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Abstract

Brain morphometry plays a fundamental role in neuroimaging research. In this work, we propose a 

novel method for brain surface morphometry analysis based on surface foliation theory. Given 

brain cortical surfaces with automatically extracted landmark curves, we first construct finite 

foliations on surfaces. A set of admissible curves and a height parameter for each loop are 

provided by users. The admissible curves cut the surface into a set of pairs of pants. A pants 

decomposition graph is then constructed. Strebel differential is obtained by computing a unique 

harmonic map from surface to pants decomposition graph. The critical trajectories of Strebel 

differential decompose the surface into topological cylinders. After conformally mapping those 

topological cylinders to standard cylinders, parameters of standard cylinders (height, 

circumference) are intrinsic geometric features of the original cortical surfaces and thus can be 

used for morphometry analysis purpose. In this work, we propose a set of novel surface features. 

To the best of our knowledge, this is the first work to make use of surface foliation theory for brain 

morphometry analysis. The features we computed are intrinsic and informative. The proposed 

method is rigorous, geometric, and automatic. Experimental results on classifying brain cortical 

surfaces between patients with Alzheimer’s disease and healthy control subjects demonstrate the 

efficiency and efficacy of our method.
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1. Introduction

MRI based brain morphometry analysis has gained extensive interest in the past decades 

[17,20]. A lot of research works are focused on identifying very early signs of brain 

functional and structural changes for early identification and prevention of 

neurodegenerative diseases. Alzheimer’s disease (AD), which is the sixth-leading cause of 

death in the United States, and the fifth-leading cause of death among those age 65 and older 
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as reported by Alzheimers Association in 2018 [1], has obtained much interest from 

researchers around the world. Early detection and prevention of AD can significantly impact 

treatment options, improve quality of life, and save considerable health care costs. As a non-

invasive method, brain imaging study has great potentials that will powerfully track disease 

progression and therapeutic efficacy in AD. For example, whole brain morphometry, 

hippocampal and entorhinal cortex volumes are among most promising candidate 

biomarkers in structural MRI analysis. However, missing at this time is a widely available, 

highly objective brain imaging biomarker capable of identifying abnormal degrees of 

cerebral atrophy and accelerated rate of atrophy progression in preclinical individuals at high 

risk for AD in who early intervention is most needed.

Computational geometric methods are widely used in medical imaging fields including 

virtual colonoscopy and brain morphometry analysis. Rooted in deep geometry analysis 

research, computational geometric methods may provide rigorous and accurate 

quantification of abnormal brain development and thus hold a potential to detect preclinical 

AD in presymptomatic subjects. Specifically, surface morphometry techniques, such as 

conformal mapping and area preserving mapping, have shown to be feasible and powerful 

tools in brain morphometry research.

To the best of our knowledge, this is the first work to propose the use of the surface foliation 

theory for brain morphometry analysis. We validate our method by classifying brain surfaces 

of patients with Alzheimer disease and healthy control subjects. Experimental results 

indicate the efficiency and efficacy of our proposed method. The main contributions are 

summarized as follows:

• A novel brain surface morphometry analysis method is proposed based on 

surface foliation theory.

• A set of new geometric features computed by pants decomposition and 

conformal mapping of topological cylinders are also proposed for surface 

indexing and classification.

• The proposed method is rigorous, geometric and automatic.

2. Previous Works

Brain morphometry analysis plays a fundamental role in medical imaging [11, 22, 24]. 

Many research works have investigated the brain morphometry analysis and shape 

classification. Thompson et al. [17] analyzed brain morphometry using thickness features. 

Winkler et al. [20] proposed that the surface area could serve as an important morphometry 

feature to study brain structural MRI images. Besides, numerous methods have been 

presented in order to describe shapes, including statistical methods [14], topology based 

methods [6], and geometry based methods [12]. To solve real 3D shape problems, 

researchers have also proposed many shape analysis and classification methods. Chaplot et 

al. [3] employed wavelets and neural network for classification of brain MR images. 

Zacharaki et al. [23] proposed the use of pattern classification methods for classifying 

different types of brain tumors. Recently, Su et al. [16] presented a shape classification 
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method busing Wasserstein distance. The method computed a unique optimal mass transport 

map between two measures, and used Wasserstein distance to intrinsically measure the 

dissimilarities between shapes.

