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Abstract

In observational studies, potential confounders may distort the causal relationship between an 

exposure and an outcome. However, under some conditions, a causal dose-response curve can be 

recovered using the G-computation formula. Most classical methods for estimating such curves 

when the exposure is continuous rely on restrictive parametric assumptions, which carry 

significant risk of model misspecification. Nonparametric estimation in this context is challenging 

because in a nonparametric model these curves cannot be estimated at regular rates. Many 

available nonparametric estimators are sensitive to the selection of certain tuning parameters, and 

performing valid inference with such estimators can be difficult. In this work, we propose a 

nonparametric estimator of a causal dose-response curve known to be monotone. We show that our 

proposed estimation procedure generalizes the classical least-squares isotonic regression estimator 

of a monotone regression function. Specifically, it does not involve tuning parameters, and is 

invariant to strictly monotone transformations of the exposure variable. We describe theoretical 

properties of our proposed estimator, including its irregular limit distribution and the potential for 

doubly-robust inference. Furthermore, we illustrate its performance via numerical studies, and use 

it to assess the relationship between BMI and immune response in HIV vaccine trials.

1 Introduction

1.1 Motivation and literature review

Questions regarding the causal effect of an exposure on an outcome are ubiquitous in 

science. If investigators are able to carry out an experimental study in which they randomly 

assign a level of exposure to each participant and then measure the outcome of interest, 

estimating a causal effect is generally straightforward. However, such studies are often not 

feasible, and data from observational studies must be relied upon instead. Assessing 

causality is then more difficult, in large part because of potential confounding of the 

relationship between exposure and outcome. Many nonparametric methods have been 

proposed for drawing inference about a causal effect using observational data when the 

exposure of interest is either binary or categorical – these include, among others, inverse 
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probability weighted (IPW) estimators (Horvitz and Thompson, 1952), augmented IPW 

estimators (Scharfstein et al., 1999; Bang and Robins, 2005), and targeted minimum loss-

based estimators (TMLE) (van der Laan and Rose, 2011).

In practice, many exposures are continuous, in the sense that they may take any value in an 

interval. A common approach to dealing with such exposures is to simply discretize the 

interval into two or more regions, thus returning to the categorical exposure setting. 

However, it is frequently of scientific interest to learn the causal dose-response curve, which 

describes the causal relationship between the exposure and outcome across a continuum of 

the exposure. Much less attention has been paid to continuous exposures. Robins (2000) and 

Zhang et al. (2016) studied this problem using parametric models, and Neugebauer and van 

der Laan (2007) considered inference on parameters obtained by projecting a causal dose-

response curve onto a parametric working model. Other authors have taken a nonparametric 

approach instead. Rubin and van der Laan (2006) and Díaz and van der Laan (2011) 

discussed nonparametric estimation using flexible data-adaptive algorithms. Kennedy et al. 

(2017) proposed an estimator based on local linear smoothing. Finally, van der Laan et al. 

(2018) recently presented a general framework for inference on parameters that fail to be 

smooth enough as a function of the data-generating distribution and for which regular root-n 
estimation theory is therefore not available. This is indeed the case for the causal dose-

response curve, and van der Laan et al. (2018) discussed inference on such a parameter as a 

particular example.

Despite a growing body of literature on nonparametric estimation of causal dose-response 

curves, to the best of our knowledge, existing methods do not permit valid large-sample 

inference and may be sensitive to the selection of certain tuning parameters. For instance, 

smoothing-based methods are often sensitive to the choice of a kernel function and 

bandwidth, and these estimators typically possess non-negligible asymptotic bias, which 

complicates the task of performing valid inference.

In many settings, it may be known that the causal dose-response curve is monotone in the 

exposure. For instance, exposures such as daily exercise performed, cigarettes smoked per 

week, and air pollutant levels are all known to have monotone relationships with various 

health outcomes. In such cases, an extensive literature suggests that monotonicity may be 

leveraged to derive estimators with desirable properties – the monograph of Groeneboom 

and Jongbloed (2014) provides a comprehensive overview. For example, in the absence of 

confounding, isotonic regression may be employed to estimate the causal dose-response 

curve (Barlow et al., 1972). The isotonic regression estimator does not require selection of a 

kernel function or bandwidth, is invariant to strictly increasing transformations of the 

exposure, and upon centering and scaling by n−1/3, converges in law pointwise to a 

symmetric limit distribution with mean zero (Brunk, 1970). The latter property is useful 

since it facilitates asymptotically valid pointwise inference.

Nonparametric inference on a monotone dose-response curve when the exposure-outcome 

relationship is confounded is more difficult to tackle and is the focus of this manuscript. To 

the best of our knowledge, this problem has not been comprehensively studied before.
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1.2 Parameter of interest and its causal interpretation

The prototypical data unit we consider is O = (Y, A, W), where Y is a response, A a 

continuous exposure, and W a vector of covariates. The support of the true data-generating 

distribution P0 is denoted by O = Y × A × W, where Y ⊆ ℝ, A ⊆ ℝ is an interval, and 

W ⊆ ℝp. Throughout, the use of subscript 0 refers to evaluation at or under P0. For example, 

we write θ0 and FP0 to denote θP0 and FP0, respectively, and E0 to denote expectation under 

P0.

Our parameter of interest is the so-called G-computed regression function from A to ℝ, 

defined as

a θ0(a) ≔ E0 [E0 (Y ∣ A = a, W )],

where the outer expectation is with respect to the marginal distribution Q0 of W. In some 

scientific contexts, θ0(a) may have a causal interpretation. Adopting the Neyman-Rubin 

potential outcomes framework, for each a ∈ A, we denote by Y(a) a unit’s potential outcome 

under exposure level A = a. The causal parameter m0(a) := E0 [Y (a)] corresponds to the 

average outcome under assignment of the entire population to exposure level A = a. The 

resulting curve m0 : A → ℝ is what we formally define as the causal dose-response curve. 

Under varying sets of causal conditions, m0(a) may be identified with functionals of the 

observed data distribution, such as the unadjusted regression function r0(a) := E0 (Y ∣ A = a) 

or the G-computed regression function θ0(a).

Suppose that (i) each unit’s potential outcomes are independent of all other units’ exposures; 

and (ii) the observed outcome Y equals the potential outcome Y(A) corresponding to the 

exposure level A actually received. Identification of m0(a) further depends on the 

relationship between A and Y(a). If (i) and (ii) hold, and in addition, (iii) A and Y (a) are 

independent, and (iv) the marginal density of A is positive at a, then m0(a) = r0(a). Condition 

(iii) typically only holds in experimental studies (e.g., randomized trials). In observational 

studies, there are often common causes of A and Y(a) – so-called confounders of the 

exposure-outcome relationship – that induce dependence. In such cases, m0(a) and r0(a) do 

not generally coincide. However, if W contains a sufficiently rich collection of confounders, 

it may still be possible to identify m0(a) from the observed data. If (i) and (ii) hold, and in 

addition, (v) A and Y(a) are conditionally independent given W, and (vi) the conditional 

density of A given W is almost surely positive at A = a, then m0(a) = θ0(a). This is a 

fundamental result in causal inference (Robins, 1986; Gill and Robins, 2001). Whenever 

m0(a) = θ0(a), our methods can be interpreted as drawing inference on the causal dose-

response parameter m0(a).

We note that the definition of the counterfactual outcome Y(a) presupposes that the 

intervention setting A = a is uniquely defined. In many situations, this stipulation requires 

careful thought. For example, in Section 6 we consider an application in which body mass 

index (BMI) is the exposure of interest. There is an ongoing scientific debate about whether 

such an exposure leads to a meaningful causal interpretation, since it is not clear what it 

means to intervene on BMI.
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Even if the identifiability conditions stipulated above do not strictly hold or the scientific 

question is not causal in nature, when W is associated with both A and Y, θ0(a) often has a 

more appealing interpretation than the unadjusted regression function r0(a). Specifically, 

θ0(a) may be interpreted as the average value of Y in a population with exposure fixed at A 
= a but otherwise characteristic of the study population with respect to W. Because θ0(a) 

involves both adjustment for W and marginalization with respect to a single reference 

population that does not depend on the value a, the comparison of θ0(a) over different values 

of a is generally more meaningful than for r0(a).

When P0(A = a) = 0, the parameter P ↦ θP(a) is not pathwise differentiable at P0 with 

respect to the nonparametric model (Díaz and van der Laan, 2011). Heuristically, due to the 

continuous nature of A, θP(a) corresponds to a local feature of P. As a result, regular root-n 
rate estimators cannot be expected, and standard methods for constructing efficient 

estimators of pathwise differentiable parameters in nonparametric and semiparametric 

models (e.g., estimating equations, one-step estimation, targeted minimum loss-based 

estimation) cannot be used directly to target and obtain inference on θ0(a).

1.3 Contribution and organization of the article

We denote by FP : A ℝ the distribution function of A under P, by ℱθ the class of non-

decreasing real-valued functions on A, and by ℱF  the class of strictly increasing and 

continuous distribution functions supported on A. The statistical model we will work in is 

ℳ ≔ {P :θP ∈ ℱθ, FP ∈ ℱF}, which consists of the collection of distributions for which θP 

is non-decreasing over A and the marginal distribution of A is continuous with positive 

Lebesgue density over A.

