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Abstract

Background—In developmental and reproductive toxicity studies, analysis of litter-based binary 

endpoints (e.g., incidence of malformed fetuses) is complex in that littermates often are not 

entirely independent of one another. It is well established that the litter, not the individual fetus, is 

the proper independent experimental unit in statistical analysis. Accordingly, analysis is often 

based on the proportion affected per litter and the litter proportions are analyzed as continuous 

data. Because these proportional data generally do not meet assumptions of symmetry or 

normality, data are typically analyzed by nonparametric methods, arcsine square root 

transformation, or logit transformation.

Methods—We conducted power calculations to compare different approaches (nonparametric, 

arcsine square root-transformed, logit-transformed, untransformed) for analyzing litter-based 

proportional data. A reproductive toxicity study with a control and one treated group provided data 

for two endpoints: prenatal loss, and fertility by in utero insemination (IUI). Type 1 error and 

power were estimated by 10,000 simulations based on two-sample one-tailed t-tests with varying 

numbers of litters per group. To further compare the different approaches, we conducted additional 

analyses with shifted mean proportions to produce illustrative scenarios.

Results—Analyses based on logit-transformed proportions had greater power than those based 

on untransformed or arcsine square root-transformed proportions, or nonparametric procedures.

Conclusion—The logit transformation is preferred to the other approaches considered when 

making inferences concerning litter-based proportional endpoints, particularly with skewed 

distributions. The improved performance of the logit transformation becomes increasingly 
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pronounced as the response proportions are increasingly close to the boundaries of the parameter 

space.

Keywords

statistical power; proportional data; logit transformation; arcsine square root transformation; 
developmental toxicity; litter data

INTRODUCTION

Binary data are the simplest type of statistical data, arising when there are just two possible 

outcomes, e.g., yes-no, success-failure, life-death, sick-healthy, etc. In developmental and 

reproductive toxicity studies, analysis of binary endpoints regarding pups, fetuses, or 

implantation sites (e.g., incidence of resorbed implantation sites, incidence of malformed 

fetuses, etc.) becomes more statistically complex in that offspring within a litter usually are 

not independent. Because intra-litter correlation (known as the “litter effect”) must be 

accounted for, it is well established that the litter, rather than the individual fetus or pup, is 

the proper independent experimental unit in statistical analysis (Chen, 2006). In 

developmental and reproductive toxicity studies, analysis of binary data is often based on the 

proportion affected per litter and the litter proportions are analyzed as continuous data. 

Because distributions of these proportional data generally do not meet assumptions of 

symmetry or normality required for parametric analysis such as analysis of variance 

(ANOVA), data may be ranked (i.e., for nonparametric analysis) or transformed to 

approximate normality (Glass et al., 1972). Nonparametric analysis (e.g., Kruskal-Wallis test 

or Wilcoxon Mann Whitney test) is a commonly used approach in the developmental 

toxicity literature; i.e., the untransformed proportions are ranked, and the ranks are then 

analyzed by ANOVA.

In the mid 1900’s the arcsine square root transformation was suggested (e.g., Snedecor & 

Cochran, 1967) for analyzing binomially distributed proportional data in toxicology and the 

environmental sciences since it is a normalizing and variance stabilizing transformation for 

binomially distributed data when the response proportion is removed from 0 or 1. However 

proportions based on binary data may be more variable than would be predicted by the 

binomial distribution. This would be the case if there are litter effects (i.e. litter-to-litter 

variation within control or treatment groups). In developmental toxicity studies, littermates 

are not entirely independent, which leads to correlated binary responses (and the strength of 

the correlation can vary from endpoint to endpoint).

Because of differences in litter sizes within treatment groups, the observed individual litter 

proportions are not identically distributed and this needs to be accounted for when analyzing 

the data after the experiment has been run (Chen, 2006). Chen suggests the use of a beta-

binomial model (Williams, 1975) in which the responses within each litter are binomially 

distributed but the response probability varies from litter to litter according to a beta 

distribution. The parameters of the beta distribution vary among treatment groups. This 

results in a marginal model with a mean response probability p across litters within a group 
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and variation among litters exhibiting variation greater than what would be predicted due 

solely to binomial variation.

An alternative approach at the analysis stage is mixed effects logistic regression in which the 

responses within each litter within a treatment group are modeled as binomially distributed 

with random response probability ρ. This permits the response probability to vary among 

litters within a treatment group, as noted above. Mixed effects logistic regression is used by 

the National Toxicology Program (NTP) for the analysis of multi-group binary data 

involving litter structures (e.g., NTP, 2012; Catlin et al., 2018). Jaeger (2008) also 

recommends the use of mixed effects logistic regression as a superior alternative to ANOVA 

to account for litter-to-litter variation and within-litter variation in one analysis model. He 

states that “…even after applying the arcsine square root transformation to proportional data, 

ANOVA can yield spurious results….”