Foliation [15] is a generalization of vector field. In computer graphics field, Zhang et al. [25] 

invented a vector field design system which could help users create various vector fields 

with control over vector field topology. The technique can be used in some applications such 

as example-based texture synthesis, painterly rendering of images, and pencil sketch 

illustrations of smooth surfaces. Recently, Campen et al. [2] proposed a method for bijective 

parametrization of 2D and 3D objects based on simplicial foliations. The method 

decomposed a mesh into one-dimensional submanifolds, reducing the mapping problem to 

parametrization of a lower-dimensional manifold. It was proved that the resulting maps are 

bijective and continuous. In isogeometric analysis field, Lei et al. [9] presented a novel 

quadrilateral and hexahedral mesh generation method using foliation theory. A colorable 

quad-mesh method was employed to generate the quadrilateral mesh based on Strebel 

differentials, which then leads to the structured hexahedral mesh of the enclosed volume for 

high genus surfaces. Hsieh et al. [7] studied an elasticity model for shape evolution where 

the control is interpreted as the derivative of a body force density in the deforming volume, 

and a special case of the model decomposes the shapes into a family of layers called 

foliation.

3. Theoretic Foundation

We briefly review the basic concepts and theorems in conformal geometry. Detailed 

treatments can be found in [5,4,15].

A complex function f:ℂ ℂ, (x, y) → (u, v), satisfying the Cauchy-Riemann equation

ux = vy, uy = − vx,

is called a holomorphic function. If f is invertible, and f−1 is also holomorphic, then f is 

called a bi-holomorphic function. For a surface with a complex atlas A, if all chart transition 

functions are bi-holomorphic, it is called a Riemann surface, the atlas A is called a complex 
structure. All oriented metric surfaces are Riemann surfaces.

Definition 1 (Holomorphic Quadratic Differentials). Assume S is a Riemann surface. Let 
Φ be a complex differential form, such that on each local chart with the local complex 

parameter zα , Φ = φα zα dzα2, in which φα(zα) is a holomorphic function. Then Φ is called a 

holomorphic quadratic differential.

Based on the Riemann-Roch Theorem, the linear space of all holomorphic quadratic 

differentials is 3g − 3 complex dimensional with the genus g > 1. A point zi ∈ S is called a 

zero of Φ, if φ(zi) vanishes. A holomorphic quadratic differential has 4g − 4 zeros. For any 

point away from zero, a local coordinates can be defined as follows:
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ζ(p): = ∫ p
φ(z)dz . (1)

which are so-called natural coordinates induced by Φ. The curves with constant real 

(imaginary) natural coordinates are called the vertical (horizontal) trajectories, and the 

trajectories through the zeros are called the critical trajectories.

Definition 2 (Strebel [15]). If all of the horizontal trajectories of a holomorphic quadratic 
differential Φ on a Riemann surface S are finite, then Φ is called a Strebel differential.

We say a holomorphic quadratic differential Φ is Strebel, if and only if its critical horizontal 

trajectories form a finite graph [15]. In the space of all holomorphic quadratic differentials, 

the Strebel differentials are dense. Given a holomorphic quadratic differential Φ, a flat 

metric with cone singularities (cone angles equal to −π), denoted as |Φ|, is induced by the 

natural coordinates in Eqn. 1. The following existence of a Strebel differential with 

prescribed type and heights was proved by Hubbard and Masur.

Theorem 1 (Hubbard and Masur [8]). For non-intersecting simple loops Γ = {γ1, γ2, 

⋯ ,γn}, and positive numbers {h1, h2, ⋯ , hn}, n ≤ 3g − 3, there exists a unique holomorphic 
quadratic differential Φ, which satisfies the following:

1. A surface is partitioned by the critical graph of Φ into n cylinders, {C1,C2, 

⋯ ,Cn}, such that γk is the generator of Ck,

2. The height of each cylinder (Ck,|Φ|) is equal to hk, k = 1,2, ⋯ ,n.

We give the geometric interpretation of above theorem as follows: under the flat metric |Φ|, 

each cylinder Ck becomes a canonical flat cylinder with height hk. Strebel’s theorem allows 

for specifying the type of Φ and the height of each cylinder Ck.

