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Abstract 

Background:  Current methods in machine learning provide approaches for solving 
challenging, multiple constraint design problems. While deep learning and related 
neural networking methods have state-of-the-art performance, their vulnerability in 
decision making processes leading to irrational outcomes is a major concern for their 
implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) 
have increasingly gained attention as novel therapeutic agents. This challenging design 
problem requires peptides which meet the multiple constraints of limiting drug-resist-
ance in bacteria, preventing secondary infections from imbalanced microbial flora, 
and avoiding immune system suppression. AMPs offer a promising, bioinspired design 
space to targeting antimicrobial activity, but their versatility also requires the curated 
selection from a combinatorial sequence space. This space is too large for brute-force 
methods or currently known rational design approaches outside of machine learning. 
While there has been progress in using the design space to more effectively target 
AMP activity, a widely applicable approach has been elusive. The lack of transparency 
in machine learning has limited the advancement of scientific knowledge of how AMPs 
are related among each other, and the lack of general applicability for fully rational 
approaches has limited a broader understanding of the design space.

Methods:  Here we combined an evolutionary method with rough set theory, a trans-
parent machine learning approach, for designing antimicrobial peptides (AMPs). Our 
method achieves the customization of AMPs using supervised learning boundaries. 
Our system employs in vitro bacterial assays to measure fitness, codon-representation 
of peptides to gain flexibility of sequence selection in DNA-space with a genetic algo-
rithm and machine learning to further accelerate the process.

Results:  We use supervised machine learning and a genetic algorithm to find a pep-
tide active against S. epidermidis, a common bacterial strain for implant infections, with 
an improved aggregation propensity average for an improved ease of synthesis.

Conclusions:  Our results demonstrate that AMP design can be customized to main-
tain activity and simplify production. To our knowledge, this is the first time when 
codon-based genetic algorithms combined with rough set theory methods is used for 
computational search on peptide sequences.
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Background
Machine learning has been a key component of the research community’s efforts to 
solve problems involving multiple, complex relationships ranging from the board game 
Go [1], facial recognition [2, 3] and protein folding [4, 5]. While neural networks are 
universal approximators in the sense that any correlated relationship between input and 
output can be found given enough data, neural networks may find correlated relation-
ships where causation is lacking. Therefore, deep learning methods are vulnerable to 
making illogical connections during training. Currently, machine learning practitioners 
must address this vulnerability in the training process, but the lack of a complete solu-
tion for deep learning methods in the literature directs recent efforts toward Explain-
able Artificial Intelligence (XAI). Some machine learning methods are, by construction, 
less vulnerable to making illogical connections than deep learning methods. Transpar-
ency for how decisions are made is one approach in which illogical connections can be 
removed from the decision process. Random forest and other tree decision methods 
have this feature. A recent review has identified rule induction as one solution to this 
issue [6]. Rough set theory is a rule induction approach which tracks the ambiguity of 
labels to understand the strength of relationship between input and output labels. Rough 
set theory has been used as a data mining method for developing expertise from com-
plex data tables [7, 8]. Logical consistency can be moved forward in machine learning 
by further developing rough set theory and other transparent decision approaches. A 
lack of transparency limits the knowledge that can be gained from neural network mod-
els. Here, we offer a transparent machine learning approach to increase the comprehen-
sion of relationships between the specific design solutions in a design space as well as to 
broaden the understanding of the structure of the design space beyond a single cluster of 
design iterations. We apply this approach to designing antimicrobial peptides (AMPs) as 
alternative agents to antibiotics by incorporating a rough set theory method, a transpar-
ent machine learning approach, into an evolutionary design method.

Rising antibiotic-resistant infections have become one of the growing public health 
concerns globally. The 2019 “Antibiotic resistance threats in the USA” report released 
by US Centers for Disease Control and prevention (CDC) includes the latest USA anti-
biotic resistance burden estimates. According to this report, more than 2.8 million anti-
biotic resistance infections occur in the USA each year. The World Health Organization 
acknowledges the current problem of drug resistance through the Global Action Plan 
for AMR in 2014 [9]. The report provides urgent threats such as carbapenem-resistant 
Acinetobacter, vancomycin-resistant Enterococcus, methicillin-resistant Staphylococcus 
aureus, erythromycin and clindamycin-resistant Streptococcus. Even for current anti-
biotics that are being rationed for last resort, bacterial resistance is spreading quickly 
and widely. As an example, resistance to a polymyxin, called colistin, has spread from 
animals to humans in China through food chain supply [10, 11]. Beyond the declining 
efficacy because of the indiscriminate use of antibiotics, these drugs also lead to personal 
health issues such as the dysregulation of microbial communities and patient immune 
system suppression. The prevention of immune system dysbiosis, as in atopic march 
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[12], from antibiotics is a further benefit of targeting antimicrobial activity. Alternative 
antimicrobial agents which are as effective and biocompatible as natural immune system 
components have become an urgent need.

