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Abstract

Introduction: Exposure to traffic-related air pollution (TRAP) in the near-roadway environment 

is associated with multiple adverse health effects.

Aim: To characterize the relative contribution of tailpipe and non-tailpipe TRAP sources to 

particulate matter (PM) in the quasi-ultrafine (PM0.2), fine (PM2.5) and coarse (PM2.5–10) size 

fractions and identify their spatial determinants in southern California (CA).

Methods: Month-long integrated PM0.2, PM2.5 and PM2.5–10 samples (n= 461, 265 and 298, 

respectively) were collected across cool and warm seasons in 8 southern CA communities (2008–

9). Concentrations of PM mass, elements, carbons and major ions were obtained. Enrichment 

ratios (ER) in PM0.2 and PM10 relative to PM2.5 were calculated for each element. The Positive 

Matrix Factorization model was used to resolve and estimate the relative contribution of TRAP 

sources to PM in three size fractions. Generalized additive models (GAMs) with bivariate loess 

smooths were used to understand the geographic variation of TRAP sources and identify their 

spatial determinants.

Results: EC, OC, and B had the highest median ER in PM0.2 relative to PM2.5. Six, seven and 

five sources (with characteristic species) were resolved in PM0.2, PM2.5 and PM2.5–10, 

respectively. Combined tailpipe and non-tailpipe traffic sources contributed 66%, 32% and 18% of 

PM0.2, PM2.5 and PM2.5–10 mass, respectively. Tailpipe traffic emissions (EC, OC, B) were the 

largest contributor to PM0.2 mass (58%). Distinct gasoline and diesel tailpipe traffic sources were 

resolved in PM2.5. Others included fuel oil, biomass burning, secondary inorganic aerosol, sea salt, 

and crustal/soil. CALINE4 dispersion model nitrogen oxides, trucks and intersections were most 

correlated with TRAP sources. The influence of smaller roadways and intersections became more 

apparent once Long Beach was excluded.
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Conclusions: Non-tailpipe emissions constituted ~8%, 11% and 18% of PM0.2, PM2.5 and 

PM2.5–10, respectively, with important exposure and health implications. Future efforts should 

consider non-linear relationships amongst predictors when modeling exposures.
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INTRODUCTION

Exposure to particulate air pollution has been associated with multiple adverse health 

outcomes and mortality in epidemiological studies.1 Depending on its source, composition 

and size distribution, particulate matter (PM) can vary in toxicity.2, 3 In 1992, the Children’s 

Health Study (CHS) was launched to study the chronic effects of air pollution exposure on 

the respiratory health of children in southern California (CA) communities,4–7 including 

lung function and asthma.8–11 Southern CA is impacted by several natural and 

anthropogenic sources of PM, with vehicular and truck traffic being one of the major 

contributors, along with ports, airports, freight rail, biomass burning, dust, and secondary 

formation processes among others.12

Traffic is an especially ubiquitous source of air pollution in the region owing to a vast and 

complex network of freeways and highways, especially the I-710 with extensive heavy duty 

diesel truck activity linking the adjacent ports of Long Beach and Los Angeles to major 

freight distribution centers across southern CA and the United States.13 Prior studies have 

documented reductions in ambient PM concentrations (PM with an aerodynamic diameter 

less than 2.5μm and 10μm, PM2.5 and PM10, respectively) and oxides of nitrogen (NOx) in 

southern CA, largely attributed to recent emission controls on traffic sources.14 In turn, they 

have been associated with improvements in lung function growth15 and reductions in 

bronchitic symptoms in the CHS.16 Despite these improvements, traffic-related air pollution 

(TRAP) remains an important source of near-roadway PM exposure in urban areas.

Vehicle emissions are a complex mix of gases, particles, volatiles and semi-volatiles, with 

both tailpipe and non-tailpipe components. They exhibit higher spatial and temporal 

variability and near-roadway gradients compared to overall PM mass due to more dynamic 

emission processes, dispersion and removal patterns.17 Tailpipe traffic emissions are 

generally associated with engine fossil fuel combustion, while non-tailpipe emissions are 

related to brake pads and tires abrasion, catalysts degradation, and resuspended road dust.18 

Previous studies in Los Angeles have shown that mobile vehicular sources are the largest 

contributors to PM mass in the quasi-ultrafine size fraction (<0.25μm in aerodynamic 

diameter).19 Recent studies have shown that ultrafine PM is capable of reaching the alveolar 

region of the lungs once inhaled and crossing the air-blood barrier in the lung, thereby 

entering the circulation system and reaching other organ systems.20–24 Similarly, gasoline 

and diesel vehicular emissions were the second largest contributors to PM2.5 mass 

(following secondary aerosols),25 and abrasive vehicular wear was the second largest 

contributor to coarse PM after mineral and crustal (soil) sources.26
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Non-tailpipe abrasive vehicular wear emissions (AVE) are increasingly recognized as an 

important and unregulated source of toxic heavy metals in the urban environment.27, 28 

These are hypothesized to be partially responsible for adverse TRAP health effects.29, 30 

Therefore, there is a need to develop exposure metrics capable of accurately assessing 

exposure to AVE components of the TRAP mixture to investigate their independent health 

effects. This is increasingly important as mobile source regulations lead to decreases in 

tailpipe emissions31 despite increases in vehicle miles travelled,32, 33 resulting in larger 

relative contributions of non-tailpipe sources to total TRAP.34, 35 However, given complex 

non-linear relationships and differing correlation structures between tailpipe and non-

tailpipe TRAP components across size fractions,17 standard geospatial metrics (e.g., distance 

to road) are typically poor surrogates of AVE exposure in the near-roadway environment.

Therefore, the first aim of this analysis is to leverage PM composition measurements from 

the CHS and source apportionment models to characterize the relative contribution of 

tailpipe and non-tailpipe TRAP sources to overall PM mass in the quasi-ultrafine (PM0.2), 

fine (PM2.5) and coarse (PM2.5–10) size fractions across southern CA. The second aim is to 

use generalized additive models (GAMs) to understand the geographic variation of these 

derived traffic-related PM sources and to identify their potential spatial determinants. By 

examining non-linear relationships across a set of commonly used geospatial metrics and 

line source dispersion model estimates, future spatiotemporal exposure modeling efforts will 

be improved.

METHODS

Sampling Design

We used data from the CHS ‘Intra-Community Variation 2’ (ICV2) sampling campaign36 

which was conducted in Anaheim (AN), Glendora (GL), Long Beach (LB), Mira Loma 

(ML), Riverside (RV), San Dimas (SD), Santa Barbara (SB) and Upland (UP) (Figure 1). 

These communities range from coastal areas impacted by marine vessel emissions and 

marine aerosols (SB and LB), to further inland regions impacted by traffic, freight, dairy 

farming and secondary aerosol formation (AN, UP, GL, SD, ML and RV).

Sampling protocols and quality assurance procedures were described in detail in Fruin et al.
37 and are summarized here. Month-long chemistry samples were obtained from two 

consecutive 2-week integrated samples between November 2008 and December 2009 in cool 

(Oct-Mar) and warm (Apr-Sep) seasons using a rotating deployment schedule (Table 2) at up 

to 46 locations per community (Supplement Table 1), with the exception of SB where local 

wildfire events resulted in a single round of two-week integrated samples. Sampling 

locations monitored included CHS participants’ residences, schools and central site stations 

to capture local, neighborhood and regional scale variation in air pollution, respectively. 