The situation differs when power analyses are conducted for designing a future experiment. 

In the design of future studies, the litter sizes have not yet been attained and so litter sizes 

are unknown. A common assumption at the planning stage is that litter sizes will be constant 

within treatment groups (but may vary across groups). For planning purposes, it is usual 

statistical practice that litters are assumed to be independently and identically distributed 

within treatment groups. The assumed standard deviation among litters within treatment 

groups is based on that which was observed in previous data. Sometimes a covariate is 

incorporated into the models to reflect a continuous factor such as age, temperature, etc. It is 

also usual practice that except perhaps for the very smallest experiments, where small 

sample exact analysis methods are sometimes used, to analyze experimental results with 

large sample normal theory approximations to the distributions of the inference statistics, 

such as t-statistics, ANOVA and chi square statistics, and likelihood based tests and 

estimators. Small sample inference procedures, not based on asymptotic theory, exist such as 

jackknife and bootstrap methods (Efron, 1986). Such methods are much less commonly 

utilized by experimental contributors in the developmental toxicology literature than the 

normal theory based methods discussed above. They will not be considered further in this 

paper.

Here we use power analyses to explore the relative strengths and weaknesses of the different 

approaches to analyzing litter-based proportional data. I.e., approaches that yield the greatest 

power will likely be the approaches most able to detect differences between experimental 

groups when analyzing litter-based proportional data. The power analyses are based on 

empirical computer simulations assuming that t-test or Wilcoxon Mann Whitney normal 

approximation critical values are used for comparisons among groups (Agresti, 2012). The 

values of power presented are empirical.

Here, in the planning stages of a study to evaluate the reproductive toxicity of mixtures in 

rats, power calculations were conducted for several endpoints based on data from a previous 

study where the reproductive toxicity of a mixture of drinking water disinfection by-

products (DBPs) was evaluated in rats (Narotsky et al., 2013). In that study, a treated group 

receiving a complex mixture of DBPs was compared against a control group receiving 

purified water. In this paper, analyses are carried out to compare the power to detect different 
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effect sizes (i.e., the deviation between group mean proportions) using different data 

transformations based on the variability observed in Narotsky et al. (2013) and the numbers 

of litters per group to be tested. Two proportional endpoints are evaluated: prenatal loss and 

fertility by in utero insemination (IUI). Prenatal loss, a basic endpoint in reproductive and 

developmental toxicity studies, reflects the litter’s prenatal attrition from implantation to 

term. The other proportional endpoint, IUI fertility, is not commonly part of reproductive 

toxicity studies. Because male rats ejaculate an excess of qualitatively normal sperm, this 

assay provides increased sensitivity for detecting a decrease in sperm quality in the rat by 

using a fixed, critical number of sperm from control or treated males to inseminate receptive 

untreated females (Klinefelter, 2002).

METHODS

Data for the two proportional endpoints analyzed here, prenatal loss and IUI fertility, were 

obtained from Narotsky et al. (2013). Briefly, timed-pregnant Sprague-Dawley rats (P0 

generation) received purified water (control group) or a chlorinated water concentrate 

(treated group) as drinking water during gestation and lactation. Exposure to the F1 

offspring continued postweaning. Detailed information on the experimental design is 

provided in Narotsky et al. (2013). Prenatal loss for each litter is defined as the number of 

uterine implantation sites minus the number of F1 viable pups at postnatal day 0, divided by 

the number of implantation sites. Prenatal loss was calculated for 79 control and 118 treated 

F1 litters. For IUI fertility, 14 control and 15 treated F1 adult males were assessed by 

injecting epidydimal sperm into the uterine horns of untreated receptive females (1 female 

per male); corpora lutea (reflecting ovulations) and uterine implantation sites were counted 9 

days post-insemination. The IUI fertility of the donor male is expressed as the proportion of 

implantation sites per corpora lutea.

In the situation considered in this paper, there is a control group and a treated group i = 0, 1, 

with population mean proportions p0, p1, and standard deviations among the litter 

proportions σ0, σ1. The unit of analysis is the litter proportion. The litter standard deviation 

includes both within litter (binomial) variation as well as litter-to-litter variation. Litter-to-

litter variation in response proportions within groups is often modeled as beta distributed 

with means and standard deviations specified on historical data. This combination of 

variance components results in variation in excess of binomial distribution variation. Power 

analyses were carried out for IUI fertility and prenatal loss when analyzed with the 

following approaches: untransformed proportions, Wilcoxon Mann Whitney tests on the 

ranks of the untransformed proportions, arcsine square root-transformed proportions 

[arcsine(√p)], and logit-transformed proportions [ln(p/(1-p))].