Antimicrobial peptides (AMPs) have been increasingly gaining attention as new anti-
microbial agents alternative to antibiotics. AMPs are essential components of innate 
immune systems of all multi-cellular organisms fighting as the first line defenders 
against a foreign attack [13–15]. Compared to conventional antibiotics, AMPs have a 
wide range of antimicrobial mechanisms including disruption the integrity of the bac-
terial membrane as well as the inhibition of DNA, RNA, and protein synthesis of the 
invading pathogens, or inactivating intracellular enzymes or disrupting cell wall synthe-
sis [16–18]. With their broad spectrum as well as targeted antimicrobial efficacy, they 
offer an opportunity to treat even antibiotic resistant microbes [19]. We have demon-
strated that these peptides can be designed for their local delivery on implantable mate-
rials as well as integrated into adhesives between materials-tissue interfaces to prevent 
bacteria viability on implants [20–26].

AMPs display remarkable structural and functional diversity with a massive number 
of possible peptide sequences, with known examples of multiple active structures for a 
single AMP [27, 28]. More than 2800 peptides have been isolated from a wide range of 
organisms [29, 30]. To expand this class of new antimicrobial agents, antibacterial pep-
tide-mimics are introduced as another source to the existing peptide libraries as well as 
computational methods have been integrated into this search to find many more candi-
dates [31–33].

While a recent study has demonstrated a narrow example of rationally designed anti-
microbial peptides for targeted antimicrobial activity against Enterococcus faecalis,[34] 
no method has been developed for using broadly applicable physicochemical proper-
ties to design antimicrobial peptides for addressing a range of activity targets. Two main 
approaches exist in the literature for designing antimicrobial peptides. The first approach 
is to design new peptides rationally through curated insights into antimicrobial activ-
ity. The Joker algorithm is a recent example of inserting patterns into sequences to pro-
duce new antimicrobial peptide sequences rapidly [35]. The second main approach is 
through opaque machine learning methods which leverage trends in sequence data but 
do not yield curated insights for further exploration. Deep-neural networks describing 
antimicrobial sequences use this approach [36–39]. A recent study has designed antimi-
crobial peptides through an evolutionary algorithm [18]. While this study does provide 
insight into more effective peptide designs through amino acid substitution frequencies, 
the study did not find useful relationships through physicochemical properties. We pro-
vide a machine learning approach which transparently selects physicochemical features 
within the given knowledge domain in a non-linear way; this method leverages trends in 
datasets too large to analyze manually to provide an automated approach for rationally 
designing antimicrobial peptides.

Computer-aided molecular design (CAMD) is a framework for designing new func-
tional molecules from quantitative models of activity. CAMD combines quantitative 
approaches of describing molecular structure and their activities in the forward prob-
lem, but also introduces the reverse problem of using these relationships to design novel 
molecules to meet specific design targets through intelligent search [40–42]. In the past 



Page 4 of 17Boone et al. BMC Bioinformatics          (2021) 22:239 

two decades, the main approach applied to the forward problem of CAMD for anti-
microbial peptides has been neural network models. In 2011, a study using improved 
cheminformatics descriptors reported a 94% true positive rate when synthesizing the 
top-fifty predicted antimicrobial peptides [43]. More recent studies have taken advan-
tage of deep neural network architecture for the semantic language performance and 
addressed the importance of how to encode amino acids numerically [44–46].

In our prior art, we pioneered the use of rough set theory for the classification of pep-
tide sequences according to antibacterial activity [47]. Our rough set theory method 
provides a transparent selection approach which provides explicit boundaries between 
physicochemical properties that active sequences possess and inactive sequences 
do not possess. The more boundaries which a peptide fits in with active peptides, the 
more likely the peptide is to be robust with different mechanism of action. Because our 
method produces explicit decision components, we can test sequences which contain 
multiple components.

