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Abstract

A Mn(II)-based zinc-sensitive MRI contrast agent, MnPyC3A–BPEN, was prepared, 

characterized, and applied in imaging experiments to detect glucose-stimulated zinc secretion 

(GSZS) from the mouse pancreas and prostate in vivo. Thermodynamic and kinetic stability tests 

showed that MnPy-C3A–BPEN has superior kinetic inertness compared to GdDTPA, is less 

susceptible to transmetalation in the presence of excess Zn2+ ions, and less susceptible to 

transchelation by albumin. In comparison with other gadolinium-based zinc sensors bearing a 

single zinc binding moiety, MnPyC3A–BPEN appears to be a reliable alternative for imaging β-

cell function in the pancreas and glucose-stimulated zinc secretion from the prostate.

Graphical Abstract

INTRODUCTION

Magnetic resonance imaging (MRI) has become arguably the most powerful imaging 

modality because of its outstanding spatial and temporal resolution, its versatility, and its 

ability to detect functional and molecular events in tissue.1,2 Although MRI is less sensitive 

than PET, SPECT, and optical methods,3,4 interest in developing new molecular probes that 

report on specific biological events continues to grow.5 The implementation of more 

advanced techniques such as CEST and MR fingerprinting highlights the versatility of 

magnetic resonance.6–9 Despite these major physics advances, interest in newer types of 

exogenous molecular contrast agents (CAs) remains strong. To date, the most widely used 

MRI CAs have been the gadolinium-based T1 agents.10 Although gadolinium-based CAs 

(GBCA) have been widely used since the introduction of Magnevist in 1988, the appearance 

of Nephrogenic Systemic Fibrosis (NSF) in 200611–13 and, more recently, reports of Gd3+ 

deposition in the brain14,15 have raised concerns about continuing the use of GBCA.

These issues have been largely attributed to the poor kinetic inertness of Gd-complexes 

formed with acyclic ligands such as those in Gadodiamide and Gadoversetamide.10,16,17 

Nonetheless, the U.S. Food and Drug Administration (FDA) and the European Medicines 

Agency (EMA) raised concerns for all forms of GBCA including those derived from 

macrocyclic ligands. From this history, the scientific community has learned two principles; 
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first, there is a need to develop safe alternatives to acyclic GBCA and, second, the kinetic 

inertness and thermodynamic stability should be thoroughly investigated for every new 

metal-based agent developed for medical imaging purposes.

Manganese-based MRI agents are beginning to emerge as alternatives to gadolinium-based 

agents because of their favorable spin state, (S = 5/2 for most Mn2+ complexes), long 

longitudinal electronic relaxation times, and fast water exchange rates.18 Moreover, 

manganese is generally considered to be less toxic because it is an endogenous metal ion and 

is quickly cleared via hepatobiliary excretion.19,20 However, like any metal ion complexes 

injected in relatively high doses, Mn-complexes also have limitations. For example, if Mn2+ 

dissociates from a chelating ligand, free Mn2+ can catalyze the formation of reactive oxygen 

species (ROS) and reactive nitrogen species (RNS),21–23 and some Mn2+ complexes have 

been shown to mimic mitochondrial manganese superoxide dismutase (MnSOD). The first 

and only Mn2+ complex approved for human injection, Mn(DPDP)3− (Teslascan), is no 

longer commercially available because of unfavorable side effects and subsequent lack of 

use.24–26 Historically, Mn2+ was one of the first paramagnetic ions considered for use as T1-

based CA for MRI but insufficient ligand field stabilization provided by most ligands makes 

the development of suitable manganese complexes for medical imaging quite challenging.27 

However, a renewed interest in Mn2+ has led to the development of newer types of ligands 

for optimal chelation, some derived from macrocyclic ligands and others from acyclic 

ligands. Both types vary in (i) thermodynamic stability, (ii) kinetic inertness, (iii) number of 

inner-sphere water molecules (q), (iv) water exchange rates (kex), (v) binding interactions 

with plasma proteins, (vi) oxidation (Mn2+/Mn3+), and (vii) general versatility.20,28–36 

Among the most promising Mn2+ chelates reported so far are those bearing picolyl 

coordinating groups attached to either a macrocyclic or acyclic amine.37,38 This is the case 

for Mn(N-picolyl-N,N′,N′-trans-1,2-cyclo-hexylenediaminetriacetate hydrate, [MnPyC3A·