Empirical Power Comparisons Based on Simulated Distributions of Proportions and Their 
Logit and Arcsine Square Root Transformations

To illustrate empirically through simulation the characteristics of the distributions of litter 

proportions and inferences based on them, it was assumed that the individual litter 

proportions (untransformed) were drawn from beta distributions with the means and 

standard deviations shown in Table 1 (original data). At the analysis stage, after the data 
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have been collected, the response proportions in individual litters within treatment groups 

will have binomial distributions, with litter means varying randomly across litters, and with 

group means p0 and p1 and group standard deviations σ0 and σ1 across litters. The average 

response across litters is asymptotically normally distributed (based on the Central Limit 

Theorem) (Feller, 1966) with mean p and standard deviation σ. At the planning stage, before 

the data have been collected, the litter sizes are unknown, and it is a common planning 

assumption that the individual litters are independently and identically distributed within 

treatment groups. Because the beta binomial distribution and the beta distribution are both 

distributions in the interval (0,1), with the same mean and standard deviation, and because 

the average distributions across litters are asymptotically the same (normal), the simulated 

beta distribution response averages can be used to carry out power comparisons between the 

treatment and control groups. The beta distribution is a two-parameter distribution on the 

variable x varying in the interval (0, 1) with parameters α > 0, β > 0. The probability density 

function of the beta (α, β) distribution is

Γ(α + β)
Γ(α)Γ(β)xα − 1(1 − x)β − 1 0 < x < 1, α > 0, β > 0

where Γ(·) is the mathematical gamma function (Casella & Berger, 2002). There is a one-to-

one mathematical correspondence (NIST/SEMATECH, 2012) between the beta distribution 

parameters (α, β) and the means p and standard deviations σ shown in Table 1. Namely

α = p(1 − p) − σ2
σ2 p, β = p(1 − p) − σ2

σ2 (1 − p)

where σ2 is the square of the standard deviation (i.e., the variance). The parameters (p, σ) 

are generic population parameters that correspond to (p0, σ0) in the control group and (p1, 

σ1) in the treatment group. They are estimated from the data by the sample mean and the 

sample standard deviation in each group.

For each of the untransformed control group and treated group distributions, 1,000 random 

variates were drawn from a beta distribution with parameters corresponding to the original 

data means and standard deviations presented in Table 1 and are displayed in Figure 1 for 

prenatal loss and in Figure 2 for IUI fertility. Normal distribution density functions having 

the same sample means and sample standard deviations as the beta densities are 

superimposed in the histograms. Figure 1 shows that the prenatal loss distributions are 

skewed toward the 0 boundary for both the control and treated groups. Figure 2 shows that 

for IUI fertility the control group beta distribution is nearly uniformly distributed across the 

entire range of proportions 0 to 1 and the treated group beta distribution is skewed toward 

the 0 boundary. For both prenatal loss and IUI fertility appreciable portions of the 

approximating normal distributions, which are the basis for the power calculations, extend 

below the parameter space boundary at 0 and/or above the boundary at 1. The histograms 

were generated with SAS (Release 9.3, SAS Institute Inc.), PROC UNIVARIATE.

To compare how the different approaches perform when the data are skewed toward the zero 

boundary, we conducted additional analyses with the above datasets for prenatal loss and 
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IUI, but with the mean proportions shifted to produce illustrative scenarios; standard 

deviations were unaffected (see Table 1). With the group mean proportions as originally 

presented in the data, for prenatal loss none of the procedures have sufficient power to be 

able to detect differences between the two treatment groups, or therefore distinguish among 

one another (Figure 8). For IUI fertility, the group mean proportions as given in the data 

were relatively far from the boundary of the parameter space and the power associated with 

each of the procedures was about the same (Figure 12). The shifts in assumed response 

proportion means were chosen to illustrate and clarify the methodological points made in the 

text. Namely, if the means were moved closer to the boundaries there was greater separation 

among the power curves corresponding to the different transformations. If the means were 

moved away from the boundaries there was less difference among the power curves for the 

various methods. For prenatal loss, two such scenarios were evaluated. In the first scenario, 

the control group was shifted toward zero and the treated group was unchanged. In the 

second scenario, the control group remained at original values while the treated group was 

shifted farther from the zero boundary. For IUI, one scenario was evaluated where both the 

control and treated groups were simultaneously shifted toward the zero boundary while 

maintaining the distance between the response proportions of the two groups.