In this paper, for the first time in a CAMD approach, we combine a rough set theory 
method with a genetic algorithm search to tailor antimicrobial peptides for targeted 
properties. For the first time in a genetic algorithm approach to designing peptides, a 
codon-basis will be used to increase the variation of peptide sequences generated for 
this intelligent search. The codon-based genetic algorithm (CB-GA) search completes 
the reverse problem of CAMD (Fig. 1). We demonstrate our novel CAMD approach by 
designing antimicrobial peptides which are targeted against S. epidermidis and for the 
ease of solid-state peptide synthesis. Our approach combines in  vitro bacterial assays 
as the AMP fitness, genetic algorithm to uncover diversity for customizing the design 
through a codon-representation of peptides to direct the selection of sequences related 

Fig. 1  Computer aided molecular design. CAMD is an iterative two-step approach to design new 
antimicrobial peptides. The first step, the forward problem, is to determine quantitative relationships 
between antimicrobial peptide sequence and antibacterial activity. The second step, the reverse problem, 
is to find new antimicrobial peptide sequences with desired properties, e.g. improved ease of synthesis, 
through an intelligent search method. Adapted from [47]
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in DNA-space, and transparent machine learning to guide the sequence selection pro-
cess. Our results demonstrate that antimicrobial peptide design can be customized to 
maintain activity and simplify production. The proposed approach could be extended to 
peptide design with other desirable activities.

Results
Generation of increased sequence diversity through codon‑basis

Motivated by aggressive mutations that codon representation can offer, we convert 
the peptide sequences to a codon-representation to take advantage of reading frames 
for generating novel antimicrobial peptide sequences. We mutate a single DNA base 
through substitution, insertion or deletion and search for novel sequences through 
cross-over by combining subsequences of predicted antimicrobial peptides. The anti-
microbial peptide amino acid frequency to codon frequency ratio is given in Fig S1, 
showing that most amino acid frequencies are close to their codon frequencies in the 
standard codon table. Figure 2 shows that using the codon-representation increases the 
variance of generated fitness scores at the beginning of the generations, while reaching 
similar score variance, maximum and mean fitness levels as without codon-representa-
tion. Filtering by top-scoring sequences reduces the variance of scores for both meth-
ods. The results shown are for single-threaded genetic algorithm runs. Our approach 
allows for completing multiple trajectories from the clustering of sequences in previous 
generations.

Fig. 2  Codon-representation method increases scoring variation in beginning generations of algorithm runs. 
The blue lines represent data for the codon-representation and the orange lines represent data without the 
codon-representation. The solid lines represent the average of 6 repeated genetic runs over 100 generations. 
The dotted lines represent the 95% CI using the student t test statistic of the repeated runs. a The number of 
predicted antibacterial sequences decreases when using the codon representation, b While the beginning 
mean fitness of the codon-representation is worse, the mean fitness converges for both methods due to the 
filtering of each pool by the top-scoring sequences, c The beginning standard deviation of fitness scores is 
higher with codon representation, but it converges with the non-codon representation by the sequence 
score filtering. d The maximum fitness also shows a similar trend as mean fitness, showing that the best 
scoring sequences for either method converge to similar scores. The increased scoring variation likely comes 
from a wider parameter space coverage. An advantage of using codon representation is the increased 
parameter coverage for screened peptides
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The number of predicted antibacterial sequences are screened from the number of 
sequences initially generated by the genetic algorithm. Only the sequences which adhere 
to the MLEM2 rules for antibacterial activity pass this screening. Use of the codon-
representation results in less generated peptide sequences passing this screen (Fig. 2a). 
However, the codon-representation also results in more varied fitness scores for 
screened sequences as seen in Fig. 2c. We further extended our analyses to compare the 
codon-representation to non-codon representation with respect to the degree of vari-
ability of selection of these sequences.

The codon-representation peptide generation method was evaluated if its peptides 
screened to be antibacterial by our CLN-MLEM2 rules were more diverse than with-
out the codon-representation. In Fig. 3, we plotted the contour map of parameter cov-
erage for each approach for two parameters of our scoring function, by peptide length 
and AGGRESCAN score. Crossing each contour changes the 2-D density estimation 
of screened peptides generated by the given method in the nearby parameter area by 
one percent. We selected the 20th generation as an early generation in which the scoring 
standard deviation was still elevated when using codons.