Additional sampling was conducted at the central sites to ensure more complete temporal 

coverage. Selection of residence locations within communities was based on maximizing the 

expected variability in traffic source impacts based on earlier modeling38 and line source 

dispersion models.39
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Two modified Harvard Cascade Impactors40 with 0.2μm, 0.5μm, 2.5μm and 10μm cut-points 

were used to collect two-week integrated PM0.2, PM0.2–2.5 (defined as the sum of PM0.2–0.5 

and PM0.5–2.5) and PM2.5–10 samples at a flow rate of 5 liters per minute (lpm). 

Polyurethane foam (PUF) 41 was used as the impaction substrate in all stages except for the 

final 0.2μm stage, where 37-mm Teflon or quartz filters were used. In addition, a Harvard 

Personal Environmental Monitor (H-PEM) was used to collect PM2.5 on pre-baked quartz 

filters at 1.8 lpm (Supplement Figure S1). Both the PUF substrates and Teflon filters were 

specially pre-cleaned to remove inorganic and organic contaminants that might compromise 

quantification at the low levels needed for this study.

Chemical Analyses

PM2.5–10 (coarse), PM0.2–2.5 (accumulation mode) and PM0.2 (quasi-ultrafine) mass were 

determined from stage 2 PUFs, stage 3+4 PUFs and stage 5 Teflon filters, respectively, using 

reference gravimetric methods. A nylon backup filter was placed behind the Teflon filter in 

stage 5 to capture volatile nitrate losses, and fine and quasi-ultrafine masses were corrected 

accordingly. To obtain PM2.5 (fine) mass and composition, PM0.2 and PM0.2–2.5 were 

summed for all chemical analyses. Similarly, PM10 mass was calculated as the sum of 

PM2.5–10 and PM2.5. For consistency with the literature and ease of presentation, PM2.5–10 

will subsequently be referred to as the coarse size fraction, PM2.5 as the fine and PM0.2 as 

the quasi-ultrafine fraction, respectively.

The concentrations of 48 elements (both total and water-soluble) in each size fraction were 

determined by magnetic-sector inductively-coupled plasma mass-spectroscopy (SF-ICP-MS; 

Thermo-Fisher Element 2) in the Trace Element Cleanroom Facility at the Wisconsin State 

Laboratory of Hygiene (WSLH).42–45 For the total analyses, PM was completely solubilized 

with a mixture of ultra-pure nitric, hydrochloric and hydrofluoric acids using an automated 

microwave-aided digestion system (Milestone Ethos Plus) The reported total uncertainties in 

the elemental data incorporates the three major sources of uncertainty (SF-ICPMS 

measurements, method blank subtraction, and digestion recovery). Elemental and organic 

carbon concentrations (EC and OC, respectively) in the quasi-ultrafine and fine fraction (not 

available in coarse) were determined from quartz filters using the thermal-optical 

transmittance method (TOT NIOSH method 5040). Quartz filters were also used to 

determine water-soluble organic carbon (wsOC) concentration in these two size fractions 

using a GE/Sievers 900 TOC Analyzer. Insoluble OC (isOC) was then calculated as the 

difference between total OC (from EC/OC measurement) and wsOC. Soluble, major cations 

(sodium, ammonium and potassium) and anions (chloride, nitrate, phosphate and sulfate) 

were analyzed following water extraction of Teflon filters by ion chromatography (IC) at 

secondary sites only, defined as schools and central sites.

A summary of the data available in each size fraction at the individual participant residences, 

schools and central sites is presented in Supplement Table S2. Due to cost considerations, 

only samples from the quasi-ultrafine size fraction were analyzed in full, and approximately 

half of the filters in the fine and coarse size fractions were analyzed (selected evenly across 

seasons). In all analyses, standard QA/QC procedures were followed, including lab and 

method blank corrections, 10% duplicate samples and sample spikes.
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Geospatial Traffic Variables

In order to further understand spatial determinants of traffic-related PM sources and inform 

future spatiotemporal modeling efforts, the following commonly used geospatial metrics of 

TRAP were utilized. These capture spatial variability in different aspects of the traffic mix, 

including volume, speed and density, tailpipe and non-tailpipe signals, light and heavy-duty 

vehicles, and stop-and-go versus free-flowing traffic.

The California Line Source Dispersion (CALINE4) model was used to estimate nitrogen 

oxides (NOx) concentrations at sampling locations contributed from local on-road vehicle 

emissions on freeways/highways and non-freeways/highways (major and minor roads) 

within 5 km during the 4-week sampling period, hereafter referred to as “fwy/hwy NOx” and 

“non-fwy/hwy NOx,” respectively.39, 46 The advantage of CALINE4 is that it incorporates 

local traffic volumes, emissions from light and heavy duty vehicles and meteorology (wind 

direction and speed) in estimating NOx concentrations at receptor sites using a deterministic 

Gaussian plume dispersion model. CALINE4 is well suited for estimating vehicle emissions 

concentrations downwind of roadways on the local scale47, 39 and on-road freeway 

concentrations.48–51

Traffic density was calculated as distance-decayed Annual Average Daily Traffic volume in 

both directions from all roads within a 300m circular buffer using a kernel density function 

with a 300m search radius and 10m grid resolution. Total road length was calculated as the 

sum of the length of all roads within a 300m radius buffer. Truck percent was calculated as 

the fraction of heavy-duty vehicles on the nearest freeway (FCC1 road class).

In addition, count of street intersections was calculated by first spatially intersecting 2014 

Census Tiger line files for all roads to create intersection points, then removing end of road 

points and points intersecting limited access highways and ramps in ArcMap 10.5. This 

resulted in a points layer of intersections along roads (Figure 3), which were then summed 

within a 250m or 500m buffer around each sampling location.

Data Analysis

Enrichment Ratios—In addition to descriptive statistics and non-parametric correlations, 

enrichment ratios (ER)52–54 were calculated for each element to indicate its contributions in 

the PM0.2 and the PM10 size fractions relative to PM2.5, as follows:

ERij0.2/2.5 = (Xij0.2/PMj0.2)/(Xij2.5/PMj2.5) eq. (1);

ERij10/2.5 = (Xij10/PMj10)/(Xij2.5/PMj2.5) eq. (2);

Where Xij is the concentration of species i in sample j. Median ER’s were then calculated 

for all species across all samples and plotted. These ratios reveal information about 

predominant emission or formation processes, where ratios approaching one indicate 

elements that are equally enriched in PM2.5. We expect elements related to primary fresh 

combustion (potentially also secondary formation) to be smaller in size (<1μm) and more 

enriched in PM0.2 relative to PM2.5 (median ER0.2/2.5 > 1); while we expect elements related 
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to crustal and mechanical abrasion sources to be larger in size and more enriched in PM10 

relative to PM2.5 (median ER10/2.5 > 1).55

Source Apportionment using the EPA Positive Matrix Factorization Model—We 

used the EPA Positive Matrix Factorization (EPA PMF v5.0)56, 57 model to apportion 

measured PM0.2, PM2.5 and PM2.5–10 mass concentrations into their major contributing 

“sources” or “source groups” 56, 57. Methods are briefly described here, and additional 

details are included in the supplement for reference. The PMF model solves the following 

equation:

xij = ∑k = 1
p gikfkj + eij eq. (3);

where xij is the concentration of species j in sample i, gik is the mass contribution of factor k 
to sample i, fkj is the loading of species j on factor k and eij is the residual error for sample i 
and species j. PMF solves eq. (3) by minimizing the following object function (Q) iteratively 

using the Multilinear Engine v2 (ME-2):

Q = ∑i = 1
n ∑j = 1

m eij
uij

2
eq. (4);

where uij is the uncertainty of species j in sample i. Therefore, each observation is 

individually weighted by its uncertainty. Furthermore, elements of the G and F matrix are 

restricted to being positive (or non-significantly negative).