(H2O)−], a recently reported complex having a r1 relaxivity comparable to commercially 

available GBCA that also displays rapid hepatobiliary/renal clearance in vivo and low 

toxicity.20 A peptide-conjugated version of this agent has also been used to target fibrin 

filaments in cardiac thrombus.20,39

Acyclic chelates such as in MnPyC3A·(H2O)− undergo transmetalation when challenged 

with excess ZnCl2 more easily than macrocyclic chelates but less easily when compared to 

linear GBCAs.20 Transmetalation by Zn2+ is thought to be one of the main mechanisms for 

the release of Gd3+ from linear amine-based GBCA. Given the widespread interest in 

responsive MR CAs for the detection of local changes in freely available Zn2+ in the brain,
40,41 pancreas,42–45 and prostate,46,47 it is important to design zinc-sensitive agents in which 

Zn2+ does not displace the paramagnetic ion from the agent itself.48–51 Our first zinc-

sensitive agent, GdDOTA—diBPEN, was a macrocyclic 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivative with two bispyridine 

(BPEN)-extended side chains for zinc recognition (Figure 1a).45 When exposed to Zn2+, the 

two BPEN moieties each bind a single Zn2+ ion and the resulting complex then forms a 

ternary complex with albumin. This protein interaction results in the reduced molecular 

rotation of the Gd3+ complex and a resulting increase in r1 relaxivity and an increase in MR 

signal intensity in T1-weighted images (Figure 1b). It was also shown that excess Zn2+ 

added to GdDOTA—diBPEN does not displace the Gd3+ ion from the macrocyclic ligand. 
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Given this prior information, we hypothesized that by conjugating a zinc recognition unit 

such as BPEN onto MnPyC3A, one might actually protect the Mn center against 

transmetalation by zinc while retaining the zinc-responsiveness of the agent.

We report here a comprehensive chemical–biophysical study of MnPyC3A–BPEN and 

demonstrate its potential as a zinc-sensitive MRI CA. Our overarching goal was to create an 

alternative to GdDOTA–diBPEN42,52 or GdDO3A–BPEN45 for the in vivo detection of 

glucose stimulated zinc secretion (GSZS) in the prostate and the pancreas by MRI. In vivo 
imaging comparisons of MnPyC3A–BPEN with GdDO3A–BPEN, a derivative bearing a 

single zinc binding side chain (Figure 1a), show that MnPyC3A–BPEN may indeed be a 

viable alternative for functional imaging of zinc secretion in both the mouse pancreas and 

prostate.

RESULTS

Synthesis.

Encouraged by the promising report of MnPyC3A·(H2O)− as an imaging probe, we sought 

to use this same synthon as the basis of a new zinc-sensitive MRI agent. The synthetic route 

to this new derivative is outlined in Scheme 1. Compound 1 was prepared using reported 

protocols.21 We took advantage of the pyridyl moiety to provide an easy and achiral means 

to incorporate the zinc binding moiety. The 5-position in the pyridyl moiety was 

functionalized for this purpose. N′,N′-bis(pyridine-2-ylmethyl)ethane-1,2-diamine (BPEN) 

was coupled to 1 followed by the de-protection of 2 which yielded 3 in reasonable yields. 

The zinc sensor MnPyC3A–BPEN was prepared by stirring 3 with MnCl2 at pH 6.5.

Relaxometry and Binding Characteristics.

The T1 relaxation efficiency of paramagnetic agents such as this are typically compared by 

their longitudinal relaxivity r1 values as defined by eq 1.

r1p = 1
[M]

1
T1obs − 1

T1dia (1)

For zinc-responsive agents like MnPyC3A–BPEN, one must consider the r1 values of several 

species including the agent itself, the binary MnPyC3A–BPEN·Zn2+ complex, and the 

ternary MnPyC3A–BPEN·Zn2+•albumin complex. The r1 values of MnPyC3A–BPEN ± 

Zn2+ and ±0.6 mM HSA are listed in Table 1 and compared with r1 values previously 

reported for GdDO3A–BPEN. The data show that the r1 of MnPyC3A–BPEN is slightly 

lower than GdDO3A–BPEN in the absence of Zn2+, increases only slightly in the presence 

of one equivalent of Zn2+ but increases by 4-fold in the presence of both Zn2+ and HSA. 