Figure 3 shows that the codon representation results in better coverage of the param-
eter space for screened sequences due to the areas covered by the codon representation 
with no coverage by the non-codon representation. The increase in coverage in Fig.  3 
is expected because the non-codon method is a subroutine of the codon method when 
there are no reading frame shifts. Such a shift will occur with odds of 2:1 because for 

Fig. 3  Widened parameter coverage for screened peptides through codon-representation. Generation 
20 was shown to have higher scoring variation for codon-representation peptides in Fig. 4c. The spread of 
the peptides predicted to be antibacterial either generated by the codon representation method (teal) or 
the non-codon representation method (red) is shown. Each contour is a change in density of 0.01. The 2-D 
density contours show that the codon-representation generates screened peptide sequences which have 
AGGRESCAN scores outside the non-codon representation at most peptide lengths, both above and below, 
even though the non-codon representation generated more screened sequences as seen in Fig. 4a. The 
codon-representation also generated the majority of peptides at the extremes of peptide length, 6 and 13
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every three DNA positions to select as a starting position, one results in no frame shift 
and two result in frame shifts. For codons of arbitrary length, the increase in the codon 
length would increase the odds of frame shifts. Moving from the natural 3-base codon 
table to a 4-base codon table would result in an increase of frame shift probability by a 
factor of 3/2. If such an increase in frameshifts results in better genetic algorithm perfor-
mance is the domain of future study.

Our methodology of advancing our search by generation with frameshift sequences 
increases our sequence variability but  may reduce  our average sequence scores. This 
increased access in parameter space was evaluated for a potential tradeoff of not finding 
peptides which are comparatively highly scoring within the same number of generations. 
As the generation number increased for both methods, the coverage of the parameter 
space narrowed due to the filtering of the top-scoring sequences, seen in Fig. 2c. We did 
not see a loss in the mean score reached or in a reproducible loss in the maximum score 
reached for algorithm runs of 100 generations, as seen in Fig. 2b and 2d respectively. We 
get access to predicted active sequences which have a wider range of parameter values. 
Although our results were plotted with two dimensions to show the widened coverage, 
our genetic algorithm optimization considers parameters in many dimensions at once.

Novel antimicrobial peptide generation

We previously published our solution to the forward problem of CAMD antimicro-
bial peptide design [47]. Here, we describe our solution to the reverse problem of 
CAMD antimicrobial peptide design with our Codon-Based Genetic Algorithm (CB-
GA) method (Fig. 4). We start the first generation from known antimicrobial peptides 

Fig. 4  Customized active peptide design method. Steps 1–3 induct rules which separate active from inactive 
peptides. Step 4 finds new sequences which are predicted to be active and are customized toward design 
targets. The peptides are evaluated for activity. If new sequences are active, then the process is complete. If 
the new sequences are inactive, the method starts a new iteration by learning which new sequences to test 
by incorporating the previously customized sequences in the dataset
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from the APD3 [29] and sort them by score using our design targets. For this work, 
we target peptide sequences which are easily synthesizable with the fluorenylmeth-
oxycarbonyl (FMOC) protection method (Table 1). Our scoring function for fitness is 
the negative weighted average of the distance from the targets. We targeted relatively 
short amino acid sequences because shorter sequences are faster and cheaper to syn-
thesize. Cysteine residues add to the complexity of the synthesis process by intro-
ducing inter-peptide bonding and intra-peptide bonding between residues through 
disulfide bonds. We have simplified this level of complexity by selecting sequences 
which do not have cysteine. Another consideration of working with the synthesized 
peptides is their stability in solution. This property can be estimated to a first approxi-
mation with the likelihood that the peptide sequence will aggregate to itself. We use 
the Aggrescan method to make this prediction, with lower numbers leading to a lower 
chance of aggregation [48]. Having peptides which are less likely to aggregate may 
select for peptides which are not as permeable to bacteria membranes. To compen-
sate for this possible loss of activity while keeping the lower aggregation property, we 
added the net positive charge target property to restrict our search to cationic peptide 
sequences, which are among the commonly kown active examples [29, 49].

