarkers, and the
biomarkers were reduced by UA treatment (Figure 6(d)).
The major biomarker of UA+DSS was Verrucomicrobia,
while the major biomarker of the DSS+UA group was
Gammaproteobacteria (Figure 6(d)).
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Figure 3: Transcriptome analysis and protein expression of the prevention and treatment of the DSS-induced UCmodel with UA treatment.
(a) PCA analysis results of transcriptome under different treatments. (b) The KEGG signaling pathway enrichment results of black module
genes by WGCNA. (c) Heatmap of ECM receptor interaction and TGF-β signaling pathway gene expression. (d) Heatmap of the cytokine-
cytokine receptor signaling pathway gene expression. (e) Immunoblot analysis of Col1a1, Tgfb-1, and Itag5 in four groups of colonic tissues.
(f) The relative mRNA expression of Il6, Tgfb-1, Ccr-2, and Csf-1 gene in four groups of colonic tissues.
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4. Discussion

Inflammatory bowel disease (IBD) has been a global disease
leading to low life-quality and high societal costs [40]. UC
and Crohn’s disease (CD) are the two main IBD pathological
subtypes. In contrast to CD, UC lesions occur mainly in the
mucosa of the colon due to genetic immune, environmental
factors, and intestinal microbes [2]. In this study, the early
prevention (UA+DSS group) and late treatment (DSS+UA

group) effects of UA were analyzed by the DSS-induced UC
mouse model. The early prevention effect of UA could effec-
tively delay mouse weight loss and colon length shorten
(Figure 1). However, the late treatment effect of UA only
delayed colon length shorten, and there was no significant
difference in body weight between the DSS+UA group and
the DSS group (Figure 1), but the no difference in body
weight might be caused due to short UA administration time
(only 5 days). However, in previous studies, UA treatment
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Figure 4: Gene expression modules associated with UA therapy and prevention. (a) The KEGG signaling pathway enrichment results of blue
module genes associated with the phenotype of the UA+DSS group. (b) The KEGG signaling pathway enrichment results of red module
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Figure 5: Continued.
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for 7 days could improve SOD activity and reduce malondial-
dehyde (MDA) and myeloperoxidase (MPO) activity to
relieve the reduction of body weight and stool blood [12].
Meanwhile, UA treatment for 9 days in the UA+DSS group
showed significant weight recovery (Figure 1(b)). So, pro-
longed administration of UA may contribute to weight
recovery in UC mice.

To further elaborate the mechanism of UA in the preven-
tion and treatment of UC, the correlation between the tran-
scriptome and the phenotypes of each treatment group was
analyzed by WGCNA. Three classical inflammatory path-
ways: MAPKs, IL-6/STAT3, and PI3K were enriched into
the black module which was significantly positively corre-
lated with the DSS group (Figure 3(b) and 1S). Mitogen-
activated protein kinases (MAPKs) involve in the regulation
of the synthesis of inflammation mediators by transcription
and translation [41]. PI3K isoforms (PI3Kα, β, γ, δ) play a
particularly important role in chemokine-mediated recruit-
ment and activation of innate immune cells at sites of inflam-
mation and B and T cell development, differentiation, and
function [42]. UA could also significantly reduce the IL-6
level in serum and downregulate the expression of
inflammation-related genes (Figures 2(d), 3(c), and 3(d)).
IL-6 regulates various cells including epithelial cells, macro-
phages, neutrophils, and T cells to activate early immune
responses [43]. In IBD patients, multiple aberrancies in lipid

metabolism have been found, and fatty acids may affect cyto-
kine production and inflammation response [44–46]. AMP-
activated protein kinase (AMPK) plays a key role as a master
regulator of cellular energy homeostasis and is also thought
to be important for regulating fatty acid metabolism [47].
The activation of the AMPK-FOXO3 pathway reduces the
fatty acid-induced increase in intracellular reactive oxygen
species [48]. In our results, the prevention and treatment
effects of UA on UC are achieved by activating AMPK/-
FOXO signaling pathways that upregulate fat acid metabo-
lism (Figure 4).