RESULTS

The group population means and standard deviations of the individual litter proportions are 

displayed in Table 1 for the two binary endpoints – prenatal loss and IUI fertility, based on 

the results reported in Narotsky et al. (2013).

For IUI fertility, the mean proportions are about 1.2 to 1.9 standard deviations from 0. In 

contrast, for prenatal loss the mean proportions are much closer to the lower boundary of 0: 

the control mean proportion is about 0.75 standard deviations from the lower bound of 0 and 

the treated group mean proportion is just 0.69 standard deviations from 0.

Arcsine Square Root Transformation

For the arcsine square root transformation (Snedecor & Cochran, 1967), the natural 

parameter space is (0, π/2) ≈ (0, 1.57). Transformed values must be within this range to 

back transform to physically meaningful values. If ≡ observed mean litter proportion (p) 

with standard deviation σ among litters, then the asymptotic standard deviation of arcsine (√) 

is σ/(2√[p(1-p)]) (Warton & Hui, 2011). Note that the arcsine square root transformation is 

not a variance stabilizing transformation for the two endpoints above because of the extra 

binomial variation resulting from the litter-to-litter variation within groups.

Figures 3 and 4 display histograms of the arcsine square root transformations of the beta 

distributed random variates displayed in Figures 1 and 2. Figure 3 corresponds to prenatal 

loss and Figure 4 corresponds to IUI fertility. The histograms of the arcsine square root-

transformed proportions are less skewed than those of the untransformed proportions. 

Nonetheless, the approximating normal distributions have appreciable portions below the 

zero boundary for both the control and treated groups for prenatal loss (Figure 3) and for the 

treated group for IUI (Figure 4). These portions of the distribution outside the transformed 

domain do not correspond to physically meaningful transformed proportions.
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Logit Transformation

For the logit transformation the issue of the closeness of the parameter to the zero boundary 

does not arise because the support of the logit transformation parameter space runs from 

minus infinity to infinity. There is no boundary to the parameter space. Thus, asymptotic 

normal distribution theory on which the inferences on the transformations are based is more 

nearly applicable with typical sample sizes.

Figures 5 and 6 display histograms of the logit transformations of the beta distributed 

random variates displayed in Figures 1 and 2. Figure 5 corresponds to prenatal loss and 

Figure 6 corresponds to IUI fertility. The histograms of the logit-transformed proportions are 

more nearly symmetric than the histograms of the untransformed proportions and of the 

arcsine square root-transformed proportions. The approximating normal distributions lie 

entirely within the transformed logit domain (−∞, ∞).

Test Size and Power Analyses for Prenatal Loss—Type 1 error and power were 

estimated by simulation for prenatal loss based on two-sample one-tailed t-tests for 

untransformed, logit-transformed, and arcsine square root-transformed proportions, as well 

as the Wilcoxon Mann Whitney procedure on the ranked, untransformed data. Simulation 

was performed using SAS (Release 9.3); simulation code is provided in the supplemental 

material. The simulated untransformed proportions were generated based on beta distributed 

random variates with population means and standard deviations shown in Table 1. Estimated 

type 1 error and power were based on 10,000 simulations with assumed numbers of litters 

per group equal to 5, 10, 15, 20, 25, 30, 40, and 50. Figure 7 shows that tests based on 

untransformed proportions, logit-transformed proportions, arcsine square root-transformed 

proportions, and the Wilcoxon Mann Whitney procedure each maintain type 1 error 0.05 

under the null hypothesis. Figure 8 shows that there is virtually no power to detect 

differences between the control group and the treated group (see Table 1) with the 

untransformed, the logit-transformed, the arcsine square root-transformed proportions, or the 

Wilcoxon Mann Whitney procedure, even with 50 litters per group.