Meeting multiple CLN-MLEM2 rule categories likely increases the probability of 
peptide activity by having multiple features which are selective for being antibacte-
rial. Therefore, we use the MLEM2 rule category count as a design target (Table 1). 
We hypothesize that peptide sequences with different distinguishing descriptions 
of activity may have multiple, distinct mechanisms of action. We observed genetic 

Table 1  Design targets for novel antimicrobial peptides for ease of FMOC synthesis

Property Target

Amino acid length 7 to 15

AGGRESCAN score − 1.25

Cysteine count 0

Net positive charge  + 1 to + 5

Matching CLN-MLEM2 rule count 8–12

Fig. 5  Fitness distributions of selected generations. Fitness score distribution across selected generations 
as violin plots. The center of the violin plot is a box plot and the sides of the violin plot are the probability 
density kernels. The gray line is the score of zero, a perfect score representing all design targets being met. 
Generations are sequentially produced until a limit of non-improving generations is reached. A generation is 
non-improving if none of the members of the generation have an improved fitness score from the previous 
generations
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algorithm improvement toward our design targets across generations to improve 
meeting our design targets which combine MLEM2 rule categories (Fig. 5).

The newly generated sequences are filtered by our high specificity rough set theory 
classification method CLN-MLEM2 [47] so that each completed generation only con-
sists of either known antimicrobial peptides from the initial generation or predicted 
antimicrobial peptides. Additional files 1, 2 contains the pool of generated sequences. 
Violin plots [50] of the fitness scores, where the center is a boxplot and the shape of the 
sides is formed from the probability density kernel, across selected generations is shown 
in Fig. 5. Advancing generations become more skewed in favor of higher fitness scores.

The antibacterial screening with S. epidermidis showed that one of the three antimi-
crobial peptides selected from our genetic algorithm showed antibacterial activity. As 
a positive control we include Hp1404 [51], the highest scoring peptide from our initial 
peptide pool from APD3—AMP database (APD3: Antimicrobial peptide calculator 
and predictor). Hp1404 has known activity against gram positive bacteria. The AMP-2 
sequence’s aggregation potential sequence average (-0.02) is reduced compared to 
Hp1404 (0.26), and the AMP-2 peptide still retains activity against S. epidermidis. The 
average aggregation potential for AMP-2 is at the hot-spot threshold [48]. The middle 
of the Hp1404 sequence was conserved among novel peptides for this genetic algorithm 
search. Conserved residues are underlined in Table 2. Close sequence similarity relation-
ships between AMP-1 and AMP-2 did not result in similar antibacterial activity against 
S. epidermidis. While AMP-2 and AMP-3 also share conserved residues, their activities 
were varied. New MLEM2 rule categories can be generated to discriminate sequences 
with these differences for future iterations.

We attempted a translated basic-local alignment search tool with nucleotides (tblastn) 
on its public server [52] for the designed peptide sequences against the National Center 
for Biotechnology Information (NCBI). Also RefSeq Genome search was carried by dif-
ferent substitution matrices (BLOSUM45, BLOSUM62, BLOSUM90) with the lowest 
gap penalties and high expected scores (0.05, 0.1 and 0.25). The designed peptides were 
not found to have high homology with encrypted antimicrobial peptides from known 
DNA sequences.[53]

Table 2  Screened antimicrobial activities against S. epidermidis by the candidate antimicrobial 
peptides by the MLEM2 rule categories (AMP-1, AMP-2, AMP-3) and positive AMP control, Hp1404. 
Underlined letters indicate residues conserved in novel peptides compared to Hp1404

Agent Sequence Concentration (mg/mL) Inhibition 
zone (cm)

Ampicillin n/a 0.01 1.6

Hp1404 (crude) GILGKLWEGVKSIF 4.00 2.3

AMP-1 (crude) ATLGVLWESIRGHR 4.00 0

AMP-2 (crude) ATLGVLWEGARGHT 4.00 1.2

AMP-3 (crude) GTLANGWEGVRTNH 4.00 0
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Discussions
Increasing variation through codon representation

Genetic algorithms have been used to design molecules of targeted properties for a vari-
ety of problems [54, 55]. Protein or peptide design is a natural application of genetic 
algorithms since the basic algorithm was inspired by natural protein evolution. Compu-
tational protein and peptide design has been accomplished through genetic algorithms 
[56–62] before but not all aspects of the genetic system that inspired genetic algorithms 
have been explored in protein and peptide design. We apply a DNA codon representa-
tion of peptides within our genetic algorithm to take advantage of reading frameshifts.