Two files were prepared to input to EPA PMF v5.0 - a concentrations file and a sample-

specific uncertainties file – for each of the three size fractions. Sample-specific analytical 

uncertainties were provided by WSLH for metals, OC, EC, wsOC and ions. Any missing 

concentrations (and in turn uncertainties) were replaced by overall species-specific medians 

in PMF. Uncertainty values of zero were replaced by a low value (10−6 ng/m3).

Per PMF guidelines, “Strong” and “Weak” species were included in the analysis and “Bad” 

species were excluded, based on their signal-to-noise ratio (S/N) as follows: “Strong” S/N ≥ 

3, “Weak” 1 ≤ S/N < 3 and “Bad” S/N < 1 (Supplement Table S3). Setting species as 

“Weak” increases their uncertainty by a factor of 3. However, some exceptions were made to 

exclude species as follows: Lu in PM0.2 (S/N=1.1); Se in all three size fractions (high 

frequency of missing data); and As, W and chloride ion in PM0.2; Cr in both PM0.2 and 

PM2.5 for undue influence on the solution resulting in factor smearing. Out of all available 

samples, 6.5% (30 out of 461), 5.7% (15 out of 250) and 1% (3 out of 298) were excluded as 

outliers from the analysis based on species’ concentrations in PM0.2, PM2.5 and PM2.5–10, 

respectively.

An additional 10% modeling uncertainty was added to all runs to account for sampling and 

modeling errors not captured in the analytical uncertainties. Five to nine factors were 

attempted for all size fractions, and the optimal factor number was chosen based on the 

solution with the most physically interpretable results and least factor smearing. Solution 

stability evaluation, rotations, and uncertainty evaluations are described in further detail in 
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the supplement. Factors were identified based on the loading of species in their profiles and 

knowledge of expected spatial and temporal patterns in their contributions.

Spatial Variation and Determinants of Traffic-Related PM Sources

Given the complex and often non-linear correlations of traffic-related, tailpipe and non-

tailpipe PM sources across size fractions, we further investigated their spatial variation and 

potential determinants to identify top candidate predictors and inform future exposure 

modeling efforts. Predicted contributions for traffic-related sources were first averaged for 

each sampling location to remove the influence of any temporal factors in this spatial 

analysis.

The MapGAM package59 in R60 was used to fit generalized additive models (GAMs) of 

traffic-related PM sources. The utility of these nonparametric GAMs is in their ability to 

capture non-linear relationships among covariates (or predictors) and to generate smooth 

prediction surfaces that can reveal more complex relationships than standard linear 

approaches. In other words, GAMs allow the effect of variables on predicted sources to 

change or vary at different levels of the predicted source, rather than remain static or fixed. 

All variables were standardized (mean=0, standard deviation=1) to ensure they were on a 

similar scale since the loess smooth uses a spherical (isotropic) neighborhood when 

establishing nearest neighbors, and Spearman correlation coefficients were calculated.

Primary models included a bivariate loess smooth term with latitude and longitude to 

examine spatial variability in these sources (or whether geographic location was a significant 

predictor of these sources). In secondary analyses, geospatial metrics were used in the 

bivariate smooth (instead of geographic coordinates) to examine the combined “mixture” 

effect of two parameters at a time on predicted sources. The optimal span for each model 

was determined by searching from 0.10 to 0.90 in 0.05 increments. Predictions were 

generated and mapped across an equally spaced grid over the study domain with black 

contour lines indicating regions with significantly higher (red) or lower (blue) levels at an 

alpha=0.05 level. In sensitivity analyses, Long Beach was excluded to examine its influence 

on observed patterns since it is has some of the highest heavy-duty truck activity in the 

region, which might overshadow smaller signals from light-duty vehicles.

Finally, a significance threshold of p-value < 0.0005 for the non-parametric loess term 

(ANOVA F test) was used as a conservative approach to protect against chance findings due 

to multiple testing. For brevity, only models with a clear pattern of change in the predicted 

source along both x and y dimensions (when x and y are two geospatial metrics) and a more 

stringent p-value <0.0001 for the “mixture” effect are reported in the main manuscript; 

remaining significant models are included in the supplement.

RESULTS

Descriptive statistics of PM and elemental concentrations in the quasi-ultrafine, fine and 

coarse size fractions are presented in Table 1. Bar plots comparing concentrations of 

elemental species across size fractions are also provided in Supplement Figure S2.
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On average, EC constituted 15.8% and 6.3% of ultrafine and fine PM mass, respectively, 

while OC constituted 46.9% and 19.9% of the ultrafine and fine PM mass, respectively. The 

soil-related elements Y, Sc, Dy, Al, and Ho had the highest median enrichment ratios in 

PM10 compared to PM2.5; whereas, B, EC, and OC – species related to vehicular traffic 

tailpipe emissions – had the highest median enrichment ratios in the PM0.2 compared to the 

PM2.5 (Figure 4). The elements As, Pb, Tl, V and Cd were also some of the most enriched in 

PM0.2 compared to PM2.5 which reflects the relatively high volatility of these elements. The 

distribution of enrichment ratios for all species is presented in Supplement Table S4.

Source Apportionment

PMF Solutions and Model Performance—A total of six, seven and five factors were 

selected as the optimal, physically interpretable solutions in PMF. These factors together 

explained 63%, 86% and 88% of the variability in PM0.2, PM2.5 and PM2.5–10 mass, 

respectively (Table 2).

R2’s for individual species and tests of normality for the residuals are presented in 

Supplement Table S5. In general, R2’s were lowest in the quasi-ultrafine size fraction, likely 

due to the lower concentrations and greater challenges in measuring mass concentrations 

accurately in this size fraction, with the exception a few species (V, S, Zn, Rh, La, etc..) with 

the highest R2 in the quasi-ultrafine fraction.

In initial runs, including Cr in the model resulted in a single Cr factor with highest 

contributions in SB and LB, both coastal communities, with remaining uninterpretable, 

smeared factors. While the Cr signal could be related to chromium plating, Cr was 

ultimately set to “Bad” and excluded from the PM0.2 and PM2.5 model solutions to obtain 

physically interpretable solutions. Similarly, keeping As and W in the PM0.2 model resulted 

in them separating into a single factor with zero (negligible) estimated mass.

Predicted Source Profiles and Contributions—PMF-resolved factors were identified 

based on their loading profiles (Figure 5, and Supplement Figure S3 for individual plots of 

factor profiles) and spatial and temporal patterns in their source contributions (Supplement 

Figures S4.A and S4.B, respectively).

Mean predicted source contributions by size fraction overall and by community are shown in 

Figures 6 and 7, respectively.