These results parallel the r1 changes previously reported for GdDO3A–BPEN. Although the 

relaxivity data reported in Table 1 are measured at 0.5T, these values are magnetic field 

dependent, especially for those agents that bind to larger macromolecules. For comparison, 

the relaxivity values measured at 9.4T are also reported in Table S1. Here, the differences 

between the binary (5.0 mM−1 s−1) and ternary complexes (5.4 mM−1 s−1) are less dramatic 
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but this small difference appears to be sufficient to detect release of Zn2+ in vivo (see 

below).

A titration of MnPyC3A–BPEN with Zn2+ showed that r1 increases with incremental 

addition of Zn2+ ions until a 1:1 complex is formed then levels off with further addition of 

Zn2+. The binding affinity of the BPEN unit on MnPyC3A–BPEN with Zn2+ was 

determined by competitive binding experiments with the Zn-sensitive fluorescence ligand, 

ZnAF–2F.42,45 These titrations yielded a dissociation constant of KD = 93 ± 4 nM for Zn2+ 

binding with MnPyC3A–BPEN (Figure S1). These data show that the BPEN moiety retains 

a high affinity for Zn2+ when conjugated to MnPyC3A.

The number of inner-sphere water molecules (q) and the water exchange rate (kex) in 

MnPyC3A–BPEN were determined by simultaneous analysis of 17O reduced T2 data.53–56 

These data, summarized in Table 2 and Table S2, indicate that MnPyC3A–BPEN has a 

single inner-sphere water coordination site with an exchange rate (kex = 0.7 ± 0.1 × 108 s−1) 

similar to that reported for MnPyC3A.20

Albumin Binding Studies.

Albumin, the most abundant protein in plasma, plays an important role in the transport of 

drugs and the delivery of essential poorly soluble molecules to cells. Free Zn2+ ions also 

have a high affinity (29.5 nM) binding site on albumin,57 an affinity about 3-fold stronger 

than the binding affinity between MnPyC3A–BPEN and Zn2+.42,58 This means that albumin 

must play a key role in the formation of the ternary complex involving Zn2+.45 At low-to-

medium magnetic fields, r1 is dominated by the rotational correlation time, τR, of the 

protein. This is clearly the case in our studies because r1 relaxivity of MnPyC3A–BPEN is 

amplified upon the addition of both Zn2+ and 600 μM human serum albumin (HSA) (Table 

1). In the presence of 600 μM HSA but no zinc, a modest increase in r1 was observed. This 

demonstrates that MnPyC3A–BPEN alone, unlike GdDOTA–diBPEN or GdDO3A–BPEN, 

interacts weakly with HSA even in the absence of Zn2+ ions. An alternative explanation 

might be that some Mn2+ is released from the chelate (transchelation) and bound to a metal 

ion binding site on HSA. The r1 data in general show that MnPyC3A–BPEN does respond to 

the presence of Zn2+ and HSA by showing an increase in r1 similar to that reported for 

GdDO3A–BPEN.52

The binding of MnPyC3A–BPEN·Zn2+ with HSA was evaluated using two different 

methods: (1) a proton relaxation enhancement (PRE) titration and fluorescence titrations 

using dansylglycine, a drug site 2 binding molecule (Figure 2a,b). The KD values obtained 

from these experiments yielded comparable binding affinities (Table 1). In a complex 

mixture containing a Mn-based zinc sensor, HSA, and Zn2+ ions, several species are present 

in the solution. The combined data suggest that HSA heavily mediates the amount of MnLx–

Zn2+–HSA present in this mixture. This is due to the fact that HSA is normally present at a 

higher concentration in the plasma compared to Zn2+ (<20 μM) and also has a higher affinity 

for Zn2+ in comparison to BPEN-based sensors such as these.42,57,59
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Kinetic Inertness.

PyC3A forms a complex with Mn2+ with moderate thermodynamic stability (log KMnL = 

14.14, pMn = 98.17).20 and one would predict that PyC3A would form even more stable 

complexes with Zn2+ and Cu2+ as predicted by Irving–Williams theory.60 Hence, the kinetic 

inertness of MnPyC3A–BPEN is quite important if one intends to use this agent as a reporter 

of Zn2+ release from tissues. To test this, the complex was first challenged by the addition of 

25-fold excess Zn2+ to MnPyC3A–BPEN at pH 6.0, 37 °C while monitoring changes in 

water proton r1 (Figure 2c). The data show that MnPyC3A–BPEN is quite inert to 

transmetalation by Zn2+ in comparison to GdDTPA which dissociates very quickly. A fit of 

these data to a pseudo-first-order kinetic model showed that MnPyC3A–BPEN was about 2-

fold more inert toward transmetalation by Zn2+ (k = 3.2 × 10−4 s−1) compared to the parent 

compound, MnPyC3A (k = 6.7 × 10−4 s−1). This suggests that the BPEN moiety provides 

some protection against transmetalation of Mn2+ by excess Zn2+ even though it binds only 

one equivalent of Zn2+ ions.