Harmonic Map

Assume G = 〈E,N〉 is a graph, and h:E ℝ+ is an edge weight function. p and q denote two 

points on the graph, and dh(p, q) represents the shortest distance between them. Suppose (S, 

g) is a surface with a Riemannian metric g. Given a map f : (S, g) → (G, h), we say a point p 
∈ S is a regular point, if its image is not any node of G, otherwise it is a critical point. We 

denote the set of all critical points as Γ. For each regular point p ∈ S, a neighborhood Up can 

be found and the restriction of the map on Up can be treated as a normal function f:Up ℝ. 

An isothermal coordinates (x, y) are selected on Up, such that the metric has a special form g 

= e2λ(x,y)(dx2 + dy2). Then the harmonic energy is represented by E f Up  : = ∫Up ∇gf 2dAg, 

where ∇g = e−λ ∂
∂x , ∂

∂y
T

, and the area element is dAg = e2λdxdy. The harmonic energy of 

the whole map is given as

E(f): = ∫S\Γ
∇gf 2dAg .
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The critical point of the harmonic energy is called a harmonic map. Wolf [21] proved the 

existence and the uniqueness of the harmonic map.

Theorem 2 (Wolf [21]). The harmonic map f : (S, g) → (G, h) exists and is unique in each 
homotopy class. Moreover, as induced by the harmonic map, the Hopf differen6tial Φ = 〈fz, 
fz〉dz2 is a holomorphic quadratic differential, where z = x + iy denotes the complex 
isothermal coordinates of (S, g).

Conformal Module

Let (S, g) be a surface of genus g > 1. Given 3g − 3 non-intersecting simple loops Γ = {γi} 

and positive numbers {hi}, the unique Strebel differential Φ based on Hubbard and Masur’s 

theorem induces a flat metric |Φ| with cone singularities, and cylinders Ck, Φ . The height 

and circumference for each cylinder (Ck, |Φ|) is denoted by (hk, lk). The set of all (hk, lk) are 

the conformal modules.

4. Algorithm

Pants Decomposition

Let S be a closed surface of genus g, represented by triangular mesh. Let Γ = {γi, i = 1,2, 

…,3g − 3} be a set of admissible curves, which can be generated automatically or manually 

specified. User also specifies a height parameter hi for each admissible curve γi. These 

admissible curves decompose surface S to a set of pants P = Pi, i = 1, 2, …, 2g − 2 . The 

pants decomposition graph G is then constructed in the following way:

• each pants Pi corresponds to a node in G;

• each admissible curve connecting two pants corresponds to an edge in G; two 

pants may be the same, in that case, the edge becomes a loop.

Fig. 1 illustrates pants decomposition and pants decomposition graph.

Discrete Harmonic Map to Graph

We compute a unique harmonic map f from surface S to G. The harmonic energy is defined 

as

E(f) = ∑
i, j, eij ∈ S

wijd2 f vi , f vj

where vi are vertex on S, f(vi) on G, eij are edges, wij cotangent weight.

For each vi, by moving f(vi) to the barycenter of its neighbors on graph G, the energy E will 

decrease monotonically, which is due to the following definition of barycenter. By iteratively 

doing so, energy E will attain its minimum value, at which point we obtain a harmonic map 

f : S → G. Thm. 2 guarantees this harmonic map we obtained is the unique one. Fig. 2 (a) 

illustrates harmonic map from a human face surface to its pants decomposition graph (b), (c) 

shows surface foliation, where color indicates vertices’ target position on graph G.
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The initial map f0 should be specified in the same homotopy class as the final harmonic map 

f. Subgraph at a node consists of the node and all edges connecting to it. Then initial map 

can be obtained automatically in the following way: each pants Pi be mapped to the 

subgraph Gi at node i of G, then all pants maps are glued together to obtain f0.

Calculate Barycenter

For each f(vi), we move f(vi) to the barycenter of its neighbors. Calculating barycenter is 

done by minimizing energy

f vi * = arg min
f(v)

∑
j, eij ∈ S

wijd2 f(v), f vj

where the right are exactly the terms in E that involve f(vi). d(f(vi), f(vj)) can be calculated 

piecewisely. Then minimization of above energy boils down to minimum calculation of a set 

of quadratic functions.

Surface with Boundaries

For surfaces with boundaries, we can either double cover those surfaces to obtain a closed 

surface, or we can add boundaries to the set of admissible curves, such curves correspond to 

open edges on G. Computation of harmonic map remains same.

Extract Geometric Features

A holomorphic quadratic differential Φ can be induced from the harmonic map we obtained. 