The study communities (as shown in Figure 1) range from coastal areas heavily impacted by 

primary marine vessel, port and traffic emissions with cooler temperatures and 

predominantly Westerly winds, to communities further inland with more significant impacts 

of secondary aerosol formation as a result of higher temperatures and conditions favoring 

photochemical reactions.42 In general, some categories of sources were identified in all three 

size fractions – such as abrasive vehicular emissions (AVE) and secondary inorganic PM 

(ammonium nitrates and ammonium sulfates); whereas, others were only distinguishable in 

a single size fraction (e.g., biomass burning).
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Quasi-ultrafine PM Sources—The six sources resolved in the quasi-ultrafine size 

fraction consisted of the following: ‘Traffic’ constituted 58.2% of the PM0.2 mass and had 

high loadings of EC, wsOC, isOC and B. Boron is a known gasoline fuel additive.61 ‘Fuel 

Oil’ had the highest loadings of Ni and V and contributed 8.3% of the PM0.2 mass, with the 

highest contributions in the port community of LB. ‘Crustal’ had high loadings of Al, Ca, 

Yb and Ho and contributed 9.2% of the PM0.2 mass. ‘Biomass Burning’ was marked with 

high loading of K, Rb and wsOC and contributed 11.1% of the PM0.2 mass with higher 

contributions in the cool season (Figure 8). ‘Abrasive Vehicular Emissions’ (AVE) 

contributed 7.7% of the PM0.2 mass and was marked by high loadings of tire, brake and 

catalyst wear markers Ba, Cu, Mo, Sb, Zn, Pt and Pd. It is important to note that this factor 

is named “AVE” given the high loadings of brake and tire abrasion markers; however, it also 

contains the platinum group metals Pt, Pd and Rh which are typically released from the 

attrition of catalysts through the tailpipe. This distinction applies to all subsequent references 

to “AVE” sources. ‘Ammonium Sulfates’ had high loading of lanthanum (La), a marker of 

petroleum refineries emissions,62 in addition to ammonium ion and sulfur (S) and 

contributed 5.5% to the PM0.2 mass. Contributions were higher in the warm season (Figure 

8).

Fine PM Sources—In the PM2.5 size fraction, seven source factors were resolved as 

follows: ‘Ammonium Sulfates’ with high loadings of La and S, possibly related to secondary 

formation from petroleum refineries and industrial emissions.62 It contributed 22.8% of the 

total PM2.5 mass. Two tailpipe traffic sources were identified in PM2.5 – ‘Traffic (gasoline)’ 

with loadings of wsOC, isOC and B (15% of the mass) and ‘Traffic (diesel)’ with loadings 

of EC and barium (Ba) (5.9% of the mass). ‘Traffic (gasoline)’ was elevated in most 

communities with major freeways (SB, ML, SD, UP) while ‘Traffic (diesel)’ was elevated in 

communities with truck activity (LB, AN, SD, GL). ‘Sea Salt’ also contributed 15.9% of 

PM2.5 mass, with loadings of Na, Cl and Mg, and highest contributions in the coastal 

community of SB. ‘Abrasive Vehicular Emissions’ (AVE) was also resolved, with an 11.4% 

contribution to mass and high loadings of Ag, Mo, Zn, Ni, V, Pt and Rh. This factor was 

highest in communities with significant truck and freight activity (LB, ML, AN), and the 

presence of Ni and V here suggests a certain degree of collinearity with fuel oil sources 

originating from source areas in close proximity (i.e., the ports).58 ‘Crustal’ (19% of PM2.5 

mass) was also resolved with Al, Dy and Fe – elements related to soil – and highest 

contributions in the inland, arid community of ML with agricultural and dairy production. 

Finally, a factor related to secondary inorganic PM formation was identified with high 

loadings of ammonium, nitrate and chloride (‘Ammonium Nitrate/Ammonium Chloride’). It 

contributed ~10% of PM2.5 mass and had highest contributions in the cool season in RV 

(Figure 8). This is a result of ammonia (NH3) reactions with nitric and hydrochloric acid, 

which is shown to favor formation of ammonium nitrate and ammonium chloride especially 

in cold conditions.63, 64

Coarse PM Sources—Finally, in the PM2.5–10 size fraction, the following five sources 

were resolved: ‘Crustal (fertilized soil)’ with Al, Ca, Dy, K, Rb and P loadings contributing 

15.6% of the mass with highest concentrations inland in ML. ‘Ammonium Nitrate’ (17.6% 

of mass) had highest contributions inland as well, downwind of the dairy farms producing 
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ammonia in ML and RV and was somewhat higher in the cool season (Figure 8). ‘Abrasive 

Vehicular Emissions’ (AVE) with Cu, Ba, Mo, Sb, Rh, and Pt contributed 18% of the 

PM2.5–10 mass and was highest in LB, AN and ML. The presence of some crustal elements 

(Al, Ca) here also suggests some mixing with road dust. ‘Sea Salt’ with Na, chloride and S 

(22.7% of mass) was highest in SB and LB. Finally, ‘Ammonium Sulfate’ contributing 

26.1% of the mass was higher in the warm season, with ammonium, nitrate and S (Figure 8).

Detailed results examining the variability in the PMF solution by bootstrapping, 

displacement analyses or Fpeak rotation are presented in Supplement Table S6. Briefly, 

PM0.2 sources were minimally displaced in these evaluations; whereas, diesel traffic 

exhibited some swapping (13%) with AVE, and secondary ammonium nitrate/chloride with 

crustal (10%) in PM2.5 Fpeak bootstraps. Finally, the crustal source mapped to AVE in 18% 

of Fpeak bootstraps in PM2.5–10 implying greater difficulty in distinguishing these two 

sources in the coarse fraction.

Overall, tailpipe and non-tailpipe traffic-related sources together contributed around 66%, 

32% and 18% of PM0.2, PM2.5 and PM2.5–10 mass, respectively; with non-tailpipe AVE 

sources contributing around 8%, 11% and 18% of PM mass, respectively. Tailpipe traffic 

sources were resolved in PM0.2 and PM2.5 only, as one source in PM0.2 and as two gasoline 

and diesel sources with differentiated source profiles in PM2.5. Non-tailpipe traffic sources 

were resolved in all three size fractions with similar chemical signatures, although with 

some collinearity with diesel traffic (in PM2.5) and crustal (in PM2.5–10).

Spearman correlation coefficients between the resolved PM sources are presented in 

Supplement Table S7. Fuel oil (PM0.2) was correlated with sea salt (PM2.5) likely due to the 

proximity of their sources (ports and ocean). Sea salt in PM2.5 and PM2.5–10 had a 0.67 

correlation. Tailpipe combustion-related traffic sources in PM0.2 and PM2.5 were not highly 

correlated suggesting they are potentially capturing different components of the traffic 

mixture. Whereas, non-tailpipe AVE sources exhibited high correlations with each other 

across all three size fractions (>0.79).

Location as a Predictor of Tailpipe and Non-tailpipe Traffic Sources

Predicted surfaces from GAM models using geographic location as a bivariate smooth to 

predict standardized levels of traffic-related sources are shown in Figure 9.A (all 

communities) and Figure 9.B (excluding Long Beach).

Tailpipe traffic in PM0.2 was generally elevated across the basin, while gasoline traffic in 

PM2.5 showed elevated levels in areas close to SB, GL, SD and UP – all communities with 

important freeway and highway traffic activity. In contrast, diesel traffic in PM2.5 was 

elevated around LB and further inland towards ML along the truck and freight transport 

corridor. Non-tailpipe AVE sources exhibited generally similar patterns in space across all 

size fractions and were highest in the core, coastal area of the basin with the most primary 

emissions. However, when LB was excluded from the analysis, spatial patterns for tailpipe 

TRAP sources generally remained similar but increased in range (greater predicted levels) in 

an expected direction (greater where freeways/highways are located, and greater around LB 

for diesel traffic in PM2.5). Spatial patterns of non-tailpipe AVE sources changed 
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dramatically with higher predicted levels further inland in PM0.2, in the urban core for PM2.5 

and across the entire modeling domain for PM2.5–10. The maximum predicted range of AVE 

also decreased in PM2.5 and PM2.5–10.