To make comparisons of the power attained with no transformation, arcsine square root 

transformation, logit transformation, and rank transformation under different situations, the 

prenatal loss data set was shifted in two different data scenarios (Table 1). For each different 

data scenario, type 1 error simulations were carried out and the results were as in Figure 7; 

each transformation maintained its type 1 error 0.05 under the null hypothesis. In the first 

scenario, the control group was shifted toward zero (to 0.0273) and the treated group was 

unchanged. A power analysis corresponding to a two-sample one-tailed t-test with type 1 

error 0.05 and 5 to 50 litters per group was carried out by simulation with 10,000 

simulations. The results of the power analysis with the shifted control group are shown in 

Figure 9. Tests based on the logit-transformed proportions have greater power than those 

based on untransformed proportions, on arcsine square root-transformed proportions, or on 

the Wilcoxon Mann Whitney test. Power of 80% can be attained with approximately 10 

litters per group based on the logit transform, with approximately 25 litters per group based 

on the arcsine square root transform, with fewer than 15 litters per groups based on the 

Wilcoxon Mann Whitney test, and cannot be attained with even 50 litters per group based on 
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the untransformed proportions. This relatively favorable performance of the logit transform-

based approach becomes increasingly pronounced when the distributions of the data are 

skewed toward the boundary of the parameter space.

In the second alternative data scenario, the treated group was shifted farther from the zero 

boundary to separate the mean proportions in the control and treated groups. The treated 

group response proportion was 0.100 while the control group response proportion remained 

at 0.057. The standard deviations in the control and treated groups remained as in the 

original data set (see Table 1). This moved the treated group response rate farther away from 

the boundary of the parameter space. The results of the simulated power vs. number of litters 

per group based on one-tailed tests are shown in Figure 10. Again, the logit transformation 

results in greater power than the Wilcoxon Man Whitney test, the arcsine square root 

transformation, or no transformation. Note that the power resulting from the arcsine square 

root transformation is closer to that resulting from the logit transformation or the Wilcoxon 

Man Whitney test than in Figure 9 because the distributions of the observed proportions are 

less skewed, consequently the distributions of the transformed proportions are more nearly 

contained within the physically meaningful portion of the parameter space.

Test Size and Power Analyses for In Utero Insemination Fertility

The results in this section, for the endpoint IUI fertility, parallel those in the previous 

section. Type 1 error and power were estimated by simulation based on two-sample one-

tailed t-tests for untransformed, logit-transformed, and arcsine square root-transformed 

proportions, and the Wilcoxon Mann Whitney procedure. The simulated untransformed 

proportions were generated based on beta distributed random variates with mean and 

variance shown in Table 1. Estimated type 1 error and power were based on 10,000 

simulations with assumed numbers of litters per group equal to 5, 10, 15, 20, 25, 30, 40, and 

50. Figure 11 shows that tests based on untransformed proportions, logit-transformed 

proportions, arcsine square root-transformed proportions, and the Wilcoxon Mann Whitney 

procedure each maintained type 1 error 0.05 under the null hypothesis. Figure 12 shows that 

the test based on the logit-transformed proportions had greater power than the tests based on 

the other procedures, but all four procedures had nearly the same power. This is because the 

mean response proportions in both the control and treated groups are both within the range 

of 0.3 to 0.7; the near linearity in this range (away from the boundaries of the parameter 

space) results in little difference among the transformations (Holland, 2017).

To separate the power curves, and thereby show the different strengths of the different 

approaches, the assumed mean fertility response proportions were moved closer to the 

boundary of the parameter space while maintaining the difference between the two group 

mean fertility response proportions. The control group mean response proportion was 

assumed to be 0.408 and the treated group mean response proportion was assumed to be 

0.229 while the standard deviations for both groups remained the same as in the original 

dataset (see Table 1). The results of the power analysis are shown in Figure 13. Tests based 

on logit-transformed proportions had greater power than all the other approaches evaluated, 

followed by the Wilcoxon Mann Whitney analysis which outperformed the arcsine square 
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root analysis. The analysis based on untransformed proportions had the least power of the 

four approaches.

DISCUSSION

When making statistical inferences about binary responses and proportions, normalizing 

transformations of the proportions are often first carried out and inferences are made in the 

transformed domain. The aim is to improve approximations to asymptotic normal 

distributional results in the transformed domain with small to moderate sample sizes and 

thereby improve the accuracy of inferences based on asymptotic normal theory. In the mid 

1900’s the arcsine square root transformation was suggested for analyses in toxicology and 

the environmental sciences (Chen, 2006) because it is a normalizing and variance stabilizing 

transformation for binomially distributed proportional data that exclude 0 and 1. However, 

proportions are not always binomially distributed. They may be more variable than would be 

predicted by the binomial distribution. This would be the case if there are litter effects (i.e., 

litter-to-litter variation in the control or treatment groups). This frequently occurs with litter 

data in developmental toxicology studies. Proportional data with variation exceeding 

binomial variation can also arise from non-binary data, such as the ratio of two continuous 

variables, e.g., organ weight to body weight ratio (Warton & Hui, 2011). In such situations 

the arcsine square root transformation may no longer be variance stabilizing.