In this article, we study nonparametric estimation and inference on the G-computed 

regression function a ↦ θ0(a) = E0 [E0 (Y ∣ A = a, W)] for use when A is a continuous 

exposure and θ0 is known to be monotone. Specifically, our goal is to make inference about 

θ0(a) for a ∈ A using independent observations O1, O2, … ,On drawn from P0 ∈ ℳ. This 

problem is an extension of classical isotonic regression to the setting in which the exposure-

outcome relationship is confounded by recorded covariates – this is why we refer to the 

method proposed as causal isotonic regression. As mentioned above, to the best of our 

knowledge, nonparametric estimation and inference on a monotone G-computed regression 

function has not been comprehensively studied before. In what follows, we:

1. show that our proposed estimator generalizes the unadjusted isotonic regression 

estimator to the more realistic scenario in which there is confounding by 

recorded covariates;

2. investigate finite-sample and asymptotic properties of the proposed estimator, 

including invariance to strictly increasing transformations of the exposure, 

doubly-robust consistency, and doubly-robust convergence in distribution to a 

non-degenerate limit;

3. derive practical methods for constructing pointwise confidence intervals, 

including intervals that have valid doubly-robust calibration;
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4. illustrate numerically the practical performance of the proposed estimator.

We note that in Westling and Carone (2019), we studied estimation of θ0 as one of several 

examples of a general approach to monotonicity-constrained inference. Here, we provide a 

comprehensive examination of estimation of a monotone dose-response curve. In particular, 

we establish novel theory and methods that have important practical implications. First, we 

provide conditions under which the estimator converges in distribution even when one of the 

nuisance estimators involved in the problem is inconsistent. This contrasts with the results in 

Westling and Carone (2019), which required that both nuisance parameters be estimated 

consistently. We also propose two estimators of the scale parameter arising in the limit 

distribution, one of which requires both nuisance estimators to be consistent, and the other of 

which does not. Second, we demonstrate that our estimator is invariant to strictly monotone 

transformations of the exposure. Third, we study the joint convergence of our proposed 

estimator at two points, and use this result to construct confidence intervals for causal 

effects. Fourth, we study the behavior of our estimator in the context of discrete exposures. 

Fifth, we propose an alternative estimator based on cross-fitting of the nuisance estimators, 

and demonstrate that this strategy removes the need for empirical process conditions 

required in Westling and Carone (2019). Finally, we investigate the behavior of our estimator 

in comprehensive numerical studies, and compare its behavior to that of the local linear 

estimator of Kennedy et al. (2017).

The remainder of the article is organized as follows. In Section 2, we concretely define the 

proposed estimator. In Section 3, we study theoretical properties of the proposed estimator. 

In Section 4, we propose methods for pointwise inference. In Section 5, we perform 

numerical studies to assess the performance of the proposed estimator, and in Section 6, we 

use this procedure to investigate the relationship between BMI and immune response to HIV 

vaccines using data from several randomized trials. Finally, we provide concluding remarks 

in Section 7. Proofs of all theorems are provided in Supplementary Material.

2 Proposed approach

2.1 Review of isotonic regression

Since the proposed estimator of θ0(a) builds upon isotonic regression, we briefly review the 

classical least-squares isotonic regression estimator of r0(a). The isotonic regression rn of 

Y1, Yn, … , Yn on A1, A2, …, An is the minimizer in r of ∑i = 1
n [Y i − r(Ai)]2 over all 

monotone non-decreasing functions. This minimizer can be obtained via the Pool Adjacent 

Violators Algorithm (Ayer et al., 1955; Barlow et al., 1972), and can also be represented in 

terms of greatest convex minorants (GCMs). The GCM of a bounded function f on an 

interval [a, b] is defined as the supremum over all convex functions g such that g ≤ f. Letting 

Fn be the empirical distribution function of A1, A2, … , An, rn(a) can be shown to equal the 

left derivative, evaluated at Fn(a), of the GCM over the interval [0,1] of the linear 

interpolation of the so-called cusum diagram

1
n i, ∑

j = 0

i
Y (i)

∗ : i = 0, 1, …, n ,
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where Y (0)
∗  := 0 and Y (i)

∗  is the value of Y corresponding to the observation with ith smallest 

value of A.

The isotonic regression estimator rn has many attractive properties. First, unlike smoothing-

based estimators, isotonic regression does not require the choice of a kernel function, 

bandwidth, or any other tuning parameter. Second, it is invariant to strictly increasing 

transformations of A. Specifically, if H : A → ℝ is a strictly increasing function, and rn∗ is 

the isotonic regression of Y1, Y2, … , Yn on H(A1), H(A2), …, H(An), it follows that 

rn∗ = rn ∘ H−1. Third, rn is uniformly consistent on any strict subinterval of A. Fourth, 

n1/3[rn(a) – r0(a)] converges in distribution to [4r0′ (a)σ0
2(a) ∕ f0(a)]1/3 W for any interior point 

a of A at which r0′ (a), f0(a) ≔ F0′ (a) and σ0
2(a) ≔ E0{[Y − r0(a)]2 ∣ A = a} exist, and are 

positive and continuous in a neighborhood of a. Here, W ≔ argmaxu ∈ ℝ{Z0(u) − u2}, where 

Z0 denotes a two-sided Brownian motion originating from zero, and is said to follow 

Chernoff’s distribution. Chernoff’s distribution has been extensively studied: among other 

properties, it is a log-concave and symmetric law centered at zero, has moments of all 

orders, and can be approximated by a N(0, 0.52) distribution (Chernoff, 1964; Groeneboom 

and Wellner, 2001). It appears often in the limit distribution of monotonicity-constrained 

estimators.

2.2 Definition of proposed estimator

For any given P ∈ ℳ, we define the outcome regression pointwise as μP(a, ω) := EP (Y ∣ A = 

a, W = ω), and the normalized exposure density as gP(a, w) ≔ πP(a ∣ w) ∕ fP(a), where πP(a 

∣ ω) is the evaluation at a of the conditional density function of A given W = ω and fP  is the 

marginal density function of A under P. Additionally, we define the pseudo-outcome 

ξμ,g,Q(y, a, ω) as

ξμ, g, Q(y, a, w) ≔ y − μ(a, w)
g(a, w) + ∫ μ(a, z)Q(dz) .

As noted by Kennedy et al. (2017), E0 [ξμ,g,Q0 (Y, A, W) ∣ A = a] = θ0(a) if either μ = μ0 or 

g = g0. They used this fact to motivate an estimator θn,h(a) of θ0(a), defined as the local 

linear regression with band-width h > 0 of the pseudo-outcomes ξμn,gn,Qn (Y1, A1, W1), 

ξμn,gn,Qn(Y2,A2,W2), …, ξμn,gn,Qn(Yn, An, Wn)on A1, A2, …, An, where μn is an estimator 

of μ0, gn is an estimator of g0, and Qn is the empirical distribution function based on W1, 

W2, …, Wn. The study of this nonparametric regression problem is not standard because 

these pseudo-outcomes are dependent when the nuisance function estimators μn and gn are 

estimated from the data. Nevertheless, Kennedy et al. (2017) showed that their estimator is 

consistent if either μn or gn is consistent. Additionally, under regularity conditions, they 

showed that if both nuisance estimators converge fast enough and the bandwidth ℎn
∗ tends to 

zero at rate n−1/5, then n2/5 [θn, ℎn∗(a) − θ0(a)] d N(b0(a), v0(a)) where b0(a) is an asymptotic 

bias depending on the second derivative of θ0, and ν0(a) is an asymptotic variance.
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In our setting, θ0 is known to be monotone. Therefore, instead of using a local linear 

regression to estimate the conditional mean of the pseudo-outcomes, it is natural to consider 

as an estimator the isotonic regression of the pseudo-outcomes on A1, A2, … , An. Using the 

GCM representation of isotonic regression stated in the previous section, we can summarize 

our estimation procedure as follows:

1. Construct estimators μn and gn of μ0 and g0, respectively.

2. For each a in the unique values of A1, A2, …, An, compute and set

Γn(a) ≔ 1
n ∑

i = 1

n
I( − ∞, a](Ai)

Y i − μn(Ai, W i)
gn(Ai, W i)

+ 1
n2 ∑

i = 1

n
∑
j = 1

n
I( − ∞, a](Ai)μn(Ai,

W j) .
(1)

1. Compute the GCM Ψn of the set of points {(0,0)} ∪ {(Fn(Ai), Γn(Ai)) : i = 1, 2, 

… , n} over [0,1].

2. Define θn(a) as the left derivative of Ψn evaluated at Fn(a).

As in the work of Kennedy et al. (2017), while the proposed estimator θn can be defined as 

an isotonic regression, the asymptotic properties of our estimator do not appear to simply 

follow from classical results for isotonic regression because the pseudo-outcomes depend on 

the estimators μn, gn and Qn, which themselves depend on all the observations. However, θn 

is of generalized Grenander-type, and thus the asymptotic results of Westling and Carone 

(2019) can be used to study its asymptotic properties. To see that θn is a generalized 

Grenander-type estimator, we define ψP := θP o FP
−1 and note that since θP and FP

−1 are 

increasing, so is ψP. Therefore, the primitive function 

ΨP(t) ≔ ∫0
tψP(u)du = ∫−∞

FP
−1(t)θP(v)FP(dv) is convex. Next, we define ΓP := ΨP o FP, so that 

ΓP(a) = ∫−∞
a θP(u)FP(du) = ∫ ∫−∞

a μP(u, w)FP(du)QP(dw). The parameter ΓP(a0) is pathwise 

differentiable at P in ℳ for each a0, and its nonparametric efficient influence function

(y, a, w) I( − ∞, a0](a)
y − μP (a, w)

gP (a, w) + ∫−∞

a0
μP (u, w) FP (du) + I( − ∞, a0](a)θP (a) − 2ΓP (a0) .