Generating novel solutions in a genetic algorithm is a balance between viability, find-
ing solutions that meet some criteria, and adaptability, finding solutions that meet all 
criteria. Increasing the viability of each generation often involves using small moves 
in sequence space to avoid the loss of viability of large, random moves. Increasing the 
adaptability relies on the ability to make bigger moves in sequence space to preserve 
genetic diversity among generations. Reading frameshifts in biology represent one of 
these large moves that balances viability and adaptability as biological proteins develop 
in nature. Single-codon mutations in DNA, either deletions or insertions, cause reading 
frameshifts. Reading frameshifts encode transition probabilities for which new amino 
acids replace the previous amino acids. While most-reading frameshifts are nonviable, 
the viable frame shifts in nature may lead to the gain-of-function mutations. While using 
a codon-representation reduces the viability of our method by generating less predicted 
antibacterial sequences (Fig.  2a), the generation diversity is increased, as seen by the 
increase of the spread of scores (Fig. 2c) and in the wider coverage of target score dimen-
sions (Fig. 3). Since our method filters out non-antibacterial sequences, this increased 
generation diversity is among predicted antimicrobial peptides.

To the authors’ knowledge, this is the first time a genetic algorithm to design pep-
tides [43, 63–71] has used reading frameshifts for generating novel sequences. While 
the codon representation is a component of natural protein evolution, we do not believe 
that this is sufficient evidence that the natural codon representation is suited for the de 
novo designing peptides of a targeted activity. We are investigating how shifting read-
ing frames in certain codon representations may yield low-dimensional spaces in which 
neutral or gain-of-function mutations may become accessible. We start with a natural 
codon table to benchmark the peptide generating properties which fit our rough set the-
ory predictions. Future work will address how changes in the codon table affect the gen-
erating peptide properties for a targeted activity.

Combining antibacterial classes

Each CLN-MLEM2 rule for antibacterial activity describes a set of physicochemical 
properties that separates a set of antibacterial peptides from all given non-antibacterial 
peptides in the training set. Some peptides may meet more than one rule for antibacte-
rial activity. These peptides may act in multiple ways to achieve antibacterial activity. 
Measuring the number of CLN-MLEM2 rules a peptide meets may be a measure of its 
robustness for having broad spectrum antibacterial activity because the different rules 
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might represent different mechanisms of activity. Combining these sequence features 
may also combine the different mechanisms of activity.

Conclusions
Machine learning is accelerating many important design problems such as the design 
of antimicrobial peptide sequences to combat drug resistance in bacteria and to reduce 
antibiotic suppression of the host immune system. The transparency of the machine 
learning algorithm can be used to gain better comprehension of important design 
problems. In this paper, we offer a transparent machine learning algorithm, rough set 
theory, combined with an evolutionary search method with improved sequence diver-
sity generation to customize antimicrobial peptides for simplified manufacturing while 
maintaining their activity. To improve the targeting of antimicrobial activity to address 
antibiotic drug resistance, microbiome dysbiosis and immune system suppression simul-
taneously, our proposed computer-aided molecular design (CAMD) approach allows to 
design antimicrobial peptides with targeted desired properties and strain specificity. We 
demonstrated that our method found novel antibacterial peptides that are easier to syn-
thesize than antimicrobial peptides in the APD3 database. We also improved the anti-
bacterial activity with more novel antimicrobial peptides by adding together multiple 
rules for activity from our rough set theory method. For the forward problem of quan-
tifying sequence-activity relationships, we applied our rough set theory method (CLN-
MLEM2) as a quantitative structure–activity relationship (QSAR) model to designing 
peptides. For the reverse problem of finding novel peptide sequences, we applied our 
codon-based genetic algorithm to discover novel antibacterial sequences against S. epi-
dermidis, a key pathogen for implant infections. Our in vitro activity results for S. epi-
dermidis support the transparent machine learning approach that can be expanded to 
include different pathogens. Overall, the developed codon based genetic algorithm tech-
nique offers sequence diversity, combined with rough set theory methods can be used 
for generating novel peptides with targeted properties.