The theory underlying the normalizing transformations assumes that the means of the 

distributions of the proportions or their transforms are multiple standard deviation units from 

the boundaries of the parameter spaces and their approximate large sample normal 

distributions are nearly completely interior to the parameter space [0, 1] or its transform 

(Snedecor & Cochran, 1967; Bromily & Thacker, 2002). Operationally, this means that the 

observed proportions are multiple standard deviations from the boundary values 0 and 1. In 

such situations, the arcsine square root is known to be an approximate normalizing 

transformation because the approximating normal distribution can extend multiple standard 

deviations in each direction. The approximating normal distribution after an arcsine square 

root transformation is assumed to lie nearly entirely within the bounds of the region. 

However, when the means of the observed proportions are close in standard deviation units 

to the boundary values of 0 or 1, the distribution of the arcsine square root-transformed 

proportions can be very skewed and may not be well approximated by a normal distribution. 

The approximating normal distribution often has a sizable portion of its probability mass 

outside the bounds of the parameter region. The distributions of untransformed litter 

proportions are then skewed toward the boundary. This is illustrated for the group 

distributions of the proportions for prenatal loss (Figure 1) and IUI fertility (Figure 2). The 

distributions of differences of group means of untransformed litter proportions will have 

relatively high probability mass at or near 0. The normalizing transformations reduce the 

extent of skewness toward the boundary of the distributions of transformed litter proportions. 

The distributions of differences of group means of transformed litter proportions will have 

relatively less probability mass at or near 0 and will therefore have greater probability 

content in the tails. This is true to some extent with the arcsine square root transformation 

and to a greater extent with the logit transformation. Thus, the arcsine square root 
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transformation results in greater power than the untransformed proportions, and the logit 

transformation results in greater power than the arcsine square root transformation.

The arcsine square root transformation may not be preferred as a normalizing transformation 

for analysis when the distributions of the observed proportions are skewed to the boundary 

values of 0 or 1, such as is illustrated in Figure 3 and the treated group in Figure 4. In such 

cases the logistic transformation and logistic regression may be preferable to the arcsine 

square root transformation. Chen (2006) suggests the use of the logistic normalizing 

transformation (alternatively referred to as the “logit” transformation) and logistic regression 

to fit predictive models to litter-based proportions.

Warton & Hui (2011) compared the logit transformation with the arcsine square root 

transformation for the analysis of proportions. They argue that the logit transformation is a 

preferable alternative for multiple reasons. The logit-transformed space is infinite whereas 

the arcsine square root transformation space is bounded (0 to π/2 (≈1.57)). This implies that 

values in the logit-transformed space do not reach or cross the boundaries of the parameter 

space whereas values in the arcsine square root-transformed space may cross parameter 

boundaries. With the arcsine square root transformation in regression situations where 

extrapolation below 0 or above 1.57 may occur, a monotonic relation in the arcsine square 

root space can lead to nonmonotonic predictions in the back-transformed space of 

proportions (Warton & Hui, 2011). As a simple illustrative example of the arcsine back 

transformation not preserving monotonicity, if arcsine(√p(x)) = 1+x, a monotonically 

increasing relation in the arcsine square root-transformed space, then p(−2)=0.71, p(−0.25) 

=0.46, p(0.25)=0.90, p(1)=0.83. The relation in the back-transformed space of proportions is 

no longer monotonic, and so can lead to results that are not physically meaningful. This non-

monotonicity in the back-transformed space is impossible with the logit transformation 

because the logit transformation space is unbounded.

An additional advantage of the logit transformation is the regression slope in the logit 

transformation space has a physically interpretable meaning whereas that in the arcsine 

square root transformation space does not. Namely if p(x) varies as a linear function of a 

predictor variable x, e.g., logit(p(x)) = α+βx, then the slope β has the physical interpretation 

that a unit increase in x (i.e., from x to x+1) corresponds to a multiple factor change eβ in the 

odds ratio p(x)/(1-p(x)) (Warton & Hui, 2011).

With the arcsine square root transformation, if the means of the observed response 

proportions are close to the boundaries 0 or 1, normal distribution approximations to the 

distributions of the transformed proportions will extend beyond the parameter space 

boundaries 0 or 1.57. Thus, portions of their distributions will correspond to values with 

physically uninterpretable back-transformed values. This is seen in Figures 3 and 4. 