Geospatial Metrics as Potential Predictors of Traffic-Related PM Sources

The distribution of geospatial metrics is presented in Supplement Table S7. Spearman 

correlations between the traffic-related sources (averaged in space and standardized) and 

geospatial metrics are shown in Supplement Tables S8.A (all communities) and S8.B 

(excluding Long Beach).

Tailpipe traffic in PM0.2 was most correlated with intersections within 500m and 250m 

(r=0.31 and r=0.29, respectively) followed by total road length (300m) (r=0.22). These 

correlations became stronger once LB was excluded (r up to 0.42 with intersections (500m)). 

It was also moderately inversely correlated with gasoline traffic in PM2.5 (r=−0.18 overall, 

r=−0.34 excluding LB), but positively correlated with diesel traffic in PM2.5 (r=0.12 overall, 

r=0.27 excluding LB). In general, geospatial metrics had low negative correlations with the 

gasoline traffic source but were positively correlated with the diesel traffic source in PM2.5, 

with fwy/hwy NOx (r=0.55), non-fwy/hwy NOx (r=0.46) and traffic density (300m) (r=0.43) 

showing the highest correlations (even when LB was excluded).

In addition, non-tailpipe AVE in PM2.5–10 and PM0.2 were most correlated with fwy/hwy 

NOx (r=0.67 and r=0.50, respectively, similarly once LB was excluded). Whereas, AVE in 

PM2.5 was most strongly correlated with truck percent on nearest FCC1 (freeway) even once 

LB was excluded. Non-fwy/hwy NOx was also more highly correlated with AVE in 

PM2.5–10 (r=0.62) and PM2.5 (r=0.32) compared to PM0.2 (r=0.26).

Bivariate Relationships Between Geospatial Metrics and Traffic-Related PM Sources

Supplement Figure 10 shows predicted standardized values of select tailpipe (Supplement 

Figure 10A) and non-tailpipe (Supplement Figure 10B), traffic-related PM sources as a 

function of two geospatial metrics (mixtures) where p-value < .0001. All remaining GAM 

models with p-value < .0005 for the bivariate loess smooth term are presented in Supplement 

Figures S5. A (all communities) and S5.B (excluding Long Beach) and Supplement Table 

S10.

Simultaneous increases in fwy/hwy NOx and truck percent, or in intersections (250m) and 

truck percent, were associated with higher predicted levels of tailpipe diesel traffic in PM2.5. 

A similar pattern was observed with non-fwy/hwy NOx and truck percent. The prediction 

range for models including truck percent dropped once LB was excluded, and patterns 

remained similar except the relationship between truck percent and non-fwy/hwy NOx on 

diesel traffic (PM2.5) became less apparent.

As for tailpipe traffic in PM0.2, the effect of a simultaneous increase in non-fwy/hwy NOx 

and intersections (250m) became apparent only once LB was excluded (Supplement Figure 

S5.B).
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Similarly, for non-tailpipe AVE sources (Supplement Figure 10.B), simultaneous increases 

in fwy/hwy NOx and truck percent, or in non-fwy/hwy NOx and intersections (500m) were 

associated with higher AVE in PM2.5–10 and PM2.5. The interaction between truck percent 

and non-fwy/hwy NOx was most apparent in PM0.2. Excluding LB resulted in attenuated but 

still significant influence of truck percent in general, and greater influence of non-fwy/hwy 

NOx in all size fractions, especially as intersections (250m and 500m) increased in PM0.2.

DISCUSSION

In this analysis, we were able to distinguish and quantify the contribution of tailpipe and 

non-tailpipe traffic-related sources among other major primary and secondary sources of PM 

in southern CA, in the quasi-ultrafine (PM0.2), fine (PM2.5) and coarse (PM2.5–10) size 

fractions. We found that overall traffic-related sources contributed ~66%, 32% and 18% of 

PM0.2, PM2.5 and PM2.5–10 mass, respectively, with the PM2.5–10 traffic contribution 

consisting entirely of non-tailpipe AVE. We resolved distinct gasoline versus diesel tailpipe 

traffic profiles in PM2.5, while non-tailpipe AVE sources had similar chemical signatures in 

all three size fractions and exhibited some collinearity with diesel traffic in PM2.5 and 

crustal in PM2.5–10.

We also found that the spatial distribution of tailpipe traffic sources in PM0.2 and PM2.5 was 

similar. Higher predicted gasoline traffic emissions (PM2.5) were observed in areas with 

major freeways and highways, and higher predicted diesel traffic emissions (PM2.5) were 

more localized around the ports and cargo movement activities in LB and further inland. 

Long Beach, with its extensive heavy-duty truck traffic activity, had a strong influence on 

observed spatial patterns of non-tailpipe AVE in all size fractions, pulling the highest 

predicted AVE levels towards the port area and urban core. Once excluded, the impact of 

inland freeways and highways and light-duty vehicular traffic areas became more apparent 

on AVE in PM0.2 and PM2.5, while predicted AVE in PM2.5–10 was elevated across the entire 

basin (although the prediction range decreased).

Similarly, using bivariate GAMs to model non-linear relationships between commonly used 

geospatial metrics and traffic-related sources, several mixture effects were revealed that 

would not have otherwise been apparent using standard linear correlations or approaches. 

Below we discuss our findings in more detail, starting with our general source 

apportionment modeling results followed by a more focused discussion of tailpipe and non-

tailpipe traffic sources and their determinants.

Overall Source Apportionment Findings

Our PMF modeling results are in agreement with previously published literature from 

southern CA.12, 19, 25, 42, 65–68 We found traffic to be the largest contributor to PM0.2 mass,
19 while secondary aerosol (ammonium nitrates and ammonium sulfates) contributed the 

most to PM2.5 mass,12, 25 followed by primary gasoline and diesel vehicular emissions.25 

However, while other studies found mineral and crustal material contributed the most to 

PM2.5–10 followed by abrasive vehicular wear, in our work, secondary aerosol (~44%) 

contributed slightly more than the crustal (fertilized soil) and AVE sources combined 

(~33%).26, 66, 67 We also resolved fuel oil in PM0.2 (which has been extensively documented 
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as a result of heavy fuel oil use in marine vessels and port operations in Long Beach13, 65), 

biomass burning (PM0.2),12, 13 crustal (in all size fractions, distinguished by an additional 

fertilizer signal in PM2.5–10 likely due to agricultural activity in Mira Loma) and sea salt.
12, 69

As for secondary inorganic aerosols, ammonium sulfate was resolved in all size fractions 

with high loadings of La in PM0.2 and PM2.5, suggesting emissions from petroleum 

refineries are contributing to secondary PM.62, 70 Ammonium sulfate is formed as a result of 

a series of reactions between sulfur dioxide and ammonia (ammonium) under warmer 

temperature conditions, which also favor photochemical ozone formation.12, 68, 71 

Ammonium nitrates were resolved in PM2.5 (with ammonium chloride) and PM2.5–10. 