Denoting by Pn any estimator of P0 compatible with estimators μn, gn, Fn and Qn of μ0, g0, 

F0 and Q0, respectively the one-step estimator of Γ0(a) is given by Γn(a) := Γμn,Fn,Qn(a) + 
1
n ∑i = 1

n ϕμn, gn, Fn, Qn, a
∗ (Oi) where we define Γμn, Fn, Qn(a) ≔ ∫ ∫−∞

a μn(u, w)Fn(du)Qn(dw). This 

one-step estimator is equivalent to that defined in (1). We then define Ψn ≔ Γn ∘ Fn
− for Fn

−

the empirical quantile function of A as our estimator of Ψ0, and ψn as the left derivative of 

the GCM of Ψn. Thus, we find that θn = ψn o Fn is the estimator defined in steps 1–4. This 

form of the estimator was described in Westling and Carone (2019), where it was briefly 

discussed as one of several examples of a general strategy for nonparametric monotone 

inference.
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If θ0(a) were only known to be monotone on a fixed sub-interval A0 ⊆ A, we would define 

FP(a) := P(A ≤ a ∣ A ∈ A0) as the marginal distribution function restricted to A0, and Fn as 

its empirical counterpart. Similarly, I(−∞,a](Ai) in (1) would be replaced with I( − ∞, a] ∩ A0
(Ai). In all other respects, our estimation procedure would remain the same.

Finally, as alluded to earlier, we observe that the proposed estimator generalizes classical 

isotonic regression in a way we now make precise. If it is known that A is independent of W 
(Condition 1), so that g0(a, ω) = 1 for all supported (a, ω), we may take gn = 1. If, 

furthermore, it is known that Y is independent of W given A (Condition 2), then we may 

construct μn such that μn(a, ω) = μn(a) for all supported (a, ω). Inserting gn = 1 and any such 

μn into (1), we obtain that Γn(a) = 1
n ∑i = 1

n I( − ∞, a](Ai)Y i and thus that θn(a) = rn(a) for each 

a. Hence, in this case, our estimator reduces to least-squares isotonic regression.

3 Theoretical properties

3.1 Invariance to strictly increasing exposure transformations

An important feature of the proposed estimator is that, as with the isotonic regression 

estimator, it is invariant to any strictly increasing transformation of A. This is a desirable 

property because the scale of a continuous exposure is often arbitrary from a statistical 

perspective. For instance, if A is temperature, whether A is measured in degrees Fahrenheit, 

Celsius or Kelvin does not change the information available. In particular, if the parameters 

θ0 and θ0
∗ correspond to using as exposure A and H(A), respectively, for H some strictly 

increasing transformation, then θ0 and θ0
∗ encode exactly the same information about the 

effect of A on Y after adjusting for W. It is therefore natural to expect any sensible estimator 

to be invariant to the scale on which the exposure is measured.

Setting X := H(A) for a strictly increasing function H :A ℝ, we first note that the function 

θ0
∗ : x ↦ E0 [E0 (Y ∣ X = x, W)] = θ0 o H−1(x) is non-decreasing. Next, we define 

μ0
∗(x, w) ≔ E0(Y ∣ X = x, W = w) and g0

∗(x, w) = π0
∗(x ∣ w) ∕ f0

∗(x), π0
∗(x ∣ w) is the evaluation 

at x of the conditional density function of X given W = w and f0
∗ is the marginal density 

function of X under P0, and we denote by μn∗ and gn∗ estimators of μ0
∗ and g0

∗, respectively. 

The estimation procedure defined in the previous section but using exposure X instead of A 

then leads to estimator θn
∗(x) ≔ ψn∗ ∘ Fn

∗(x), where Fn
∗ ≔ Fn ∘ H−1 is the empirical 

distribution function based on X1, X2, …, Xn, and ψn∗ is the left derivative of the GCM of 

Ψn
∗ ≔ Γn

∗ ∘ Fn
∗ −  for

Γn∗(x) ≔ 1
n ∑

i = 1

n
I( − ∞, x](Xi)

Yi − μn∗(Xi, W i)
gn∗(Xi, W i)

+ ∫−∞
x

μn∗(x, W i) Fn∗(dx)

= 1
n ∑

i = 1

n
I( − ∞, H−1(x)](Ai)

Yi − μn∗(H(Ai), W i)
gn∗(H(Ai), W i)

+ ∫−∞
H−1(x)

μn∗(H(a), W i) Fn∗(da) .
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If it is the case that μn∗(H(a), w) = μn(a, w) and gn∗(H(a), w) = gn(a, w), implying that nuisance 

estimators μn and gn are themselves invariant to strictly increasing transformation of A, then 

we have that Γn
∗ = Γn ∘ H−1, and so, Ψn

∗ = Γn ∘ H−1 ∘ H ∘ Fn = Ψ. It follows then that 

θn
∗ = θn ∘ H−1. In other words, the proposed estimator θn of θ0 is invariant to any strictly 

increasing transformation of the exposure variable.

We note that it is easy to ensure that μn∗(H(a), w) = μn(a, w) and gn∗(H(a), w) = gn(a, w). Set 

U := Fn(A), which is also equal to Fn
∗(X), and let μ̄n(u, w) be an estimator of the conditional 

mean of Y given (U, W) = (u,w). Then, taking μn(a, w) ≔ μ̄n(Fn(a), w), we have that 

μn∗(x, w) ≔ μ̄n(Fn
∗(x), w) satisfies the desired property. Similarly, letting ḡn(u, w) be an 

estimator of the conditional density of U = u given W = ω, and setting 

gn(a, w) ≔ ḡn(Fn(a), w), we may take gn∗(x, w) ≔ ḡn(Fn
∗(x), w).

3.2 Consistency

We now provide sufficient conditions under which consistency of θn is guaranteed. Our 

conditions require controlling the uniform entropy of certain classes of functions. For a 

uniformly bounded class of functions ℱ, a finite discrete probability measure Q, and any ε > 

0, the ε-covering number N(ε,ℱ,L2(Q)) of ℱ relative to the L2(Q) metric is the smallest 

number of L2(Q)-balls of radius less than or equal to e needed to cover ℱ. The uniform ε-

entropy of ℱ is then defined as logsupQ N(ε, ℱ, L2(Q)), where the supremum is taken over 

all finite discrete probability measures. For a thorough treatment of covering numbers and 

their role in empirical process theory, we refer readers to van der Vaart and Wellner (1996).

Below, we state three sufficient conditions we will refer to in the following theorem.

(A1) There exist constants C, δ, K0, K1, K2 ∈ (0, +∞) and V ∈ [0, 2) such that, almost 

surely as n → ∞, μn and gn are contained in classes of functions ℱ0 and ℱ1, respectively, 

satisfying:

a. ∣μ∣ ≤ K0 for all μ ∈ ℱ0, and K1 ≤ g ≤ K2 for all g ∈ ℱ1;

b. logsupQ N(ε, ℱ0, L2(Q)) ≤ Cε−V/2 and logsupQ N(ε, ℱ1, L2(Q)) ≤ Cε−V for all ε 
≤ δ.

(A2) There exist μ∞ ∈ ℱ0 and g∞ ∈ ℱ1 such that P0(μn − μ∞)2 P 0 and P0(gn − g∞)2 P 0.

(A3) There exist subsets S1, S2 and S3 of A × W such that P0(S1 ∪ S2 ∪ S3) = 1 and:

a. μ∞(a, ω) = μ0(a, ω) for all (a, ω) ∈ S1;

b. g∞(a, ω) = g0 (a, ω) for all (a, ω) ∈ S2;

c. μ∞(a,ω) = μ0(a,w) and g0(a, ω) = g0(a,ω) for all (a, ω) ∈ S3.

Under these three conditions, we have the following result.
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Theorem 1 (Consistency). If conditions (A1)-(A3) hold, then θn(a) P θ0(a) for any value a ∈ 

A that F0(a) ∈ (0,1), θ0 is continuous at a, and F0 is strictly increasing in a neighborhood of 
a. uniformly continuous and F0 is strictly increasing on A, then 

supa ∈ A0 ∣ θn(a) − θ0(a) ∣ P 0 for any bounded strict subinterval A0 ⊊ A.

We note that in the pointwise statement of Theorem 1, F0(a) is required to be in the interior 

of [0, 1], and similarly, the uniform statement of Theorem 1 only covers strict subintervals of 

A. This is due to the well-known boundary issues with Grenander-type estimators. Various 

remedies have been proposed in particular settings, and it would be interesting to consider 

these in future work (see, e.g., Woodroofe and Sun, 1993; Balabdaoui et al., 2011; Kulikov 

and Lopuhaä, 2006).

Condition (A1) requires that μn and gn eventually be contained in uniformly bounded 

function classes that are small enough for certain empirical process terms to be controlled. 

This condition is easily satisfied if, for instance, ℱ0 and ℱ1 are parametric classes. It is also 

satisfied for many infinite-dimensional function classes. Uniform entropy bounds for many 

such classes may be found in Chapter 2.6 of van der Vaart and Wellner (1996). We note that 

there is an asymmetry between the entropy requirements for ℱ0 and ℱ1 in part (b) of (A1). 

This is due to the term ∫∫ ∫−∞
a μn(u, w)Fn(du)Qn(dw) appearing in Γn(a). To control this term, 

we use an upper bound of the form ∫0
1 log supQ N(ε, ℱ0, L2(Q))dε from the theory of 

empirical U-processes (Nolan and Pollard, 1987) – this contrasts with the uniform entropy 

integral ∫0
1[log supQ N(ε, ℱ, L2(Q))]1/2dε that bounds ordinary empirical processes indexed 

by a uniformly bounded class ℱ. In Section 3.7, we consider the use of cross-fitting to avoid 

the entropy conditions in (A1).