Similarly, relaxometric data on samples containing 0.1 mM MnPyC3A–BPEN or MnPyC3A 

plus 0.6 mM HSA show that the former complex was somewhat less susceptible to 

transchelation by albumin (Figure 2d). Using the relaxivity values in Table 1 and the 

reported relaxivity of Mn2+ bound to albumin (97 mM−1 s−1),61 the amount of Mn2+ 

transchelated from MnPyC3A to HSA was estimated at ~2% over 1 h and ~12% over 13 h. 

Similar experiments with MnPyC3A–BPEN showed that slightly less Mn2+ moves from the 

chelate to HSA over this same time period (~2% over 1 h and ~8% over 13 h). This effect 

was also observed by 17O NMR experiments which showed an increase in q = 2.5 ± 0.2 in 

the presence of 1 equiv of Zn2+ and excess HSA (Figure S2, Table S2). Data also suggest 

that the presence of zinc and HSA favorably impacts q and kex, and the different species 

present in the solution contribute to the overall observed r1 enhancement. Thus, it appears 

that having a BPEN moiety attached to the chelate protects against both transmetalation by 

Zn2+ and transchelation by HSA. The exact mechanism of this protection is yet to be 

investigated.

In Vivo MRI.

Several mouse imaging experiments were performed to evaluate the potential use of 

MnPyC3A–BPEN for detecting Zn2+ secretion from tissues in vivo by MRI. As shown 

previously, the pancreas co-releases insulin and Zn2+ after the bolus injection of glucose and 

that the increase in Zn2+ in the extracellular space of β-cells can be detected by MRI using a 

Gd-based zinc sensor. To date, this is the only reported method for imaging β-cell function 

in vivo.43,52 More recently, GSZS was also observed in the prostate of fasted mice by MRI.
46,62 Although the molecular mechanism of GSZS from healthy prostate cells remains to be 

fully elucidated, this response has been shown to be useful for distinguishing healthy versus 

malignant prostate cells.46,62,63 Figure 3a shows typical in vivo T1-weighted MRI images of 

mice before and after a bolus injection of MnPyC3A–BPEN plus glucose. Contrast 

enhancement was quite evident in the pancreas and prostate after a bolus of glucose and no 

significant increase in signal intensity was seen in these organs in control mice receiving 

saline instead of glucose (Figure S3). Furthermore, the administration of MnPyC3A plus 

glucose instead of MnPyC3A–BPEN plus glucose showed little to no contrast enhancement 
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in either tissue (Figure S4). Together these experiments highlight the specific interactions 

between secreted Zn2+, plasma albumin, and MnPyC3A–BPEN leading to the formation of 

the ternary complex. Conversely, MnPyC3A interacts only weakly with plasma proteins.20 

The % signal intensity gain after the injection of each agent in ROIs in the pancreas, 

prostate, kidneys, and liver normalized to muscle are shown in Figure 3b. These data show 

that significantly higher signal enhancement is observed after the injection of MnPyC3A–

BPEN versus MnPyC3A not only in those tissues known to release Zn2+ (pancreas and 

prostate) but also in the liver and kidneys. For comparison purposes, the area-under-the 

curve (AUC) over the first 16 min post CA injection (AUC0–16 min) for each tissue are 

compared in Figure 3b. These results indicate that after glucose stimulation, MnPyC3A–

BPEN induces a larger MR signal enhancement over the secretory period (0–16 min) in 

comparison to parent compound MnPyC3A. Figure 3b (inset) shows that the liver-to-kidney 

ratio for the two agents do not differ, consistent with equivalent excretion mechanisms for 

MnPyC3A–BPEN and MnPyC3A. Nevertheless, the observation that MnPyC3A–BPEN 

induces greater signal enhancement in all tissues compared to MnPyC3A delivered at the 

same dose indicates that MnPyC3A–BPEN circulates in all tissues as the higher relaxivity 

ternary MnPyC3A–BPEN·Zn2+·albumin species.

Tissue Bio-Distribution.