Ammonium nitrate forms as a result of ammonia and nitric acid reactions under cool 

temperatures which shift the equilibrium into the particle phase. Ammonia is emitted from 

upwind agricultural and dairy production in Mira Loma, while nitric acid is formed as a 

result of the oxidation of nitric oxides emitted from primary fuel combustion sources.
64, 72, 73 Coarse nonvolatile sodium nitrate is also formed by heterogeneous replacement of 

chloride by nitrate in coarse sea-salt particles74 which may explain the large percentage of 

secondary aerosol in PM2.5–10. Ammonium chloride can also form under similar conditions 

as a result of hydrochloric acid reactions with ammonia.63, 64, 71, 75

Tailpipe Traffic Sources

Gasoline and diesel tailpipe traffic was resolved as one combined source in PM0.2 and as 

two distinct sources in PM2.5. Boron, a gasoline fuel additive,61, 76 loaded on both PM0.2 

traffic and PM2.5 gasoline traffic sources; while EC, a marker of diesel combustion, loaded 

on both PM0.2 traffic and PM2.5 diesel traffic sources.68, 77 Overall, despite referring to these 

sources as tailpipe traffic (from on-road vehicles), it is possible for them to have captured 

some of the contributions of gasoline or diesel-operated off-road mobile vehicular sources 

impacting these receptor locations if they share similar chemical signatures.

Of these sources, PM2.5 diesel traffic displayed the highest correlations with examined 

geospatial metrics, followed by PM0.2 traffic which correlated weakly with intersections 

suggesting it could be capturing tailpipe emissions from acceleration in stop-and-go traffic. 

However, a significant relationship between non-fwy/hwy NOx and intersections (250m) on 

PM0.2 traffic was revealed once LB excluded (Supplement Figure S5.B). This smaller spatial 

scale of influence was masked using standard linear correlations. Similarly, for PM2.5 diesel 

traffic, bivariate GAMs revealed a joint effect of fwy/hwy NOx with truck percent, and 

fwy/hwy NOx with intersections (250m) at a smaller spatial scale. This is consistent with 

Karner et al.78 findings showing EC (marker of PM2.5 diesel traffic) decays from the edge of 

the road to background within very short spatial scales (~130m).

Non-tailpipe Traffic Sources

To our knowledge, this is one of very few studies finding non-negligible contributions of 

AVE across the entire quasi-ultrafine to coarse PM size distribution (minimum of ~8% in 

PM0.2 and up to 18% in PM2.5–10 on average), with important differences across 

communities. In Long Beach, the average predicted contribution of AVE reached up to 30%, 

Habre et al. Page 13

J Air Waste Manag Assoc. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



45% and 59% of PM0.2, PM2.5 and PM2.5–10 mass, respectively, likely due to its 

concentrated heavy-duty vehicle (truck) activity. Earlier work has mainly focused on AVE 

signals in PM10 or PM2.5, with much fewer studies reporting brake, tire and catalyst wear 

signals in PM0.2 or smaller. Kuwayama et al.79 found brake wear and road dust source in 

PM0.1 marked by Fe, Cu, Zn and Pb in Sacramento, CA. Hays et al.43 found elevated 

catalyst (Pt, Rh, Pd) in the 1–2 μm aerodynamic diameter range and brake and tire wear (Cu 

and Sb) markers in the ≥1–4 μm range in a near-highway study with predominantly light-

duty gasoline vehicles. Several studies have documented the presence of platinum group 

metals from catalyst attrition in airborne and settled traffic-related PM and road dust.80–83 

Laboratory dynamometer testing of a variety of modern brake materials showed that the 

PM10 mass from brake wear consisted of 27%, 35% and 38% coarse (PM10–2.5), fine 

(PM2.5–0.1) and ultrafine particles, respectively.84 Increasingly, studies are showing non-

negligible contributions of ultrafine brake wear particles to total PM10,85, 86 with higher 

temperature increasing emissions in the ultrafine range.18, 87 These findings underscore 

potentially important implications for near-roadway exposures as tailpipe emissions decrease 

because of clean technologies while non-tailpipe emissions increase in relative importance, 

especially in the smallest PM0.2 size fraction.

In terms of potential geospatial predictors, AVE in PM0.2 and PM2.5–10 were most correlated 

with fwy/hwy NOx, while AVE in PM2.5 was most correlated with truck percent. Non-

fwy/hwy NOx was also highly correlated with AVE in PM2.5–10 and to a lesser extent AVE 

in PM2.5. However, in bivariate GAMs, truck percent was significantly related to AVE in all 

size fractions as NOx increased. These relationships were heavily driven by Long Beach 

data. This suggests that the impact of light-duty vehicles on AVE was masked when LB data 

was included with its predominantly heavy-duty vehicle impact. Similarly, the impact of 

smaller roads with light-duty vehicles (non-fwy/hwy NOx) and stop-and-go traffic 

(intersections (500m)) on AVE in PM0.2 was revealed once LB was excluded.

Overall, LB was much more influential in non-tailpipe traffic analyses compared to tailpipe, 

and CALINE4 line source dispersion estimates, trucks on nearest freeways and intersections 

strongly influenced predicted AVE levels in interrelated ways, and within small spatial 

scales. These results are in line with recent work in Boston that found strong spatial 

gradients away from major roadways for markers of AVE (e.g., Ba, Zn, Cu, Fe) in PM2.5 and 

PM2.5–10 size fractions.88 Oakes et al.89 also showed brake wear metals Ba and Cu were 

most enriched in PM2.5 and PM10 within 100m of a major interstate in Detroit, Michigan.

Trends in Traffic Emissions as a Result of Mobile Source Regulations

Our results show important contributions of AVE to traffic emissions in all three size 

fractions, and especially in areas with significant heavy-duty truck activity and ports. Our 

data was collected in 2008–9 as part of the CHS with the goal of modeling traffic-related 

PM exposures of participants and retrospectively assessing their impacts on health. However, 

since 2009, several federal and state mobile source control regulations have come into play 

in southern California for both on-road and off-road vehicles, engines and equipment.14

Among those affecting tailpipe emissions, the California Air Resources Board (CARB) 

Truck and Bus Rule requires all heavy-duty diesel vehicles to reduce engine emissions of 
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PM, NOx and air toxics.90 The federal U.S. Environmental Protection Agency’s (EPA) Tier 

3 Motor Vehicle Emission and Fuel Standards program required reductions in tailpipe and 

evaporative emissions from most light- and medium-duty and some heavy-duty vehicles and 

lowered the sulfur content of gasoline fuel starting in 2017.91 Overall, these regulations have 

led to reductions in on-road, tailpipe PM emissions from light, medium and heavy-duty 

vehicles over time. For example, Bishop92 measured on-road tailpipe emissions in Lynwood, 

CA in 1989, 1999 and 2018 and reported reductions of up to a factor of 20 for carbon 

monoxide and up to a factor of 25 for hydrocarbons in tailpipe emissions in 2018 compared 

to the early 1990’s.