Immune cell infiltration is an important biomarker of
inflammation. DSS feeding resulted in an increased produc-
tion of macrophage-derived cytokines in BALB/c mice [26].
We also found macrophages accounted for the highest pro-
portion of immune infiltrating cells in the DSS-induced UC
model (Figures 5(a) and 5(b)). The proportion of macro-
phages was significantly reduced in two UA treatment groups
(Figure 5(b)). UA inhibits NF-κB activation in both intestinal
epithelial cells and macrophages and attenuates experimental
murine colitis [13]. However, the infiltration of neutrophils
in IBD leads to loss of barrier function and apoptosis of epi-
thelial cells [49]. UA treatment reduced the proportion of
neutrophils in the colonic mucosa of DSS-induced UC
models (Figure 5(k)). CD4 T cells, also known as T helper
(Th) lymphocytes, differentiate into a variety of Th cell types
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Figure 5: Composition of infiltrated immune cells among four UC experiment groups. (a) Fractions of 10 immune cells in Con, DSS, UA
+DSS, and DSS +UA groups (n = 3 each group). (b) The proportion of macrophage change in four experimental groups. (c) The
proportion of CD4 T cells change in four experimental groups. (d) The proportion of NK cell change in four experimental groups. (e) The
proportion of eosinophil change in four experimental groups. (f) The proportion of B cell change in four experimental groups. (g) The
proportion of CD8 T cell change in four experimental groups. (h) The proportion of mast cell change in four experimental groups. (i) The
proportion of monocyte cell change in four experimental groups. (j) The proportion of dendritic cell change in four experimental groups.
(k) The proportion of neutrophil change in four experimental groups. Data represent the mean ± SEM of values per group. Statistically
significant results in different groups are marked by ∗P < 0:05 and ∗∗P < 0:01. There was no significant difference in the unmarked group.
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and are key in mediating inflammation [50]. In our model,
the proportion of CD4 T cells was downregulated in the
DSS-induced UC model, while UA could mitigate this
decline in the ratio (Figure 5(c)). However, the types of these
CD4 T cells still need further analysis.

At present, there is no single agent that has been proven
to cause IBD. The role of gut microbes has been suspected

because of potential infectious, particularly when the intesti-
nal epithelial barrier is destroyed [51]. UA has a potential
antibacterial effect by inhibition of protein synthesis and
the metabolic pathway [18]. In our studies, the community
richness of bacteria, Chao index, and bacteria biomarkers
were markedly decreased in two UA treatment groups
(Figure 6). This reduction of community richness of bacteria

Con
DSS

DSS+UA
UA+DSS

(d)

Figure 6: Analysis of the differential microbial community among the group. (a) Rarefaction curve of microbial community richness of Con,
DSS, UA+DSS, and DSS +UA groups. (b) Alpha diversity index (Chao1_index) of intestinal within groups. (c) Alpha diversity index
(Shannon_index) of intestinal within groups. (d) Cladogram of the LDA value from the Con, DSS, UA+DSS, and DSS +UA groups. The
Kruskal-Wallis H test was used to analyze the significant differences between groups by R.
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would reduce the innate immune response and inflammation
due to the destruction of the epithelial barrier (Figure 7). In
studies on liver fibrosis, it has been found that UA could pre-
vent intestinal damage caused by carbon tetrachloride by
improving intestinal flora disturbance [19–21]. In our
research, the major biomarker of the UA+DSS group was
Verrucomicrobia by LEfSe (Figure 6(d)). Meanwhile, Verru-
comicrobia has been recently proposed as a hallmark of a
healthy gut due to its anti-inflammatory and immunostimu-
lant properties and its ability to improve gut barrier function,
insulin sensitivity, and endotoxemia [52].

In conclusion, we demonstrated that UA could prevent
and ameliorate the DSS-induced UC mouse model. The
function of UA against UC was through reducing intestinal
flora abundance, regulating inflammatory and fatty acid
metabolism signaling pathways to affect immune cell infiltra-
tion and cytokine expression (Figure 7). These results sug-
gested that IBD susceptible populations would eat some
foods or drink herb tea rich in UA such as apple, berries,
and mulberry leaf tea to prevent and treat IBD. Of course,
how much UA content through diet and tea per day is still
to be further studied to prevent UC.
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