Additional tissue biodistribution studies were performed in mice after the injection of 

MnPyC3A–BPEN. In these studies, either 0.07 mmol/kg MnPyC3A–BPEN, 0.04 mmol/kg 

MnCl2, or saline were injected followed by an immediate injection of glucose. The kidney, 

brain, liver, heart, spleen, muscle, pancreas, and prostate were resected at either 15 or 90 min 

postinjection to monitor short-versus long-term accumulation and excretion. After tissue 

digestion, total Mn was measured by ICP–MS (Figure 4). In the MnCl2 group, significant 

Mn was found in the kidney, liver, heart, and pancreas at 15 min postinjection but little at 90 

min (Figure 4b), consistent with a previous report.20 In the MnPyC3A–BPEN group, about 

2- to 3-fold less Mn was found in any of these same tissues at 15 min postinjection, with the 

most found in the kidney and liver. At 90 min, the amount of Mn in the kidney and liver was 

reduced by ~60%. No significant Mn was found in the heart tissue in the MnPyC3A–BPEN 

group, consistent with stable chelation of Mn throughout. Given that the tissue 

biodistribution data showed comparable amounts of Mn in the kidney and liver after the 

injection of MnPyC3A–BPEN, this indicates that the excretion pathway is about 50% biliary 

and 50% renal. To evaluate this further, a separate cohort of mice were imaged serially after 

receiving 0.07 mmol/kg MnPyC3A–BPEN plus glucose. Figure 5a (left) shows coronal 

images of a mouse prior to and at 90 min postinjection. These images show once again that 

the agent is largely cleared from all tissues, including the kidney and liver, at 90 min but the 

gallbladder remained hyperintense consistent with hepatobiliary excretion of MnPyC3A–

BPEN. Dynamic quantitative excretion information was obtained by analyzing the change in 

signal intensity in the respective excretory organs (Figure 5b). The signal change in the 

kidneys showed a maximum at 27 min postinjection, and only 25% of that signal was lost 

due to excretion after 90 min. On the other hand, the change in the liver signal postinjection 

also showed a maximum at 27 min, but at 90 min–89% of the signal was reduced because of 

the excretion of the compound and accumulation in the gallbladder. The gallbladder signal 

gradually increased and reached a plateau starting at 60 min and ending with a signal change 
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of 242 ± 68% after 90 min. To evaluate the integrity of MnPyC3A–BPEN after excretion via 
the two pathways, we collected bile from the gallbladder or duodenum and urine from the 

bladder 90 min postinjection. The LC–MS elution profiles of samples of bile and urine 

collected 90 min postinjection are shown in Figure 5c. The gallbladder showed an intense 

MR signal in T1-weighted scans, and the bile LC–MS trace shows a peak at an elution time 

of ~11 min where the mass coincides with that of intact MnPyC3A–BPEN. Similarly, the 

LC–MS profile of urine showed a peak at ~14 min consistent with intact MnPyC3A–BPEN. 

To validate that the peaks we were observing were indeed the intact compound, we 

measured the Mn concentration collected from urine and bile 90 min post i.v. injection of 

MnPyC3A–BPEN by inductively coupled plasma mass spectrometry. Naïve urine and bile 

(see Figure S5 for chromatogram) were then spiked with an authentic sample of the original 

compound. The LC–MS chromatograms of spiked urine and bile both are consistent with the 

intact compound seen in the samples collected from urine and bile illustrated in Figure 5c. 

These results suggest that MnPyC3A–BPEN is largely excreted via renal filtration and 

hepatobiliary pathways as the intact complex.

DISCUSSION

In this study, the well-described zinc binding unit, BPEN, was attached to a previously 

reported stable Mn2+ complex, MnPyC3A,20 and the resulting complex was evaluated as a 

responsive MR imaging agent for the detection of Zn2+ released from the tissue in vivo. This 

responsive agent, like prior Gd-based zinc-responsive agents, showed only a modest increase 

in r1 relaxivity in the presence of Zn2+ or HSA alone, but when both were present, a ternary 

complex is formed and r1 is significantly increased. Although the primary protein 

contributing to the increase in relaxivity in this work is albumin, it is important to denote 

that other noncovalent interactions with proteins found in the plasma may also contribute to 

the relaxivity increase. The goal of this study was (1) to create a Mn-based Zn2+-responsive 

MRI CA, (2) to demonstrate its utility in vivo for detection of Zn2+ secretion from tissues in 

live animals, (3) to evaluate the stability of MnPyC3A–BPEN against transmetalation by 