Tracing the critical trajectories of Φ and slicing surface along them, we obtain a set of 3g−3 

topological cylinders, each corresponds to an input admissible curve. The set of heights and 

circumferences of those cylinders are topological invariants, which we propsose to use as 

geometric features for classification problems in next section.

5. Experiment

To evaluate the proposed method for brain morphometry study, we conducted experiments 

on a dataset of 60 brain cortical surfaces. Triangle mesh of each brain surface has around 

100K triangles.

Data Preparation

The dataset used in our experiments includes images from 30 patients with Alzheimer 

disease and 30 healthy control subjects. The structural MRI images were from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [13]. The brain cortical surfaces were 

reconstructed from the MRI images by FreeSurfer. Then, a set of ‘Core 6’ landmark curves, 

including the Central Sulcus (CeS), Anterior Half of the Superior Temporal Gyrus (aSTG), 

Sylvian Fissure (SF), Calcarine Sulcus (CaS), Medial Wall Ventral Segment, and Medial 

Wall Dorsal Segment, are automatically traced on each cortical surface using the Caret 

package [19]. In Caret software, the PALS-B12 atlas is used to delineate the “core 6” 

landmarks, which are well-defined and geographically consistent, when compared with other 
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gyral and sulcal features on human cortex. The stability and consistency of the six 

landmarks was validated in [18]. An illustration of the landmark curves on a left cortical 

surface is shown in Fig. 3 with two views. We show the landmarks with both the original and 

inflated cortical surfaces for clarity. A brain surface and its foliation are shown in Fig. 4(a) 

and (b), respectively.

Foliation Feature Visualization

We illustrate the difference of feature values between a pair of subjects with AD and healthy 

control subject (CTL) using radar chart. Radar chart displays multi-variate data in a two-

dimensional chart where multiple variables are represented on axes starting from the same 

point. As shown in Fig. 5, six pairs of heights(H) and circumferences(C) corresponding to 

core 6 landmarks, i.e., twelve features (labeled by ‘H1’, ‘C1’,…,’H6’, ‘C6’) are associated 

with twelve corners on the radar chart. We find that the pair of the H4 height and C4 

circumference features associated to landmark curve of medial wall dorsal segment have the 

largest difference between these two subjects radar charts represented by a blue color line 

and an orange color line respectively. Although more validations are warranted, our research 

results may help discover AD related brain atrophy patterns.

Classification

We validated our method with brain surface classification on a dataset of brain cortical 

surfaces from 30 patients with Alzheimer disease and 30 healthy control subjects. The SVM 

method was employed as the classifier with 10-fold cross validation in our experiments. For 

each image, the input feature vector of the classifier includes 12 features. For comparison 

purpose, we also compute cortical surface area and cortical surface mean curvatures, two 

cortical surface features frequently adopted in prior structural MRI analyses [10]. We also 

applied SVM as the classifiers for these two features. Experimental results are shown in 

Table 1. Our proposed method achieved 78.33% correctness rate, which is better than the 

correctness rate 56.67% in the brain surface area based method and 55.00% in the brain 

surface mean curvature based method. Although multi-subject studies are clearly necessary, 

this experiment demonstrates that the foliation theory based geometric features may have the 

potential to quantify and measure AD related cortical surface changes.

6. Conclusion

In this paper, a novel brain surface classification method is proposed based on surface 

foliation theory. The method is rigorous, geometric, and automatic. In order to validate our 

proposed method, we applied our method on classifying brain cortical surfaces between 

patients with Alzheimer’s disease and healthy control subjects, and the preliminary 

experimental results demonstrated the efficiency and efficacy of our method. In the future, 

we will employ our method to explore brain morphometry related to mild cognitive 

impairment (MCI) and other applications in the medical imaging field.
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Fig. 1. 
Pants decomposition of surface (left) and pants decomposition graph (right)
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Fig. 2. 
Harmonic map from human face to pants decomposition graph and induced surface foliation
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Fig. 3. 
A left cortical surface with six landmark curves, which are automatically labeled with Caret, 

showing in two different views on both the original and inflated surfaces.
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Fig. 4. 
A brain surface and its foliation.
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Fig. 5. 
Radar chart.
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Table 1.

Classification accuracy comparision between our method and other methods.

Classification method Correctness rate

Our Method 78.33%

Brain Surface Area 56.67%

Brain Mean Curvature 55.00%
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