Condition (A2) requires that μn and gn tend to limit functions μ∞ and g∞, and condition 

(A3) requires that either μ∞(a, ω) = μ0(a, ω) or g∞(a, ω) = g0(a, ω) for (F0 × Q0)-almost 

every (a, ω). If either (i) S1 and S3 are null sets or (ii) S2 and S3 are null sets, then condition 

(A3) is known simply as double-robustness of the estimator θn relative to the nuisance 

functions μ0 and g0: θn is consistent as long as μ∞ = μ0 or g∞ = g0. Doubly-robust 

estimators are at this point a mainstay of causal inference and have been studied for over two 

decades (see, e.g., Robins et al., 1994; Rotnitzky et al., 1998; Scharfstein et al., 1999; van 

der Laan and Robins, 2003; Neugebauer and van der Laan, 2005; Bang and Robins, 2005). 

However, (A3) is more general than classical double-robustness, as it allows neither μn nor 

gn to tend to their true counterparts over the whole domain, as long as at least one of μn or gn 

tends to the truth for almost every point in the domain.

3.3 Convergence in distribution

We now study the convergence in distribution of n1/3[θn(a) – θ0(a)] for fixed a. We first 

define for any square-integrable functions h1, h2 : A × W → ℝ, ε > 0 and S ⊆ A × W the 

pseudo-distance
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d(ℎ1, ℎ2; a, ε, S) ≔ sup
∣ u − a ∣ ≤ ε

E0 IS(u, W ) [ℎ1(u, W ) − ℎ2(u, W )]2
1 ∕ 2

. (2)

We also denote by σ0
2(a, w) the conditional variance E0 {[Y – μ0(A,W)]2 ∣A = a, W = ω} of Y 

given A = a and W = ω under P0. Below, we will refer to these two additional conditions:

(A4) There exists ε0 > 0 such that:

a. max{d(μn, μ∞; a, ε0, S1), d(gn, g∞; a, ε0, S2)} = oP(n−1/3);

b. max{d(μn, μ∞; a, ε0, S2), d(gn; g,∞; a, ε0, S1)} = oP(1);

c. d(μn, μ∞; a, ε0, S3)d(gn, g∞; a, ε0, S3) = op(n−1/3).

(A5) F0, μ0, μ∞, g0, g∞ and σ0
2 are continuously differentiable in a neighborhood of a 

uniformly over ω ∈ W. Under conditions introduced so far, we have the following 

distributional result.

Theorem 2 (Convergence in distribution). If conditions (A1)–(A5) hold, then

n1 ∕ 3[θn(a) − θ0(a)] d 4θ0′ (a)κ0(a)
f0(a)

1 ∕ 3
W ,

for any a ∈ A such that F0(a) ∈ (0,1), where W follows the standard Chernoff distribution 
and

κ0(a) ≔ E0 E0
Y − μ∞(a, W )

g∞(a, W ) + θ∞(a) − θ0(a)
2

A = a, W g0(a, W )

with θ∞(a) denoting ∫ μ∞(a,ω)Q0(dω).

We note that the limit distribution in Theorem 2 is the same as that of the standard isotonic 

regression estimator up to a scale factor. As noted above, when either (i) Y and W are 

independent given A or (ii) A is independent of W, the functions θ0 and r0 coincide. As 

such, we can directly compare the respective limit distributions of n1/3 [θn(a) – θ0(a)] and 

n1/3 [rn(a) – r0(a)] under these conditions. When both μ∞ = μ0 and g∞ = g0, rn(a) is 

asymptotically more concentrated than θn(a) in scenario (i), and less concentrated in 

scenario (ii). This is analogous to findings in linear regression, where including a covariate 

uncorrelated with the outcome inflates the standard error of the estimator of the coefficient 

corresponding to the exposure, while including a covariate correlated with the outcome but 

uncorrelated with the exposure deflates its standard error.

Condition (A4) requires that, on the set S1 where μn is consistent but gn is not, μn converges 

faster than n−1/3 uniformly in a neighborhood of a, and similarly for gn on the set S2. On the 

set S3 where both μn and gn are consistent, only the product of their rates of convergence 

must be faster than n−1/3. Hence, a non-degenerate limit theory is available as long as at least 
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one of the nuisance estimators is consistent at a rate faster than n−1/3, even if the other 

nuisance estimator is inconsistent. This suggests the possibility of performing doubly-robust 

inference for θ0(a), that is, of constructing confidence intervals and tests based on θn (a) 

with valid calibration even when one of μ0 and g0 is inconsistently estimated. This is 

explored in Section 4. Finally, as in Theorem 1, we allow that neither μn nor gn be consistent 

everywhere, as long as for (F0 × Q0)-almost every (a,ω) at least one of μn or gn is consistent.

We remark that if it is known that μn (a, ·) is consistent for μ0(a, ·) in an L2(Q0) sense at rate 

faster than n−1/3, the isotonic regression of the plug-in estimator θμn(a) := ∫ μn(a,ω)Qn(dω) 

– which can be equivalently obtained by setting gn(a, ·) = +∞ in the construction of θn(a) – 

achieves a faster rate of convergence to θ0(a) than does θn(a). This might motivate an analyst 

to use θμn (a) rather than θn(a) in such a scenario. However, the consistency of θμn(a) hinges 

entirely on the fact that μ∞ = μ0, and in particular, θμn (a) will be inconsistent if μ∞ ≠ μ0, 

even if g∞ = g0. Additionally, the estimator θμn (a) may not generally admit a tractable limit 

theory upon which to base the construction of valid confidence intervals, particularly when 

machine learning methods are used to build μn.

3.4 Grenander-type estimation without domain transformation

As indicated earlier, the isotonic regression estimator based on estimated pseudo-outcomes 

coincides with a generalized Grenander-type estimator for which the marginal exposure 

empirical distribution function is used as domain transformation. An alternative estimator 

could be constructed via Grenander-type estimation without the use of any domain 

transformation. Specifically, we let a−,a+ ∈ ℝ be fixed, and we define Θ0(a) = ∫a−
a θ0(u)du. 

Under regularity conditions, for a ≤ a+, the one-step estimator of Θ0(a) given by

Θn(a) ≔ 1
n ∑

i = 1

n
I(a−, a](Ai)

Yi − μn(Ai, W i)
πn(Ai, W i)

+ ∫a−

a
μn(u, W i)du

is asymptotically efficient, where πn is an estimator of π0, the conditional density of A given 

W under P0. The left derivative of the GCM of Θn over [a−,a+] defines an alternative 

estimator θ̄n(a).

It is natural to ask how θ̄n compares to the estimator θn we have studied thus far. First, we 

note that, unlike θn, θ̄n neither generalizes the classical isotonic regression estimator nor is 

invariant to strictly increasing transformations of A. Additionally, utilizing the 

transformation F0 fixes [0, 1] as the interval over which the GCM should be performed. If A
is known to be a bounded set, [a−,a+] can be taken as the endpoints of A, but otherwise the 

domain [a−, a+] must be chosen in defining θ̄n. Turning to an asymptotic analysis, using the 

results of Westling and Carone (2019), it is possible to establish conditions akin to (A1)–

(A5) under which n1/3 [θ̄n(a) − θ0(a)] d [4θ0′ (a)κ̄0(a)]1 ∕ 3 W with scale parameter

κ̄0(a) ≔ E0 E0
Y − μ∞(A, W )

π∞(A ∣ W )
2

A = a, W π0(a ∣ W ) ,
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where π∞ is the limit of πn in probability. We denote by [4τ0(a)]1/3 and [[4τ̄0(a)]1 ∕ 3]1/3 the 

limit scaling factors of n1/3 [θn(a) – θ0(a)] and n1/3 [θ̄n(a) – θ0(a)], respectively. If g∞ = π∞/

f0 and μ∞ = μ0, then τ0(a) = τ̄0(a), and n1/3 [θn(a) – θ0(a)] and n1/3 [θ̄n(a) − θ0(a)] have the 

same limit distribution. If instead g∞ = π∞/f0 = g0 but μ∞ ≠ μ0, this is no longer the case. In 

fact, we can show that

τ0(a) = θ0′ (a)E0
E0{[Y − μ∞(a, W )]2 ∣ A = a, W }

π0(a ∣ W ) − θ0′ (a)
{θ∞(a) − θ0(a)}2

f0(a)

≤ θ0′ (a)E0
E0{[Y − μ∞(a, W )]2 ∣ A = a, W }

π0(a ∣ W ) = τ̄(a) .

Hence, when the outcome regression estimator μn is inconsistent, gains in efficiency are 

achieved by utilizing the transformation, and the relative gain in efficiency is directly related 

to the amount of asymptotic bias in the estimation of μ0.

3.5 Discrete domains

In some circumstances, the exposure A is discrete rather than continuous. Our estimator 

works equally well in these cases, since, as we highlight below, it turns out to then be 

asymptotically equivalent to the well-studied augmented IPW (AIPW) estimator. As a result, 

the large-sample properties of our estimator can be derived from the large-sample properties 

of the AIPW estimator, and asymptotically valid inference can be obtained using standard 

influence function-based techniques.

Suppose that A = {a1 < a2 < ⋯ < am} and f0,j := P0(A = aj) > 0 for all j ∈ {1, 2,…, m} and 

∑j = 1
m f0, j = 1. Our estimation procedure remains the same with one exception: in defining 

g0 := π0/f0, we now take π0 to be the conditional probability π0(aj ∣ ω) := P0(A = aj ∣ W = 

ω) rather than the corresponding conditional density, and we take f0 as the marginal 

probability f0(aj) := P0(A = aj) = f0,j rather than the corresponding marginal density. We then 

set gn := πn/fn, as the estimator of g0, where πn is any estimator of π0 and 

fn(aj) ≔ nj ∕ n for nj ≔ ∑i = 1
n I(Ai = aj). In all other respects, our estimation procedure is 

identical to that defined previously. With these definitions, we denote by ξn,i the estimated 

pseudo-outcome for observation i. Our estimator is then the isotonic regression of ξn,1, ξn,2, 

…, ξn,n on A1, A2, …, An. However, since for each i there is a unique j such that Ai = aj, this 

is equivalent to performing isotonic regression of θn
†(a1), θn

†(a2), …, θn
†(am) on a1, a2, … , am, 

where θn
†(aj) ≔ nj−1∑i = 1

n I{aj}(Ai)ξn, i. It is straightforward to see that

θn†(aj) = 1
n ∑

i = 1

n
I{aj}(Ai)

Yi − μn(aj, W i)
πn(aj ∣ W i)

+ μn(aj, W i) ,

which is exactly the AIPW estimator of θ0(aj). Therefore, in this case, our estimator reduces 

to the isotonic regression of the classical AIPW estimator constructed separately for each 

element of the exposure domain.
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The large-sample properties of θn
†, including doubly-robust consistency and convergence in 

distribution at the regular parametric rate n−1/2, are well-established (Robins et al., 1994). 