Zn2+, and (4) to determine the tissue biodistribution and excretion pathways of this new 

agent. The results show that MnPyC3A–BPEN not only detects Zn2+ secretion from the 

pancreas and prostate in mice by MRI but the BPEN unit also increases the kinetic inertness 

of the complex toward transmetalation by Zn2+ and transchelation by HSA. T1-weighted 

MR images of live animals showed contrast enhancement in the pancreas and prostate only 

after the injection of glucose to stimulate Zn2+ secretion from these tissues, similar to the 

contrast observed previously with the most effective Gd-based Zn2+-responsive agents.
45,46,52 Moreover, the tissue-biodistribution and excretory characterization studies both 

indicate that MnPyC3A–BPEN is excreted intact via both renal filtration and hepatobiliary 

clearance pathways. The later clearance pathway may reflect a combination of its slightly 

more lipophilic character64 plus its negative charge for transport into hepatocytes by a 

family of organic anion transporting proteins expressed on the sinusoidal membrane of 

hepatocytes.65

Possible limitations include: (1) the consideration that when using Zn2+ as a biomarker for 

malignant transformations, tissues may exhibit aberrant pH or oxygenation levels potentially 

altering the binding to the compound and thus the ternary complex and (2) the use of only 
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male animals in the imaging studies. We observed that in pH aberrant environments (pH 6 or 

8) the binding mechanism to Zn2+ may be slightly affected (Table S1) and should be 

considered when imaging zinc content and secretion in cancer tissues. Although there could 

potentially be gender differences in the secretory capacity of the pancreas, we used only 

male mice here so that both the pancreas and prostate could be studied in the same imaging 

setting. Given current concerns about the use of Gd-based CAs in humans,14 hopefully, this 

study will help advance discoveries of other Mn-based Zn2+-responsive MRI agents for 

imaging glucose-stimulated zinc secretion in different organs so that one can image the 

pathological effects associated with dysregulation in Zn2+ homeostasis.

CONCLUSIONS

In summary, MnPyC3A–BPEN offers an alternative to similar Gd-based zinc-sensitive MRI 

CAs for the in vivo detection of GSZS from pancreatic β-cells and from the prostate by 

MRI. This new sensor also offers superior kinetic inertness toward Zn2+ transmetalation 

compared to other GBCAs based upon linear amine ligand platforms. Given that MnPyC3A 

appears to be moving toward clinical trials as an alternative to GBCA,66 MnPyC3A–BPEN 

may also have a translational value for the early detection of prostate cancer and for 

monitoring β-cell function during the development of type 2 diabetes.

EXPERIMENTAL SECTION

Synthesis.

Refer to Scheme S1 for structures. To a stirred solution of 1 (0.592 g, 1 mmol), (7-

azabenzotriazolyl-1-yloxy)trispyrrilodino phosphonium hexaflurophosphate (1.042 g, 2 

mmol) and N,N-diisopropylethylamine (1.29 g.10 mmol) in 5 mL of anhydrous N,N-

dimethylformamide was added N′,N′-bis(pyridine-2-ylmethyl)ethane-1,2-diamine (0.482 g, 

2 mmol). The mixture was stirred at room temperature for 2 h; 100 mL of dichloromethane 

was added and washed with water (50 mL × 3) followed by brine (100 mL). The organic 

layer was dried over Na2SO4 and concentrated to a brown oil. The crude product was 

purified by flash chromatography (alumina, 5% MeOH in dichloromethane) to yield 0.490 

(58.7%) g of 2 as a pale brown oil. 1H NMR CDCl3 400 MHz δ: 9.15 (1H, s), 8.71 (3H, m), 

8.12 (3H, t), 7.84 (2H, d), 7.60 (2H, m), 4.24 (CH2NCH2C, 8H, s), 3.11 (NCH2, 10H, m), 

2.99 (CH2CHN, 4H), 1.79 (OCCH3, 21H, m), 1.35 (NCHCH2, 8H, s); 13C NMR CDCl3 100 

MHz δ: 168.8, 168.0 (CONH), 159.4, 159.0, 152.0, 143.0, 142.9, 129.8, 125.9, 124.3, 123.3 

(CH–Py), 81.7 (CCH3), 62.6, 60.9, 55.4, 52.8 (NCH2), 26.9,25.3 (CCH3), 24.2, 23.6 (CH2). 

ESIMS positive mode m/z 816.1 [M + H]+ calculated for M + H+ C45H66N7O7 m/z 816.5.