However, with logit transformation, the transformed parameter space is infinite, and such 

boundary issues do not occur so that the entire distributions have physically meaningful 

back-transformed values. This is seen in Figures 5 and 6. This results in greater sensitivity 

and power for inferences based on logit-transformed proportions compared to inferences 

based on arcsine square root-transformed proportions. A similar consideration applies to 

sensitivity and power for inferences based on logit-transformed proportions compared to 
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inferences based on untransformed proportions. The improved performance of the logit 

becomes more apparent the more the response proportions are skewed toward the 0 or 1 

boundaries. This is illustrated in Figure 9 for prenatal loss and in Figure 13 for IUI fertility.

An alternative approach to the analysis of litter-based proportions that commonly appears in 

the developmental toxicology literature is the use of nonparametric test procedures such as 

the Wilcoxon Mann Whitney rank-based test for two group comparisons (e.g. treated vs. 

control) or its extension to the Kruskal-Wallis test for overall comparisons among multiple 

groups. Such tests do not have issues associated with parameter space boundaries that are 

present with procedures based on untransformed proportions or arcsine square root 

transformed proportions. The rank transformation retains information only about the 

ordering of responses but loses information about their relative differences. In the power 

analysis examples in this paper, when the means of the response parameters are close to the 

boundaries of the parameter space, the power of the Wilcoxon Mann Whitney procedure 

exceeds the power of tests based on untransformed or arcsine square root-transformed 

proportions but is less than the power of tests based on logit transformed proportions.

Although the NTP has previously used arcsine square root transformation for analysis of 

litter-based proportional data (e.g., NTP, 2004), more recent studies have used mixed effects 

logistic regression analysis for the analysis of the individual animal data (i.e., 0’s and 1’s) 

(e.g., NTP, 2012; Catlin et al., 2018). The treatment group means and standard deviations are 

modeled as fixed effects and the replicate litter effects within treatment groups are modeled 

as random effects, with litter response rates varying randomly within treatment groups. Their 

models also include covariates that adjust for variation because of secondary variates that 

can be observed but not controlled. This approach can be used for power analysis at the 

planning stage as well as for post-experiment data analysis. It can be implemented in the 

SAS PROC NLMIXED procedure (Li, Lingsma, Steyerberg, & Sesaffre, 2011), or in many 

stand-alone programs.

When analyzing data, if an observed sample litter proportion is equal to 0 or 1, the logit 

transform is undefined. A small continuity correction ε is often incorporated into the logit 

transformation (Trikalinos, Trow, & Schmid, 2013), where ε, a small positive quantity, is 

added to proportions of 0 and subtracted from proportions of 1. After adjustment, for p’s 

close to 0, logit(p) ≡ log[(p+ε)/(1-p-ε)]. For p’s close to 1, logit(p) ≡ log[(p-ε)/(1-p+ε)]. For 

example, if ε=0.0001, then 0 values are adjusted to 0.0001 and values of 1 are adjusted to 

0.9999. The adjusted logit transformation is called an “empirical” logit transformation. Such 

continuity corrections are used when logit transformations are first carried out on the raw 

proportion data and then inference procedures such as t-tests, analysis of variance tests, or 

regression analyses are carried out on the logit transformed proportions. This is a more 

classical approach to statistical analysis. The more modern approach using mixed effects 

logistic regression models fit to the individual animal binary responses by maximum 

likelihood analysis does not require the use of continuity corrections. The need for 

continuity corrections and empirical logits is not needed at the planning stage, even when 

utilizing the classical approach, because power analyses are usually based on the continuous 

large sample beta distribution approximation to the exact discrete beta binomial distribution 

of litter proportions. Response proportions of 0 or 1 are not realized for the beta distribution.
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When the observed mean proportions are in the 0.3 to 0.7 range, the transformations have 

little difference among them as their curves are essentially linear in this range (Holland, 

2017). However, we have demonstrated that when the observed proportions are close to zero 

in standard deviation units, tests based on untransformed proportions or based on the arcsine 

square root transformation can have less power than the logit transformation to detect 

departures from the control group response. In the comparisons of the analyses of our 

different illustrative dataset scenarios, the superiority of the logit-transformation approach 

becomes increasingly pronounced when the response proportions are closer to the 

boundaries of the parameter space. Given that many litter-based proportional data sets in 

developmental and reproductive toxicology are typically skewed (e.g., malformation rate, 

prenatal loss), the choice of statistical analysis of the data is an important consideration. The 

current findings support logit transformation (or logistic regression) as a preferred option, 

particularly when the data are skewed.

The authors suggest that henceforth “LOL” in toxicologists’ texts stand for “LOVE OF 

LOGIT”!