As for non-tailpipe emissions, some of the major regulations include the Federal Motor 

Vehicle Safety Standard (FMVSS 121) which required a reduction in stopping distance for 

heavy-duty trucks starting in 2011.93 As a result, new materials with better stopping power 

such as semi-metallic brake linings are increasingly being used, and these release more 

airborne PM than traditional ceramic or metallic brakes.93 California legislation SB 346 also 

regulated hazardous material content in brake pads starting 2014, with the goal of reducing 

copper weight content to 5% by 2021 and 0.5% by 2025. This is expected to influence the 

chemical composition and potentially size distribution (PM10 to PM2.5 ratios) of brake wear 

PM emissions.93 Finally, regenerative braking systems in electric and hybrid light- and 

heavy-duty vehicles are expected to significantly lower brake wear emissions especially at 

low speeds (<30 mph).93

In terms of tire wear emissions, with the push for more fuel economy (for example, 

Corporate Average Fuel Economy (CAFE) standards), lower rolling resistance tires are 

increasingly used, and these are thought to have higher tire wear emission rates.93 Other 

trends include increased use of larger brake pads and larger tire sizes with potentially 

unclear implications. Taken together, it is difficult to quantify the net impact of these 

regulations and trends on overall non-tailpipe AVE emissions. However, tailpipe emission 

reductions are likely resulting in a higher relative contribution of non-tailpipe sources to 

total traffic-related PM emissions over time.86

Implications for Exposure Modeling and Health Analyses

Our work demonstrates the challenges involved in isolating and modeling the independent 

impacts of tailpipe and non-tailpipe traffic on observed PM concentrations. It also illustrates 

the extent to which mixture modeling approaches (e.g., bivariate GAMs) can uncover more 

complex and non-linear relationships among geospatial metrics in terms of how they might 

jointly influence concentrations of traffic-related PM.

Despite our robust PMF modeling results, collinearities in source profiles (e.g., similar 

physiochemical fingerprints) or contributions (e.g., similar source areas, or emissions, 

dispersion and removal patterns)58, 94 can still complicate source apportionment. For 

example, like in other studies,86 we had difficulty discerning AVE from resuspended road 

dust in the PM2.5–10. We also had difficulty disentangling fuel oil burning (marked by Ni 

and V) from the non-tailpipe AVE factor in PM2.5, likely due to their highly collinear source 

contributions as a result of overlapping port source areas in LB.

Habre et al. Page 15

J Air Waste Manag Assoc. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, even when sources are properly separated and quantified, their source 

contributions can still exhibit moderate to high degrees of correlation reflecting true 

variation. Examples include AVE and diesel traffic in PM2.5 (r=0.4), sea salt in PM2.5 and 

fuel oil in PM0.2 (r=0.68), and AVE sources across all size fractions (r>0.8) (Supplement 

Table S7). In particular, AVE in PM0.2 and PM2.5 are slightly more correlated (0.9) than with 

AVE in PM2.5–10 (~0.8). This could be due to the combined road dust signal in PM2.5–10 and 

the quicker settling rate and sharper spatial gradients for larger particles. Thorpe and 

Harrison86 similarly report difficulties in isolating contributions of AVE. These correlations 

have important implications for future spatiotemporal modeling efforts attempting to predict 

non-tailpipe AVE population exposures in different size fractions.

Furthermore, these correlations should be carefully considered when adjusting for potential 

confounders in health analyses, given humans are exposed to air pollution mixtures and not 

single pollutants or sources in isolation. Several alternate source apportionment modeling 

approaches allow analysts to impose orthogonal rotations on the factor solution in order to 

derive statistically independent sources. However, imposing strict orthogonality conditions - 

while desirable for statistical modeling - may fail to fully capture real-life physical variation 

in these sources and ultimately in exposures.

Finally, we noted the strong influence of the ports of Los Angeles and Long Beach on our 

geospatial predictor screening efforts for most traffic-related PM sources. Other areas and 

cities around the world may also have similarly complex zones of concentrated heavy duty 

vehicular and marine vessel activity which may mask the contributions of light duty 

vehicles, smaller roads and intersections. These characteristics along with microclimatic 

processes, heavy industrial activity and other major urban sources can create challenges for 

spatiotemporal exposure modeling. In our own NOx machine-learning based spatiotemporal 

model,95 we demonstrated greater shared multiplicative exposure measurement error for the 

community of Long Beach compared to the rest of southern CA.96, 97 This error was 

partially explained by heavy-duty vehicle activity on the nearest freeway, major airports and 

vehicular activity on smaller roads.96 Our earlier models included CALINE4 line source 

dispersion NOx estimates, which was also one of the top geospatial metrics for capturing 

both diesel tailpipe and non-tailpipe traffic contributions in this analysis. This is expected 

given CALINE4 NOx estimates from tailpipe emissions strongly reflect local vehicle miles 

travelled, which is a surrogate for tire wear, resuspended road dust, and, to a lesser extent, 

brake wear.

Limitations and Strengths

We note several limitations to our analysis, including the smaller sample size in the fine and 

coarse PM size fractions compared to quasi-ultrafine and limited temporal variability at the 

residential locations (month-long samples in cool and warm seasons), but supplemental 

monitoring at central sites ensured more complete temporal coverage. In addition, our results 

are influenced by the representativeness of our sampling data across communities, seasons 

and in time, since the data was collected in 2008–9. Estimated source contributions and their 

relative importance might not fully represent average impacts across the entire modeling 

region of southern California at the time of sampling, and they do not reflect the impacts of 
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regulations that entered into force after 2009 as explained earlier. However, the sampling 

strategy ensured adequate representation of low and high traffic communities from within 

southern California.

As noted in Fruin et al,37 we expect our sampling data to suffer from some degree of volatile 

losses especially for organic carbon in the warm season. Nitrate backup filters were 

consistently used but backup quartz filters were not. As reported in the 2010 CalNex studies,
75 the organic fraction of PM2.5 mass is expected to be much larger and closer to 50%. These 

sampling artifacts likely limited our ability to detect secondary organic aerosol sources and 

contributed to the difficulty in fully reconstructing PM0.2 mass (since PMF was only able to 

explain ~63% of its variability). In addition, there is some degree of subjective decision-

making involved in PMF modeling, as is common with all source apportionment models, in 

terms of requiring the analyst to set criteria, make decisions, label factors or interpret 

solutions in light of apriori knowledge and scientific literature.

Strengths of our analysis include low detection limits of the analytical methods and 

measurements in three size fractions capturing enhanced neighborhood to community scale 

spatial variability. In addition, we were able to identify and resolve abrasive vehicular 

emissions in all size fractions and distinguish gasoline from diesel tailpipe traffic signals in 

PM2.5. Finally, our extensive suite of geospatial metrics and non-linear modeling approaches 

enabled us to detect joint effects of these metrics on predicted traffic-related PM at small 

spatial scales.
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Implications Statement:

Vehicle emissions result in a complex mix of air pollutants with both tailpipe and non-

tailpipe components. As mobile source regulations lead to decreased tailpipe emissions, 

the relative contribution of non-tailpipe traffic emissions to near-roadway exposures is 

increasing. This study documents the presence of non-tailpipe abrasive vehicular 

emissions (AVE) from brake and tire wear, catalyst degradation and resuspended road 

dust in the quasi-ultrafine (PM0.2), fine and coarse particulate matter size fractions, with 

contributions reaching up to 30% in PM0.2 in some southern California communities. 

These findings have important exposure and policy implications given the high metal 

content of AVE and the efficiency of PM0.2 at reaching the alveolar region of the lungs 

and other organ systems once inhaled. This work also highlights important considerations 

for building models that can accurately predict tailpipe and non-tailpipe exposures for 

population health studies.
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Figure 1. 
Map of CHS southern California communities participating in the ICV2 sampling campaign 

(AN=Anaheim, GL=Glendora, LB=Long Beach, ML=Mira Loma, RV=Riverside, SB=Santa 

Barbara, SD=San Dimas, UP=Upland)
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Figure 2. 
Timeline of ICV2 rotating sampling schedule per community colored by cool and warm 

season.
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Figure 3. 
Map illustrating GIS-derived street intersection points.
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Figure 4. 
Median enrichment ratios in the PM10 (blue diamonds) and PM0.2 quasi-ultrafine (red 

circles) size fractions relative to PM2.5.
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Figure 5. 
Source profiles (in % of species) in the quasi-ultrafine, fine and coarse PM size fractions.