Compound 2 (0.204 g. 0.25 mmol) was stirred in 5 mL 3N HCl for 48 h. Acid was removed 

in vacuo and the residue lyophilized to yield compound 3 as an off white solid in 

quantitative yield. (0.16 g). 1H NMR CDCl3 400 MHz δ: 9.01 (1H, s), 8.65 (3H, d), 8.40 

(3H, t), 7.98 (2H, d), 7.87 (2H, m), 4.25 (8H, s), 3.55 (6H, m), 2.91 (2H, m), 2.22 (2H, m), 

1.80 (2H, m), 1.38 (2H, m), 1.23 (2H, m); 13C NMR CDCl3 100 MHz δ: 169.8, 165.9, 

159.4, 159.0, 152.4, 147.2, 141.3, 127.1, 126.3, 117.7, 114.8, 62.6, 55.3, 53.3, 37.4, 26.9, 

24.2, 23.6. ESIMS positive mode m/z 648.0 [M + H]+ calculated for M + H+ C33H42N7O7 

m/z 648.3.
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Free ligand 3 (0.194 g 0.3 mmol) was dissolved in 5 mL of water and pH adjusted to 6.5, 

and MnCl2.4H2O (0.059 g. 0.3 mmol) was added and pH re-adjusted to 6.5. The complex 

formation was monitored using LC–MS. The mixture was purified on a RP–HPLC C18 

column using 50 mM ammonium acetate buffer at pH 6.5 and acetonitrile containing 5% 50 

mM ammonium acetate buffer at pH 6.5 as the mobile phase to get 0.165 g (78.5%) of 

Mn(3). Mn2+content: 6.6% by ICP–OES; ESIMS positive mode m/z 701.0 [M + 2H]+ 

calculated for M + 2H+ C33H40N7O7Mn m/z 701.3.

In Vivo MRI.

All animal experiments were carried out following UT Southwestern guidelines for animal 

handling provided by the institutional animal care and use committee. Fasted male C57Bl6 

mice were imaged at 4.7 T(Figure S3) and 9.4 T(Figure S4) using Varian/Agilent scanners. 

Mice were anesthetized with 2–5% isofluorane/oxygen mixture and their body temperature 

was maintained at 37 °C using a heated airflow. Two ge3d T1-weighted scans were obtained 

as a baseline (TE/TR = 1.69/3.35 ms, average = 4, θ = 20°, matrix 128 × 128 × 128). Mice 

then received 0.07 mmol/kg of either (1) MnPyC3A–BPEN plus 2.2 mmol/kg D-glucose i.p, 

(2) MnPyC3A×BPEN plus saline, and (3) MnPyC3A i.v. plus 2.2 mmol/kg D-glucose i.p. 

Following the administration of CAs, sequential 3d T1-weighted scans were obtained for 30 

(N = 3) or 90 min (N = 4) until clearance of the agent was evident. Using ImageJ, the organs 

of interest were identified and ROIs were measured and normalized against ROIs drawn and 

measured from the back muscle found in same slice and time point. The change in the MR 

signal intensity is reported as a percentage compared to pre-injection scans. The area under 

the curve was measured over a period of 1–16 min postcontrast administration using 

GraphPad Prism 7 software, statistical significance was evaluated using unpaired two-tailed 

t-tests to compare between agents, p-values < 0.05 were considered significant.

Biodistribution by ICP–MS and LC–MS.

Biodistribution studies were performed in mice fasted for at least 12 h by injecting 0.07 

mmol/kg of Mn(PyC3A–BPEN), 0.04 mmol/kg MnCl2, or saline i.v. followed by an 

immediate injection of 2.2 mmol/kg D-glucose i.p. The kidney, brain, liver, heart, spleen, 

muscle, pancreas, and prostate were resected 15 and 90 min postinjection to monitor long-

term accumulation/excretion. The tissue was digested by dissolving in 2 mL of freshly 

prepared aqua regia (1:3 mixture of nitric acid and hydrochloric acid) and lysing for 24 h. 

The lysed tissue samples were heated at 120 °C till the aqua regia evaporated. The residual 

digested tissue was dissolved in 0.5N HCl by sonicating for 30 min. The samples were 

centrifuged at 4000g for 5 min to eliminate any residues. The resultant sample solutions (10 

μL) were diluted up to 5 mL with 4% HNO3 and analyzed by ICP–MS for Mn2+ ion 

concentration. Along with collecting tissue, urine and bile were collected by carefully 

extracting at least 20 μL of fluid from both organs using a 30 G needle and a 1 mL syringe. 