Methods
Rough set‑based active peptide customization method

Rough set theory[72] is a heuristic method for finding the most relevant property value 
intervals which differ between classification labels. We have shown that intervals of 
summary sequence property values calculated from amino acid chemical properties 
in the AAindex1[73] can be used to separate active peptide sequences from inactive 
sequences [47]. The summary sequence functions are described in Table S1. The chemi-
cal property intervals are described as conditions in the context of rough set theory. A 
rule is the intersected set of conditions such that the set only has a single class label for 
each of its members. In complex datasets, even using all properties available in a data-
set may not result in a set with only one selected class label. Using a relaxed criterion 
for discernibility such as modified learning from experience module 2 (MLEM2) rules 
[74], a rule may still be acceptable if a certain proportion, called α, corresponds to the 
single, selected class. If not, the rule is considered vague and removed from the rule set. 
Rules which use large numbers of properties may be at greater risk of overfitting. We 
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developed a variation of MLEM2 which limits the number of conditions in the gener-
ated rules. Since conditions are collections of property values, limiting the conditions 
is expected to reduce the number of properties selected by the rules. The CLN-MLEM2 
(Condition-Limited Number Modified Learning from Experience Module 2) was shown 
to have high specificity performance when classifying antimicrobial peptides from inac-
tive peptides. We use rough set theory to create rules which separate active from inac-
tive peptide sequences. The AAindex1 properties and their descriptions selected by the 
CLN-MLEM2 rule method are listed in Table S2. The selection distribution of AAindex1 
properties among CLN-MLEM2 rules is given in Figure S1. Properties relating to alpha-
helix formation and for coil formation appear the most frequently in our rules. See the 
first three steps of Fig. 4. The fourth step is to predict new active sequences. Once these 
sequences are evaluated, they can be added into the dataset, as the step between Step 4 
of the current iteration and Step 1 of the next iteration. Updated rules are generated for 
each iteration.

Initial datasets

For CLN-MLEM2 rule generation, the positive training dataset was the S1 set (“Anti-
bacterial”) from iAMP-2L, which has 1,274 unique sequences [75]. The negative training 
set of data was the non-AMP dataset from iAMP-2L, which has 1,440 unique sequences 
[75].

For the codon-based genetic algorithm, the initial dataset was the positive antimicro-
bial peptide set for the initial generation from the APD3 Antimicrobial Peptide Database.

Codon‑based genetic algorithm for finding customized peptide sequences

The genetic algorithm begins by ranking known antimicrobial peptides according to a 
given set of design targets as seen in Fig. 3. The initial step begins with a set of antimicro-
bial peptides. The next step is to rank the peptides according to the design targets. The 
top 25% of scoring candidates are selected to mutate and crossover by a DNA codon rep-
resentation to generate novel peptide sequences. For amino acids represented by multi-
ple codons, the representative DNA codon is uniformly selected among these codons. If 
all scoring candidates are copied between generations, the number of candidates grows 
exponentially. While removing the bottom 75% reduces the genetic diversity of future 
generations, it improves the convergence of the solutions to find new sequences with 
less computation time. The diversity lost with the filtering of the top candidates is par-
tially replaced by recombination operators. Fig. S2 provides the expected AMP amino 
acid frequency by codon count.

To minimize the computational time to find new antimicrobial peptide solutions, we 
first filter by retaining only unique sequences from the generated sequence pool once 
the recombination operations are finished. Secondly, we filter the novel sequences by the 
antimicrobial peptide classifier. The sequences remaining in each generation are both 
unique and predicted to be antimicrobial by our MLEM2 method. These two steps also 
limit the exponential growth of the candidate pool. Partially redundant sequences are 
indications of patterns that may be useful to include when generating new sequences, 
provided that these patterns are selective for being active. These partial redundancies 
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are referred to as motifs. Many of these motifs can be captured through generating 
MLEM2 rules to describe active or inactive key physicochemical properties when they 
are distinct for activity. The repeating patterns which result in matching MLEM2 rules 
will dominate the newly generated sequences to arrive at a locally optimized solution. 
Since the best sequences are copied to the next generation, the highest scoring sequence 
across generations is in the final generation.

The genetic algorithm implementation in this work gains flexibility in the moves 
it considers by using a codon-representation of peptides to direct the selection of 
sequences related in DNA-space (Fig.  6). The process of peptide sequence conversion 
to DNA codons is the reverse of the information flow which occur in transcription and 
translation processes in biology [76]. The information flow of the processes of transcrip-
tion and translation of mapping nucleic acid sequences to amino acids are applied to the 
DNA codon representation to recover the peptide sequence following the mutation and 
crossover events. Small moves in the DNA-space might be large moves in the protein 
sequence space due to reading frameshifts. Integrating the codon table concept gener-
ates novel sequences to take advantage of the transition probabilities encoded in read-
ing frameshifts. Reading frameshifts are changes to the nucleic acid base position which 
results in different codons being read downstream in the nucleic acid code. The DNA 
code of … “ATG​ATG​” … would result in the amino acid code … “Met-Met” … if read 
from the first letter or as … “STOP” – ending the transcription, if read from the sec-
ond letter. To direct the genetic algorithm toward feasible answers, the highest scoring 
sequences are copied between generations. Making new candidates instead of modify-
ing current candidate sequences builds in a historical property such that the best old 
sequences are propagated to future generations if they are competitive with the newly 
generated sequences.