Therefore, many properties of θn in this case can be determined using the results of Westling 

et al. (2018), which studied the behavior of the isotonic correction of an initial estimator. In 

particular, maxa ∈ A ∣ θn(a) − θ0(a) ∣ ≤ maxca ∈ A ∣ θn
†(a) − θ0(a) ∣ as long as θ0 is non-

decreasing on A. Uniform consistency of θn
† over A thus implies uniform consistency of θn. 

Furthermore, if θ0 is strictly increasing on A and {n1/2 [θn
†(a) − θ0(a)] : a ∈ A} converges in 

distribution, then maxa ∈ A ∣ θn(a) − θn
†(a) ∣ = op n1 ∕ 2 , so that large-sample standard errors 

for θn
†, are also valid for θn. If θ0 is not strictly increasing on A but instead has flat regions, 

then θn is more efficient than θ0 on these regions, and confidence intervals centered around 

θn but based upon the limit theory for θn
† will be conservative.

3.6 Large-sample results for causal effects

In many applications, in addition to the causal dose response curve a ↦ m0(a) itself, causal 

effects of the form (a1, a2) ↦ m0(a1) – m0(a2) are of scientific interest as well. Under the 

identification conditions discussed in Section 1.2 applied to each of a1 and a2, such causal 

effects are identified with the observed-data parameter θ0(a1) – θ0(a2). A natural estimator 

for such a causal effect in our setting is θn(a1) – θn(a2). If the conditions of Theorem 1 hold 

for both a1 and a2, then the continuous mapping theorem implies that 

θn(a1) − θn(a2) P θ0(a1) − θ0(a2). However, since Theorem 2 only provides marginal 

distributional results, and thus does not describe the joint convergence of Zn(a1, a2) := 

(n1/3[θn(a1)–θ(a1)],n1/3[θn(a2)–θ0(a2)–θ0(a2)], it cannot be used to determine the large-

sample behavior of n1/3 {[θn(a1) – θn(a2)] – [θ0(a1) – θ0(a2)]}. The following result 

demonstrates that such joint convergence can be expected under the aforementioned 

conditions, and that the bivariate limit distribution of Zn(a1, a2) has independent 

components.

Theorem 3 (Joint convergence in distribution). If conditions (A1)–(A5) hold for a ∈ {a1,a2} 

⊂ A and F0(a1), F0(a2) ∈ (0,1), then Zn(a1, a2) converges in distribution to ([4τ0(a1)]1 ∕ 3W1, 

[4τ0(a2)]1 ∕ 3W2), where W1 and W2 are independent standard Chernoff distributions and the 

scale parameter τ0 is as defined in Theorem 2.

Theorem 3 implies that, under the stated conditions, n1/3 {θn(a1) – θn(a2)] – [θ0(a1) – 

θ0(a2)]} converges in distribution to [4τ0(a1)]1 ∕ 3W1 – [4τ0(a2)]1 ∕ 3W2.

3.7 Use of cross-fitting to avoid empirical process conditions

Theorems 1 and 2 reveal that the statistical properties of θn depend on the nuisance 

estimators μn and gn in two important ways. First, we require in condition (A1) that μn or gn 

fall in small enough classes of functions, as measured by metric entropy, in order to control 

certain empirical process remainder terms. Second, we require in conditions (A2)–(A3) that 

at least one of μn or gn be consistent almost everywhere (for consistency), and in condition 

(A4) that the product of their rates of convergence be faster than n−1/3 (for convergence in 
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distribution). In observational studies, researchers can rarely specify a priori correct 

parametric models for μ0 and g0. This motivates use of data-adaptive estimators of these 

nuisance functions in order to meet the second requirement. However, such estimators often 

lead to violations of the first requirement, or it may be onerous to determine that they do not. 

Thus, because it may be difficult to find nuisance estimators that are both data-adaptive 

enough to meet required rates of convergence and fall in small enough function classes to 

make empirical process terms negligible, simultaneously satisfying these two requirements 

can be challenging in practice.

In the context of asymptotically linear estimators, it has been noted that cross-fitting 

nuisance estimators can resolve this challenge by eliminating empirical process conditions 

(Zheng and van der Laan, 2011; Belloni et al., 2018; Kennedy, 2019). We therefore propose 

employing cross-fitting of μn and gn in the estimation of Γ0 in order to avoid entropy 

conditions in Theorems 1 and 2. Specifically, we fix V ∈ {2, 3, …, n/2} and suppose that the 

indices {1, 2, … , n} are randomly partitioned into V sets Vn, 1, Vn, 2, …, Vn, V . We assume 

for convenience that N := n/V is an integer and that ∣∣ Vn, v ∣∣ = N for each ν, but all of our 

results hold as long as maxv n ∕ ∣ Vn, v ∣ = op(1). For each ν ∈ {1, 2, … , V}, we define 

Tn, v ≔ {Oi : i ∉ Vn, v} as the training set for fold ν, and denote by μn,ν and gn,ν the nuisance 

estimators constructed using only the observations from Tn, v. We then define pointwise the 

cross-fitted estimator Γn
∘  of Γ0 as

Γn
∘ (a) ≔ 1

V ∑
v = 1

V 1
N ∑

i ∈ Vn, v
I( − ∞, a](Ai)

Y i − μn, v(Ai, W i)
gn, v(Ai, W i)

+ 1
N2 ∑

i ∈ Vn, v
I( − ∞, a](Ai)μn, v(Ai, W j) .

(3)

Finally, the cross-fitted estimator θn
∘  of θ0 is constructed using steps 1–4 outlined in Section 

2.2, with Γn replaced by Γn
∘ .

As we now demonstrate, utilizing the cross-fitted estimator θn
∘  allows us to avoid the 

empirical process condition (A1b). We first introduce the following two conditions, which 

are analogues of conditions (A1) and (A2).

(B1) There exist constants C′, δ′, K0′ , K1′ , K2′ , K3′  ∈ (0, +∞) such that, almost surely as n → 

∞ and for all ν, μn,ν and gn,ν, are contained in classes of functions ℱ0′  and ℱ1′ , respectively, 

satisfying:

a. ∣ μ ∣ ≤ K0′  for all μ ∈ ℱ0′ , and K1′  ≤ g ≤ K2′  for all g ∈ℱ1′ ; and σ0
2(a, w) ≤ K3′  for 

almost all a, ω.

(B2) There exist μ∞ ∈ ℱ0′  and g∞ ∈ ℱ1′  such that maxν P0(μn, v − μ∞)2 P 0 and 

maxv P0(gn, v − g∞)2 P 0.
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We then have the following analogue of Theorem 1 establishing consistency of the cross-

fitted estimator θn
∘ .

Theorem 4 (Consistency of the cross-fitted estimator). If conditions (B1)–(B2) and (A3) 

hold, then θn
∘(a) P θ0(a) for any a ∈ A such that F0(a) ∈ (0,1), θ0 is continuous at a, and F0 is 

strictly increasing in a neighborhood of a. If θ0 is uniformly continuous and F0 is strictly 

increasing on A, then supa ∈ A0 ∣ θn
∘(a) − θ0(a) ∣ P 0 for any bounded strict subinterval 

A0 ⊊ A.

For convergence in distribution, we introduce the following analogue of condition (A4).

(B4) There exists ε0 > 0 such that:

a. (a) maxν max{d(μn,ν, μ∞; a, ε0, S1), d(gn,ν, g∞; a, ε0, S2)} = oP(n−1/3);

b. (b) maxν max{d(μn,ν, μ∞; a, ε0, S2), d(gn,ν, g∞; a, ε0, S1)} = oP(1);

c. (c) maxν d(μn,ν, μ∞; a, ε0, S3)d(gn,ν, g∞; a, ε0, S3) = oP(n−1/3).

We then have the following analogue of Theorem 2 for the cross-fitted estimator θn
∘ .

Theorem 5 (Convergence in distribution for the cross-fitted estimator). If conditions (B1), 

(B2), (A3), (B4), and (A5) hold, then n1/3 [θn
∘(a) − θ0(a)] d [4τ0(a)]1 ∕ 3 W for any a ∈ A such 

that F0(a) ∈ (0,1).

The conditions of Theorems 4 and 5 are analogous to those of Theorems 1 and 2, with the 

important exception that the entropy condition (A1b) is no longer required. Therefore, the 

estimators μn,ν and gn,ν may be as data-adaptive as one desires without concern for 

empirical process terms, as long as they satisfy the boundedness conditions stated in (B1).