The fluids were immediately inserted into a LC–MS and the traces were obtained. 

Additionally, Mn concentration was obtained by ICP–MS. The bile and urine of animals 

receiving only saline i.v. and 2.2 mmol/Kg D-glucose i.p. were collected for LC–MS trace 

composition analysis of background fluid. Naïve urine and bile were spiked with 

Mn(PyC3A–BPEN) at the concentrations obtained from ICP–MS of the injected animals. 
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These spiked fluids were then inserted into a LC–MS and the traces were obtained and 

compared.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Chemical structures and mechanisms for sensitive detection of Zn2+ in tissues. (a) 

GdDOTA–diBPEN, GdDO3A–BPEN, the parent MnPyC3A compound, and MnPyC3A–

BPEN. (b) Mechanism of contrast enhancement involves binding of Zn2+ to the agent, 

followed by the agent-Zn2+ complex forming a ternary complex with albumin.
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Figure 2. 
Relaxometry and binding characteristics of MnPyC3A-BPEN. (a) PRE titrations of 

MnPyC3A–BPEN (0.1 mM) as a function of increasing [HSA]. [Zn2+] was held constant 

(0.6 mM, equal to the highest concentration of HSA) in each titration. All measurements 

were performed at 20 MHz, 310 K in 100 mM Tris buffer at pH 7. (b) Competition binding 

curve for the determination of the MnPyC3A–BPEN·Zn2+ binding dissociation constants 

with HSA with dansylglycine (drug site 2) and warfarin (drug site 1). (c) Transmetalation 

studies. MnPyC3A–BPEN and GdDTPA were separately incubated with 25 mol excess Zn2+ 

at pH = 6 and the T1 of water protons was measured using a mq60 relaxometer (B0 = 1.5 T) 

over 210 min. The fitted lines reflect pseudo-first order rate constants for the dissociation of 

free Gd3+ from GdDTPA and free Mn2+ from MnPyC3A–BPEN. (d) Evolution of the 

relative water proton paramagnetic relaxation rate of 0.1 mM aqueous solutions of 

MnPyC3A–BPEN (■) or MnPyC3A (●) in the presence of 0.6 mM of HSA. The plots show 

changes in R1 (at 23 MHz) for 1 mM samples of each agent over time, pH 7.2 in TRIS 

buffer, 310 K. The concentration labels reflect the calculated [Mn2+] transchelated from each 

complex to HSA.
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Figure 3. 
Imaging Zn2+ secretion from tissues in vivo by MRI at 9.4 T. (a) T1-weighted images (3D 

gradient echo TE/TR = 1.69/3.35 ms, averages = 4, θ = 20°) of fasted C57Bl6 male mice 

after receiving 0.07 mmol/kg MnPyC3A–BPEN i.v. and 2.2 mmol/kg glucose i.p. to 

stimulate the release of zinc from secretory organs. (b) Quantitative changes in signal 

intensity in each organ normalized to muscle after administration of 0.07 mmol/kg 

MnPyC3A–BPEN or non-zinc sensitive control MnPyC3A i.v. and 2.2 mmol/kg glucose i.p. 

(N = 3). Integrated normalized signal intensity profiles as AUC0–16 min for each agent and 

each organ. Bars represent standard error of the mean; *p value < 0.05, **p value < 0.01.
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Figure 4. 
Manganese content as measured by ICP–MS in organs of mice after receiving either (a) 

MnPyC3A–BPEN plus glucose or (b) MnCl2 plus glucose. Animals were sacrificed 15 or 90 

min postinjection (N = 3 each group). *p < 0.05.
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Figure 5. 
MnPyC3A–BPEN excretion profiles. (a) Coronal T1-weighted MR images of a mouse pre- 

and 90 min postinjection of MnPyC3A–BPEN plus glucose. (b) MR signal intensity 

normalized to muscle for the kidney, liver, and gallbladder as a function of time (N = 4). (c) 

LC–MS chromatogram of urine and bile collected 90 min postinjection. (d) LC–MS 

chromatogram of urine and bile before and after spiking with MnPyC3A–BPEN at 

concentrations measured in urine and bile samples collected 90 min post i.v. injection.
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Scheme 1. 
Preparation of MnPyC3A–BPEN (a) (7-Azabenzotriazol-1-

yloxy)tripyrrolidinophosphonium Hexafluorophosphate (PyAOP), DMF, DIPEA, BPEN, (b) 

3 M HCl, and (c) MnCl2, pH 6.5
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