Peptide synthesis

Peptides were chemically synthesized using an Aapptec Focus XC peptide synthesizer. 
The peptide-resins were assembled on Wang resins with C-terminal amino acids using  
FMOC chemistry. The N-terminal Fmoc deprotection was performed by treatment with 
20% piperidine/dimethylformamide (DMF) in a 0.2 mmol reaction scale with mixing and 
nitrogen gas bubbling. Effective removal of the Fmoc protecting group was monitored by 
UV spectroscopy. The peptide-resin was filtered, and the 20% piperidine/DMF solution 
was added repeatedly until complete deprotection quantified by UV spectroscopy. Typi-
cally, two cycles of deprotection were sufficient. The peptide-resins were then washed 
with DMF. Activation of 0.2 M amino acids/DMF (2 equivalent to reaction scale) was 
performed by addition of 0.2  M 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 

Fig. 6  Codon-based genetic algorithm. The overall steps for producing each generation are shown in (a) and 
the steps for using a codon table to produce novel sequences is shown in (b)
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hexafluorophosphate (HBTU)/DMF (2 equiv.) in a measuring vessel then added to the 
reaction vessel containing the deprotected peptide-resin for a 45-min coupling reaction. 
The coupling step was completed twice to ensure addition of the desired amino acid. 
The procedure was repeated until the complete peptide was assembled on the solid resin 
support. Following synthesis, the peptide-resin was removed from the reaction vessel 
using DMF. DMF was removed from the peptide-resin by washing with ethanol and dry-
ing on a coarse-grained glass fritted Buchner funnel. The dried resin was transferred to a 
glass volumetric flask followed by addition of a cleavage cocktail (15 mL/ 1 g of resin) for 
two hours with gentle stirring to remove the peptide from the solid support and remove 
the side chain protecting groups. The standard cleavage cocktail was trifluoroacetic acid 
(TFA)/triisopropylsilane (TIS) / water (95:2.5:2.5, % vol/vol/vol). To remove side chain 
protecting groups from peptides containing histidine or cysteine, 2.5% thioanisole and 
2.5% 1,2 ethanedithiol were added to the cocktail and for peptides containing methio-
nine, tyrosine, or arginine, 5% phenol was added. The cleavage products were filtered in 
a glass Buchner funnel and crude peptide product was isolated by precipitation in cold 
ether (30 mL). The crude peptide was pelleted by centrifugation (2000 rpm for 2 min), 
the supernatant was removed, the pellet was resuspended in ether and recentrifuged for 
a total of four times. Following ether washes the crude peptide products were lyophi-
lized. The mass spectra of the synthesized peptides are provided in Figs S3-S6.

Zone of inhibition tests

Staphylococcus epidermidis ATCC® 29886TM was used in the present study. The strain 
was cultured according to ATCC® protocol using the Nutrient agar (Difco 0001)  or 
Nutrient Broth (NB) (Difco 0003). The bacterial pellet obtained from ATCC was rehy-
drated in 0.5 mL of the above-specified media, and several drops of the suspension were 
immediately placed and streaked on an agar slant of the specified media. The agar-plate 
was then incubated aerobically at 37  °C for 24 h. Overnight cultures of S. epidermidis 
were made by aseptically transferring a single colony forming unit into 10 mL of NB, fol-
lowed by aerobic incubation at 37 °C with constant agitation (200 rpm) for 16 h.

AMP functional peptide candidates were screened for antimicrobial function using 
a zone of inhibition assay on agar plates. Crude peptides were dissolved in dimethyl 
sulfoxide (DMSO)/H2O. The bacterial growth culture was spread on agar plates using 
a sterile cotton swab then 10µL of the solubilized peptide candidates were pipetted 
in triplicate on the bacteria coated agar and incubated 24 h at 37 °C, 5% CO2. Plates 
were removed from the incubator and the zone of inhibition of bacterial growth were 
photographed and measured. 10 µg/mL ampicillin was used as a positive control and 
2% DMSO/ H2O as a negative control.
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