4 Construction of confidence intervals

4.1 Wald-type confidence intervals

The distributional results of Theorem 2 can be used to construct a confidence interval for 

θ0(a). Since the limit distribution of n1/3 [θn(a) – θ0(a)] is symmetric around zero, a Wald-

type construction seems appropriate. Specifically, writing τ0(a) ≔ θ0′ (a)κ0(a) ∕ f0(a) and 

denoting by τn(a) any consistent estimator of τ0(a), a Wald-type 1 – α level asymptotic 

confidence interval for θ0(a) is given by

θn(a) −
4τn(a)

n
1 ∕ 3

q1 − α ∕ 2, θn(a) +
4τn(a)

n
1 ∕ 3

q1 − α ∕ 2 ,

where qp denotes the pth quantile of W. Quantiles of the standard Chernoff distribution have 

been numerically computed and tabulated on a fine grid (Groeneboom and Wellner, 2001), 

and are readily available in the statistical programming language R. Estimation of τ0(a) 
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involves, either directly or indirectly, estimation of θ0′ (a) ∕ f0(a) and κ0(a). We focus first on 

the former.

We note that θ0′ (a) ∕ f0(a) = ψ0′ (F0(a)) with ψ0 ≔ θ0 ∘ F0
−1. This suggests that we could either 

estimate θ0′  and f0 separately and consider the ratio of these estimators, or that we could 

instead estimate ψ0′  directly and compose it with the estimator of F0 already available. The 

latter approach has the desirable property that the resulting scale estimator is invariant to 

strictly monotone transformations of the exposure. As such, this is the strategy we favor. To 

estimate ψ0′ , we recall that the estimator ψn from Section 2 is a step function and is therefore 

not differentiable. A natural solution consists of computing the derivative of a smoothed 

version of ψn. We have found local quadratic kernel smoothing of points {(uj, ψn (uj)) : j = 

1, 2, … K}, for uj the midpoints of the jump points of ψn, to work well in practice.

Theorem 3 can be used to construct Wald-type confidence intervals for causal effects of the 

form θ0(a1) – θ0(a2). We first construct estimates τn(a1) and τn(a2) of the scale parameters 

τ0(a1) and τ0(a2), respectively, and then compute an approximation q̄n, 1 − α ∕ 2 of the (1 – 

α/2)-quantile of [4τn(a1)]1 ∕ 3 W1 – [4τn(a2)]1 ∕ 3 W2, where W1 and W2 are independent 

Chernoff distributions, using Monte Carlo simulations, for example. An asymptotic 1 – α 
level Wald-type confidence interval for 

θ0(a1) − θ0(a2) is then θn(a1) − θn(a2) ± q̄n, 1 − α ∕ 2n−1 ∕ 3.

In the next two subsections, we discuss different strategies for estimating the scale factor 

κ0(a).

4.2 Scale estimation relying on consistent nuisance estimation

We first consider settings in which both μn and gn are consistent estimators, that is, g∞ = g0 

and μ∞ = μ0. In such cases, we have that κ0(a) = E0 σ0
2(a, W ) ∕ g0(a, W )  with σ0

2(a, w)

denoting the conditional variance E0{[Y – μ0(a, W)]2 ∣ A = a, W = ω}. Any regression 

technique could be used to estimate the conditional expectation of Zn := [Y – μn(A,W)]2 

given A and W, yielding an estimator σn2(a, w) of σ0
2(a, w). A plug-in estimator of κ0(a) is 

then given by

κn(a) ≔ 1
n ∑

i = 1

n σn2(a, W i)
gn(a, W i)

.

Provided μn, gn and σn2 are consistent estimators of μ0, g0 and σ0
2, respectively, κn(a) is a 

consistent estimator of κ0(a). We note that in the special case of a binary outcome, the fact 

that σ0
2(a, w) = μ0(a, w)[1 − μ0(a, w)] motivates the use of μn(a, ω)[1 – μn(a, ω)] as estimator 

σn2(a, w), and thus eliminates the need for further regression beyond the construction of μn 

and gn. In practice, we typically recommend the use of an ensemble method – for example, 

the SuperLearner (van der Laan et al., 2007) – to combine a variety of regression techniques, 
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including machine learning techniques, to minimize the risk of inconsistency of μn, gn and 

σn2.

4.3 Doubly-robust scale estimation

As noted above, Theorem 2 provides the limit distribution of n1/3 [θn(a) – θ0(a)] even if one 

of the nuisance estimators is inconsistent, as long as the consistent nuisance estimator 

converges fast enough. We now show how we may capitalize on this result to provide a 

doubly-robust estimator of κ0(a). Since ψn is itself a doubly-robust estimator of ψ0, so will 

be the proposed estimator ψn′  of ψ0′  and hence also of the resulting estimator τn(a) of τ0(a). 

This contrasts with the estimator of κ0(a) described in the previous section, which required 

the consistency of both μn and gn.

To construct an estimator of κ0(a) consistent even if either μ∞ ≠ μ0 or g∞ ≠ g0, we begin by 

noting that κ0(a) = limh↓0 E0 [Kh (F0(A) – F0(a)) η∞(Y, A, W)], where Kh : u ↦ h−1 K(uh
−1) for some bounded density function K with bounded support, and we have defined

η∞ :(y, a, w)
y − μ∞(a, w)

g∞(a, w) + θ∞(a) − θ0(a)
2

.

Setting θμn := ∫ μn(a, ω)Qn(dω) with Qn the empirical distribution based on W1, W2, …, 

Wn, we define κn, ℎ
∗ (a) ≔ 1

n ∑i = 1
n Kℎ (Fn(Ai) − Fn(a)) ηn(Y i, Ai, W i) with ηn obtained by 

substituting μ∞, g∞, and μ∞ by θn, gn, and θμn, respectively, in the definition of η∞. Under 

conditions (A1)–(A5), it can be shown that κn, ℎn
∗ (a) P κ0(a) by standard kernel smoothing 

arguments for any sequence hn → 0. In particular, κn, ℎn
∗ (a) is consistent under the general 

form of doubly-robustness specified by condition (A3).

To determine an appropriate value of the bandwidth h in practice, we propose the following 

empirical criterion. We first define the integrated scale γ0 := ∫ κ0(a)F0(da), and construct 

the estimator γn(h) := ∫ κn,h(a)Fn(da) for any candidate h > 0. Furthermore, we observe that 

γ0 = E0 [η∞(Y, A, W)], which suggests the use of the empirical estimator 

η̄n ≔ 1
n ∑i = 1

n ηn(Y i, Ai, W i). This motivates us to define ℎn
∗ ≔ argminℎ [γn(ℎ) − η̄n]2, that is, the 

value of h that makes γn(h) and η̄n closest. The proposed doubly-robust estimator of κ0(a) is 

thus κn, DR(a) ≔ κn, ℎn∗(a).

We make two final remarks regarding this doubly-robust estimator of κ0(a). First, we note 

that this estimator only depends on A and a through the ranks Fn(A) and Fn(a). Hence, as 

before, our estimator is invariant to strictly monotone transformations of the exposure A. 

Second, we note that if μn(a, ω) = μn(a) does not depend on ω and gn = 1, κn,DR(a) tends to 

the conditional variance Var0(Y ∣ A = a), which is precisely the scale parameter appearing in 

standard isotonic regression.
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4.4 Confidence intervals via sample splitting

As an alternative, we note here that the sample-splitting method recently proposed by 

Banerjee et al. (2019) could also be used to perform inference. Specifically, to implement 

their approach in our context, we randomly split the sample into m subsets of roughly equal 

size, perform our estimation procedure on each subset to form subset-specific estimates θn,1, 

θn,2, …, θn,m, and then define θ̄n, m(a) ≔ 1
n ∑j = 1

m θn, j(a). Banerjee et al. (2019) demonstrated 

that if m > 1 is fixed, then under mild conditions θ̄n, m has strictly better asymptotic mean 

squared error than θn(a), and that for moderate m,

θ̄n, m(a) − σn, m(a)
mn1 ∕ 3 t1 − α ∕ 2, m − 1, θ̄n, m(a) + σn, m(z)

mn1 ∕ 3 t1 − α ∕ 2, m − 1 (4)

forms an asymptotic 1 – α level confidence interval for θ0(a), where 

σn, m2 (a) ≔ 1
m − 1 ∑j = 1

m [θn, j(a) − θ̄n, m(a)]2 and t1-α/2,m-1 is the (1 – α/2)-quantile of the t-

distribution with m – 1 degrees of freedom.

5 Numerical studies

In this section, we perform numerical experiments to assess the performance of the proposed 

estimators of θ0(a) and of the three approaches for constructing confidence intervals, which 

we also compare to that of the local linear estimator and associated confidence intervals 

proposed in Kennedy et al. (2017).

In our experiments, we simulate data as follows. First, we generate W ∈ ℝ4 as a vector of 

four independent standard normal variates. A natural next step would be to generate A given 

W. However, since our estimation procedures requires estimating the conditional density of 

U := F0(A) given W, we instead generate U given W, and then transform U to obtain A. This 

strategy makes it easier to construct correctly-specified parametric nuisance estimators in the 

context of these simulations. Given W = ω, we generate U from the distribution with 

conditional density function ḡ0(u ∣ w) = I[0, 1](u){λ(w) + 2u[1 − λ(w)]} for 

λ(w) ≔ 0.1 + 1.8 expit(βTw). We note that ḡ0(u ∣ w) ≥ 0.1 for all u ∈ [0,1] and ω ∈ ℝ4, and 

also, that ∫ ḡ0(u ∣ w)Q0(dw) = I[0, 1](u), so that U is marginally uniform. We then take A to be 

the evaluation at U of the quantile function of an equal-weight mixture of two normal 

distributions with means −2 and 2 and standard deviation 1, which implies that A is 

marginally distributed according to this bimodal normal mixture. Finally, conditionally upon 

A = a and W = ω, we simulate Y as a Bernoulli random variate with conditional mean 

function given by μ0(a, ω) := expit (γ1
Tw + γ2

Twa + γ3a2), where w denotes (1,ω). We set 

β = ( − 1, − 1, 1, 1)T, γ1 = ( − 1, − 1, − 1, 1, 1)T, γ2 = (3, − 1, − 1, 1, 1)T and γ3 = 3 in the 

experiments we report on.