Habre et al. Page 30

J Air Waste Manag Assoc. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Percent contribution of A) all PMF-predicted sources to total PM mass and B) tailpipe and 

non-tailpipe sources to total traffic-related PM mass in each size fraction (averaged across 

all communities).
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Figure 7. 
Percent contribution of PMF-predicted sources to total PM mass in each size fraction by 

community.
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Figure 8. 
Distribution of PMF-predicted source contributions by season. The horizontal white line 

inside the boxplots indicates the median, the bottom and top edges of the boxes indicate the 

1st and 3rd quartile, respectively, and the bottom and top whiskers extend to the outermost 

data points that fall within distances defined using the interquartile range (IQR) as 1st 

quartile – (1.5*IQR) and 3rd quartile + (1.5*IQR), respectively.
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Figure 9.A. 
Predicted surfaces of traffic-related sources from GAM models on standardized scale. 

Contour lines delineate areas (locations) of statistically significant higher (red) or lower 

(blue) concentrations. Vertical lines in color scale indicate median values.
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Figure 9.B. 
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Predicted surfaces of traffic-related sources from GAM models on standardized scale, 

excluding Long Beach from the analysis. Contour lines delineate areas (locations) of 

statistically significant higher (red) or lower (blue) concentrations. Vertical lines in color 

scale indicate median values.
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Table 1.

Descriptive statistics of PM and elemental concentrations in the quasi-ultrafine, fine and coarse size fractions.

Quasi-Ultrafine, PM0.2 Fine, PM2.5 Coarse, PM2.5–10

Units: ng/m3 N Mean Std Dev N Mean Std Dev N Mean Std Dev

PM Mass 470 2,389.6 884.6 484 14,599.1 3,890.3 496 12,854.4 4,713.9

Carbon Species

 EC 461 364.7 192.5 470 873.6 483.0

 OC 460 1,069.8 383.1 471 2,784.9 991.1

 Water-soluble OC 460 426.6 136.3 473 975.6 305.8

 Water-insoluble OC 458 641.6 293.0 470 1,798.9 864.6

Ions*

 Ammonium 94 101.9 87.1 93 362.8 182.5 93 89.9 57.7

 Chloride 94 35.3 92.0 93 71.7 105.7 93 540.6 511.1

 Nitrate 93 127.7 249.9 92 781.5 541.8 93 1,803.8 706.1

Elements

 Al 461 1.6 1.8 265 51.9 32.0 298 408.0 328.8

 Ba 461 0.2 0.3 265 5.5 3.9 298 18.1 12.2

 Ca 461 2.1 2.4 265 55.5 33.0 298 383.1 296.2

 Cr 461 0.0 0.1 265 0.3 0.3 298 1.1 0.7

 Cu 461 0.2 0.3 265 3.8 2.7 298 10.5 7.4

 Fe 461 3.7 3.8 265 85.8 56.4 298 430.8 319.2

 K 461 7.4 7.2 265 46.1 20.5 298 172.7 133.4

 Mg 461 0.7 1.0 265 36.4 14.5 298 190.1 124.9

 Mn 461 0.1 0.2 265 1.6 1.2 298 6.8 5.2

 Na 461 3.9 3.8 265 194.1 116.8 298 821.5 699.4

 P 461 0.5 0.5 265 4.7 3.7 298 20.4 23.6

 Pb 461 0.5 0.5 265 1.5 0.9 298 1.2 0.8

 S 461 54.0 37.6 265 328.3 137.6 298 167.9 107.3

 Sb 461 0.2 0.1 265 1.0 0.7 298 1.7 1.3

 Sr 461 0.1 0.1 265 0.8 0.4 298 3.6 2.3

 Ti 461 0.3 0.6 265 5.6 3.6 298 34.5 26.0

 V 461 0.5 0.5 265 1.7 1.0 298 1.0 0.7

 Zn 461 1.3 2.8 265 6.4 7.4 298 9.5 8.2

Units: pg/m3

 Ag 461 4.0 5.0 265 13.1 9.7 298 14.7 10.2

 As 461 63.1 62.0 265 173.2 88.3 298 132.6 91.5

 B 461 674.4 405.1 265 1,337.1 612.4 298 539.1 446.6

 Cd 461 14.1 24.8 265 52.9 45.5 298 22.0 14.6

 Ce 461 6.5 7.2 265 115.3 65.6 298 512.3 348.8

 Co 461 4.2 7.9 265 38.7 35.7 298 163.9 123.0

 Cs 461 0.5 0.6 265 5.7 3.1 298 29.1 22.0
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Quasi-Ultrafine, PM0.2 Fine, PM2.5 Coarse, PM2.5–10

Units: ng/m3 N Mean Std Dev N Mean Std Dev N Mean Std Dev

 Dy 461 0.1 0.1 265 2.8 1.7 298 22.0 16.9

 Ho 461 0.0 0.0 265 0.6 0.3 298 4.4 3.4

 La 461 4.6 4.8 265 115.6 77.8 298 314.3 215.1

 Li 461 9.0 17.2 265 110.1 132.6 298 295.5 239.0

 Lu 461 0.0 0.0 265 0.3 0.2 298 1.9 1.4

 Mo 461 70.8 126.4 265 275.8 268.6 298 442.8 312.9

 Nb 461 0.8 2.3 265 14.7 8.0 298 84.9 59.9

 Nd 461 0.8 0.8 265 23.2 12.6 298 159.3 113.9

 Ni 461 148.9 203.9 265 683.1 488.7 298 703.9 480.8

 Pd 461 0.4 0.5 265 6.0 3.5 298 28.7 17.8

 Pr 461 0.3 0.3 265 7.3 3.9 298 44.7 31.0

 Pt 461 0.2 0.6 265 2.9 5.9 298 5.6 8.6

 Rb 461 9.4 8.8 265 96.0 55.0 298 592.0 490.0

 Rh 461 0.1 0.1 265 0.7 0.5 298 1.8 1.2

 Sc 461 0.4 0.7 265 9.3 5.9 298 72.1 56.7

 Se 45 80.0 29.2 47 235.9 70.7 54 84.8 50.3

 Sm 461 0.1 0.1 265 4.6 2.5 298 29.7 21.8

 Th 461 0.4 0.9 265 8.6 4.8 298 59.8 43.0

 Tl 461 1.7 2.0 265 5.2 3.4 298 4.5 3.5

 U 462 0.2 0.2 266 3.5 1.9 299 23.0 16.3

 W 461 17.6 24.6 265 61.9 54.2 298 106.1 76.0

 Y 461 0.5 1.2 265 18.3 11.3 298 141.2 98.1

 Yb 461 0.0 0.1 265 1.7 1.1 298 12.7 9.7

*
Only measured ions concentrations collected at schools and central sites are summarized. Values at residences were imputed from community- 

and sampling period- specific measurements.
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Table 2.

Summary of PMF model performance in each size fraction (R2 and intercept from base model, mean predicted 

mass from final rotated solutions).

Measured Predicted* Intercept (% Unexplained Mass)

Size Fraction N Factors Mean (ng/m3) N Obs Mean (ng/m3) R2 Mean (ng/m3) %

PM0.2 6 2,347.6 431 2,167.7 0.63 593.9 25.3

PM2.5 7 14,018.5 250 13,868.5 0.86 679.5 4.8

PM2.5–10 5 11,713.8 295 11,660.7 0.88 33.7 0.3
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