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Prenatal Loss. Histograms of 1,000 simulated beta-distributed random variates with means 

and standard deviations (SD) as in the control group (left panel) and treated group (right 

panel). Normal distribution density functions with the same mean and SD are superimposed 

on the histograms.
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FIGURE 2. 
In Utero Insemination Fertility. Histograms of 1,000 simulated beta-distributed random 

variates with means and standard deviations (SD) as in the control group (left panel) and 

treated group (right panel). Normal distribution density functions with the same mean and 

SD are superimposed on the histograms.
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FIGURE 3. 
Arcsine Square Root-Transformed Prenatal Loss. Histograms of 1,000 simulated arcsine 

square root transforms of beta-distributed random variates with means and standard 

deviations (SD) as in the control group (left panel) and treated group (right panel). Normal 

distribution density functions with the same mean and SD are superimposed on the 

histograms.
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FIGURE 4. 
Arcsine Square Root-Transformed In Utero Insemination Fertility. Histograms of 1,000 

simulated arcsine square root transforms of beta-distributed random variates with means and 

standard deviations (SD) as in the control group (left panel) and treated group (right panel). 

Normal distribution density functions with the same mean and SD are superimposed on the 

histograms.
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FIGURE 5. 
Logit-Transformed Prenatal Loss. Histograms of 1,000 simulated logit transforms of beta 

distributed random variates with means and standard deviations as in the control group (left 

panel) and the treated group (right panel). Normal distribution density functions with the 

same means and standard deviations are superimposed on the histograms.
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FIGURE 6. 
Logit-Transformed In Utero Insemination Fertility. Histograms of 1,000 simulated logit 

transforms of beta distributed random variates with means and standard deviations as in the 

control group (left panel) and the treated group (right panel). Normal distribution density 

functions with the same means and standard deviations are superimposed on the histograms.
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FIGURE 7. 
Prenatal Loss. Type 1 error versus number of litters for untransformed, logit-transformed, 

and arcsine square root-transformed proportions and Wilcoxon Mann Whitney procedure on 

10,000 simulated random variates.

Feder et al. Page 20

Birth Defects Res. Author manuscript; available in PMC 2021 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



FIGURE 8. 
Prenatal Loss. Power versus number of litters for untransformed, logit-transformed, and 

arcsine square root-transformed proportions and Wilcoxon Mann Whitney procedure on 

10,000 simulated random variates.
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FIGURE 9. 
Prenatal Loss (control group shifted toward zero). Power versus number of litters for 

untransformed, logit-transformed, and arcsine square root-transformed proportions and 

Wilcoxon Mann Whitney procedure on 10,000 simulated random variates. Control group 

population mean proportion is changed to 0.0273.
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FIGURE 10. 
Prenatal Loss (treated group shifted away from zero). Power versus number of litters for 

untransformed, logit-transformed, and arcsine square root-transformed proportions and 

Wilcoxon Mann Whitney procedure on 10,000 simulated random variates. Treated group 

population mean proportion is changed to 0.1000.
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FIGURE 11. 
In Utero Insemination Fertility. Type 1 error versus number of litters for untransformed, 

logit-transformed, and arcsine square root-transformed proportions and Wilcoxon Mann 

Whitney procedure on 10,000 simulated random variates.
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FIGURE 12. 
In Utero Insemination Fertility. Power versus number of litters for untransformed, logit-

transformed, and arcsine square root-transformed proportions and Wilcoxon Mann Whitney 

procedure on 10,000 simulated random variates.

Feder et al. Page 25

Birth Defects Res. Author manuscript; available in PMC 2021 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



FIGURE 13. 
In Utero Insemination Fertility (control and treated groups shifted toward zero). Power 

versus number of litters for untransformed, logit-transformed, and arcsine square root-

transformed proportions and Wilcoxon Mann Whitney procedure on 10,000 simulated 

random variates. Control group population mean proportion is changed to 0.408; treated 

group population mean proportion is changed to 0.229.
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TABLE 1.

Control and Treated Group Mean Proportions and Standard Deviations in Dataset Scenarios with Shifted 

Control or Treated Groups to Illustrate Methodological Concepts

Control Treated

Endpoint Mean Standard deviation Mean Standard deviation

Prenatal loss

 Original data 0.057 0.077 0.067 0.096

 Control group shift toward zero 0.027 0.077 0.067 0.096

 Treated group shift away from zero 0.057 0.077 0.100 0.096

In utero insemination fertility

 Original data 0.558 0.288 0.379 0.325

 Both groups shift toward zero 0.408 0.288 0.229 0.325

Original data means and standard deviations are based on results reported in Narotsky et al. (2013).
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