We estimate the true confounder-adjusted dose-response curve θ0 using the causal isotonic 

regression estimator θn, the local linear estimator of Kennedy et al. (2017), and the sample-

splitting version of θn proposed by Banerjee et al. (2019) with m = 5 splits. For the local 
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linear estimator, we use the data-driven bandwidth selection procedure proposed in Section 

3.5 of Kennedy et al. (2017). We consider three settings in which either both μn and gn are 

consistent; only μn consistent; and only gn consistent. To construct a consistent estimator μn, 

we use a correctly specified logistic regression model, whereas to construct a consistent 

estimator gn, we use a maximum likelihood estimator based on a correctly specified 

parametric model. To construct an inconsistent estimator μn, we still use a logistic regression 

model but omit covariates W3, W4 and all interactions. To construct an inconsistent 

estimator gn, we posit the same parametric model as before but omit W3 and W4. We 

construct pointwise confidence intervals for θ0 in each setting using the Wald-type 

construction described in Section 4 using both the plug-in and doubly-robust estimators of 

κ0(a). We expect intervals based on the doubly-robust estimator of κ0(a) to provide 

asymptotically correct coverage rates for θ0(a) for each of the three settings, but only expect 

asymptotically correct coverage rates in the first setting when the plug-in estimator of κ0(a) 

is used. We construct pointwise confidence intervals for the local linear estimator using the 

procedure proposed in Kennedy et al. (2017), and for the sample splitting procedure using 

the procedure discussed in Section 4.4. We consider the performance of these inferential 

procedures for values of a between −3 and 3.

The left panel of Figure 1 shows a single sample path of the causal isotonic regression 

estimator based on a sample of size n = 5000 and consistent estimators μn and gn. Also 

included in that panel are asymptotic 95% pointwise confidence intervals constructed using 

the doubly-robust estimator of κ0(a). The right panel shows the unadjusted isotonic 

regression estimate based on the same data and corresponding 95% asymptotic confidence 

intervals. The true causal and unadjusted regression curves are shown in red. We note that 

θ0(a) ≠ r0(a) for a ≠ 0, since the relationship between Y and A is confounded by W, and 

indeed the unadjusted regression curve does not have a causal interpretation. Therefore, the 

marginal isotonic regression estimator will not be consistent for the true causal parameter. In 

this data-generating setting, the causal effect of A on Y is larger in magnitude than the 

marginal effect of A on Y in the sense that θ0(a) has greater variation over values of a than 

does r0(a).

We perform 1000 simulations, each with n ∈ {500,1000, 2500, 5000} observations. Figure 2 

displays the empirical standard error of the three considered estimators over these 1000 

simulated datasets as a function of a and for each value of n. We first note that the standard 

error of the local linear estimator is smaller than that of θn, which is expected due to the 

faster rate of convergence of the local linear estimator. The sample splitting procedure also 

reduces the standard error of θn. Furthermore, the standard deviation of the local linear 

estimator appears to decrease faster than n−1/3, whereas the standard deviation of the 

estimators based on θn do not, in line with the theoretical rates of convergence of these 

estimators. We also note that inconsistent estimation of the propensity has little impact on 

the standard errors of any of the estimators, but inconsistent estimation of the outcome 

regression results in slightly larger standard errors.

Figure 3 displays the absolute bias of the three estimators. For most values of a, the 

estimator θn proposed here has smaller absolute bias than the local linear estimator, and its 

absolute bias decreases faster than n−1/3. The absolute bias of the local linear estimator 
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depends strongly on a, and in particular is largest where the second derivative of θ0 is large 

in absolute value, agreeing with the large-sample theory described in Kennedy et al. (2017). 

The sample splitting estimator has larger absolute bias than θn because it inherits the bias of 

θn/m. The bias is especially large for values of a in the tails of the marginal distribution of A.

Figure 4 shows the empirical coverage of nominal 95% pointwise confidence intervals for a 

range of values of a for the four methods considered. For both the plug-in and doubly-robust 

intervals centered around θn, the coverage improves as n grows, especially for values of a in 

the tails of the marginal distribution of A. Under correct specification of outcome and 

propensity regression models, the plug-in method attains close to nominal coverage rates for 

a between −3 and 3 by n = 1000. When the propensity estimator is inconsistent, the plug-in 

method still performs well in this example, although we do not expect this to always be the 

case. However, when μn is inconsistent, the plug-in method is very conservative for positive 

values of a. The doubly-robust method attains close to nominal coverage for large samples 

as long as one of gn or μn is consistent. Compared to the plug-in method, the doubly-robust 

method requires larger sample sizes to achieve good coverage, especially for extreme values 

of a. This is because the doubly-robust estimator of κ0(a) has a slower rate of convergence 

than does the plug-in estimator, as demonstrated by box plots of these estimators provided in 

Supplementary Material.

The confidence intervals associated with the local linear estimator have poor coverage for 

values of a where the bias of the estimator is large, which, as mentioned above, occurs when 

the second derivative of θ0 is large in absolute value. Overall, the sample splitting estimator 

has excellent coverage, except perhaps for values of a in the tails of the marginal distribution 

of A when n is small or moderate, in which case the coverage is near 90%.

We also conducted a small simulation study to illustrate the performance of the proposed 

procedures when machine learning techniques are used to construct μn and gn. To 

consistently estimate μ0, we used a Super Learner (van der Laan et al., 2007) with a library 

consisting of generalized linear models, multivariate adaptive regression splines, and 

generalized additive models. To consistently estimate g0, we used the method proposed by 

Díaz and van der Laan (2011) with covariate vector (W1, W2, W3, W4). To produce 

inconsistent estimators μn or gn, we used the same estimators but omitted covariates W1 and 

W2. We also considered the estimator θn
∘  obtained via cross-fitting these nuisance 

parameters, as discussed in Section 3.7, as well as the local linear estimator. Due to 

computational limitations, we performed 1000 simulations at sample size n = 1000 only. 

Figure 5 shows the coverage of nominal 95% confidence intervals. The plug-in intervals 

achieve very close to nominal coverage under consistent estimation of both nuisances, and 

also achieve surprisingly good coverage rates when the propensity is inconsistently 

estimated. The plug-in intervals are somewhat conservative when the outcome regression is 

inconsistently estimated. The doubly-robust method is anti-conservative under inconsistent 

estimation of both nuisances and also when the propensity is inconsistently estimated, with 

coverage rates mostly between 90 and 95%. Good coverage rates are also achieved when the 

outcome regression is inconsistently estimated. These results suggest that the doubly-robust 

intervals may require larger sample sizes to achieve good coverage, particularly when 
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machine learning estimators are used for μn and gn. The plug-in intervals appear to be 

relatively robust to moderate misspecification of models for the nuisance parameters in 

smaller samples. Histograms of the estimators of κ0(a) and ψ0′ (a) are provided in the 

Supplementary Material. Confidence intervals based on the local linear estimator show a 

similar pattern as in the previous simulation study, undercovering where the second 

derivative of the true function is large in absolute value. Cross-fitting had little impact on 

coverage.

As noted above, we found in our numerical experiments that the plug-in estimator of the 

scale parameter was surprisingly robust to inconsistent estimation of the nuisance 

parameters, while its doubly-robust estimator was anti-conservative even when the nuisance 

parameters were estimated consistently. This phenomenon can be explained in terms of the 

bias and variance of the two proposed scale estimators. On one hand, under inconsistent 

estimation of any nuisance function, the plug-in estimator of the scale parameter is biased, 

even in large samples. However, its variance decreases relatively quickly with sample size, 

since it is a simple empirical average of estimated functions. On the other hand, the doubly-

robust estimator is asymptotically unbiased, but its variance decreases much slower with 

sample size. These trends can be observed in the figures provided in the Supplementary 

Material. In sufficiently large samples, the doubly-robust estimator is expected to 

outperform the plug-in estimator in terms of mean squared error when one of the nuisances 

is inconsistently estimated. However, the sample size required for this trade-off to 

significantly affect confidence interval coverage depends on the degree of inconsistency. 

While we did not see this tradeoff occur at the sample sizes used in our numerical 

experiments, we expect the benefits of the doubly-robust confidence interval construction to 

become apparent in smaller samples in other settings.

6 BMI and T-cell response in HIV vaccine studies

The scientific literature indicates that, for several vaccines, obesity or BMI is inversely 

associated with immune responses to vaccination (see, e.g. Sheridan et al., 2012; Young et 

al., 2013; Jin et al., 2015; Painter et al., 2015; Liu et al., 2017). Some of this literature has 

investigated potential mechanisms of how obesity or higher BMI might lead to impaired 

immune responses. For example, Painter et al. (2015) concluded that obesity may alter 

cellular immune responses, especially in adipose tissue, which varies with BMI. Sheridan et 

al. (2012) found that obesity is associated with decreased CD8+ T-cell activation and 

decreased expression of functional proteins in the context of influenza vaccines. Liu et al. 

(2017) found that obesity reduced Hepatitis B immune responses through “leptin-induced 

systemic and B cell intrinsic inflammation, impaired T cell responses and lymphocyte 

division and proliferation.” Given this evidence of a monotone effect of BMI on immune 

responses, we used the methods presented in this paper to assess the covariate-adjusted 

relationship between BMI and CD4+ T-cell responses using data from a collection of 

clinical trials of candidate HIV vaccines. We present the results of our analyses here.

In Jin et al. (2015), the authors compared the compared the rate of CD4+ T cell response to 

HIV peptide pools among low (BMI < 25) medium (25 ≤ BMI < 30) and high (BMI ≥ 30) 

BMI participants, and they found that low BMI participants had a statistically significantly 
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greater response rate than high BMI participants using Fisher’s exact test. However, such a 

marginal assessment of the relationship between BMI and immune response can be 

misleading because there are known common causes, such as age and sex, of both BMI and 

immune response. For this reason, Jin et al. (2015) also performed a logistic regression of 

the binary CD4+ responses against sex, age, BMI (not discretized), vaccination dose, and 

number of vaccinations. In this adjusted analysis, they found a significant association 

between BMI and CD4+ response rate after adjusting for all other covariates (OR: 0.92; 

95% CI: 0.86, 0.98; p=0.007). However, such an adjusted odds-ratio only has a formal 

causal interpretation under strong parametric assumptions. As discussed in Section 1.2, the 

covariate-adjusted dose-response function θ0 is identified with the causal dose-response 

curve without making parametric assumptions, and is therefore of interest for understanding 

the continuous covariate-adjusted relationship between BMI and immune responses.

We note that there is some debate in the causal inference literature about whether exposures 

such as BMI have a meaningful interpretation in formal causal modeling. In particular, some 

researchers suggest that causal models should always be tied to hypothetical randomized 

experiments (see, e.g., Bind and Rubin, 2019), and it is difficult to imagine a hypothetical 

randomized experiment that would assign participants to levels of BMI. From this 

perspective, it may therefore not be sensible to interpret θ0(a) in a causal manner in the 

context of this example. Nevertheless, as discussed in the introduction, we contend that θ0(a) 

is still of interest. In particular, it provides a meaningful summary of the relationship 

between BMI and immune response accounting for measured potential confounders. In this 

case, we interpret θ0(a) as the probability of immune response in a population of 

participants with BMI value a but sex, age, vaccination dose, number of vaccinations, and 

study with a similar distribution to that of the entire study population.

We pooled data from the vaccine arms of 11 phase I/II clinical trials, all conducted through 

the HIV Vaccine Trials Network (HVTN). Ten of these trials were previously studied in the 

analysis presented in Jin et al. (2015), and a detailed description of the trials are contained 

therein. The final trial in our pooled analysis is HVTN 100, in which 210 participants were 

randomized to receive four doses of the ALVAC-HIV vaccine (vCP1521). The ALVAC-HIV 

vaccine, in combination with an AIDSVAX boost, was found to have statistically significant 

vaccine efficacy against HIV-1 in the RV-144 trial conducted in Thailand (Rerks-Ngarm et 

al., 2009). CD4+ and CD8+ T-cell responses to HIV peptide pools were measured in all 11 

trials using validated intracellular cytokine staining at HVTN laboratories. These continuous 

responses were converted to binary indicators of whether there was a significant change 

from baseline using the method described in Jin et al. (2015). We analyzed these binary 

responses at the first visit following administration of the last vaccine dose-either two or four 

weeks after the final vaccination depending on the trial. After accounting for missing 

responses from a small number of participants, our analysis datasets consisted of a total of n 
= 439 participants for the analysis of CD4+ responses and n = 462 participants for CD8+ 

responses. Here, we focus on analyzing CD4+ responses; we present the analysis of CD8+ 

responses in Supplementary Material.
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We assessed the relationship between BMI and T-cell response by estimating the covariate-

adjusted dose-response function θ0 using our cross-fitted estimator θn
∘ , the local linear 

estimator, and the sample-splitting version of our estimator with m = 5 splits. We adjusted 

for sex, age, vaccination dose, number of vaccinations, and study. We estimated μ0 and g0 as 

in the machine learning-based simulation study described in Section 5, and constructed 

confidence intervals for our estimator using both the plug-in and doubly-robust estimators 

described above.

Figure 6 presents the estimated probability of a positive CD4+ T-cell response as a function 

of BMI for BMI values between the 0.05 and 0.95 quantile of the marginal empirical 

distribution of BMI using our estimator (left panel), the local linear estimator (middle 

panel), and the sample-splitting estimator (right panel). Pointwise 95% confidence intervals 

are shown as dashed/dotted lines. The three methods found qualitatively similar results. We 

found that the change in probability of CD4+ response appears to be largest for BMI < 20 

and BMI > 30. We estimated the probability of having a positive CD4+ T-cell response, after 

adjusting for potential confounders, to be 0.52 (95% doubly-robust CI: 0.44–0.59) for a BMI 

of 20, 0.47 (0.42–0.52) for a BMI of 25, 0.47 (0.32–0.62) for a BMI of 30, and 0.29 (0.12–

0.47) for a BMI of 35. We estimated the difference between these probabilities for BMIs of 

20 and 35 to be 0.22 (0.03{0.41).

7 Concluding remarks

The work we have presented in this paper lies at the interface of causal inference and shape-

constrained nonparametric inference, and there are natural future directions building on 

developments in either of these areas. Inference on a monotone causal dose-response curve 

when outcome data are only observed subject to potential coarsening, such as censoring, 

truncation, or missingness, is needed to increase the applicability of our proposed method. 

To tackle such cases, it appears most fruitful to follow the general primitive strategy 

described in Westling and Carone (2019) based on a revised causal identification formula 

allowing such coarsening.

It would be useful to develop tests of the monotonicity assumption, as Durot (2003) did for 

regression functions. Such a test could likely be developed by studying the large-sample 

behavior of ‖Ψ̄n − Ψn‖p under the null hypothesis that θ0 is monotone, where Ψn and Ψ̄n are 

the primitive estimator and its greatest convex minorant as defined in Section 2.2. Such a 

result would likely permit testing with a given asymptotic size when θ0 is strictly increasing, 

and asymptotically conservative inference otherwise. It would also be useful to develop 

methods for uniform inference. Uniform inference is difficult in this setting due to the fact 

that {n1/3 [θn(a) – θ0(a)] : a ∈ A} does not convergence weakly as a process in the space 

ℓ∞(A) of bounded functions on A to a tight limit process. Indeed, Theorem 3 indicates that 

{n1/3[θn(a) – θ0(a)] : a ∈ A} converges to an independent white noise process, which is not 

tight, so that this convergence is not useful for constructing uniform confidence bands. 

Instead, it may be possible to extend the work of Durot et al. (2012) to our setting (and other 

generalized Grenander-type estimators) by demonstrating that log n 

[[(n ∕ log n)1 ∕ 3 supa ∈ An ∣ θn(a) − θ0(a) ∣ ∕ α0 − cn]] converges in distribution to a non-
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degenerate limit for some constant α0 depending upon P0, a deterministic sequence cn, and a 

suitable sequence of subsets An increasing to A. Developing procedures for uniform 

inference and tests of the monotonicity assumption are important areas for future research.

An alternative approach to estimating a causal dose-response curve is to use local linear 

regression, as Kennedy et al. (2017) did. As is true in the context of estimating classical 

univariate functions such as density, hazard, and regression functions, there are certain trade-

offs between local linear smoothing and monotonicity-based methods. On the one hand, 

local linear regression estimators exhibit a faster n−2/5 rate of convergence whenever optimal 

tuning rates are used and the true function possesses two continuous derivatives. However, 

the limit distribution involves an asymptotic bias term depending on the second derivative of 

the true function, so that confidence intervals based on optimally-chosen tuning parameters 

provide asymptotically correct coverage only for a smoothed parameter rather than the true 

parameter of interest. In contrast, monotonicity-constrained estimators such as the estimator 

proposed here exhibit an n−1/3 rate of convergence whenever the true function is strictly 

monotone and possesses one continuous derivative, do not require choosing a tuning 

parameter, are invariant to strictly increasing transformations of the exposure, and their limit 

theory does not include any asymptotic bias (as illustrated by Theorem 2). We note that both 

estimators achieve the optimal rate of convergence for pointwise estimation of a univariate 

function under their respective smoothness constraints. In our view, the ability to perform 

asymptotically valid inference using a monotonicity-constrained estimator is one of the most 

important benefits of leveraging the monotonicity assumption rather than using smoothing 

methods. This advantage was evident in our numerical studies when comparing the isotonic 

estimator proposed here and the local linear method of Kennedy et al. (2017). Under-

smoothing can be used to construct calibrated confidence intervals using kernel-smoothing 

estimators, but performing adequate under-smoothing in practice is challenging.

The two methods for pointwise asymptotic inference we presented require estimation of the 

derivative θ0′ (a) and the scale parameter κ0(a). We found that the plug-in estimator of κ0(a) 

had low variance but possibly large bias depending on the levels of inconsistency of μn and 

gn, and that its doubly-robust estimator instead had high variance but low bias as long as 

either μn or gn is consistent. In practice, we found the low variance of the plug-in estimator 

to often outweigh its bias, resulting in better coverage rates for intervals based on the plug-in 

estimator of κ0(a), especially in samples of small and moderate sizes. Whether a doubly-

robust estimator of κ0(a) with smaller variance can be constructed is an important question 

to be addressed in future work. We found that sample splitting with as few as m = 5 splits 

provided doubly-robust coverage, and the sample splitting estimator also had smaller 

variance than the original estimator, at the expense of some additional bias.

It would be even more desirable to have inferential methods that do not require estimation of 

additional nuisance parameters or sample splitting. Unfortunately, the standard 

nonparametric bootstrap is not generally consistent in Grenander-type estimation settings, 

and although alternative bootstrap methods have been proposed, to our knowledge, all such 

proposals require the selection of critical tuning parameters (Kosorok, 2008; Sen et al., 

2010). Likelihood ratio-based inference for Grenander-type estimators has proven fruitful in 
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a variety of contexts (see, e.g. Banerjee and Wellner, 2001; Groeneboom and Jongbloed, 

2015), and extending such methods to our context is also an area of significant interest in 

future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Causal isotonic regression estimate using consistent nuisance estimators μn and gn (left), and 

regular isotonic regression estimate (right). Pointwise 95% confidence intervals constructed 

using the doubly-robust estimator are shown as vertical bars. The true functions are shown in 

red.
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Figure 2: 
Standard error of the three estimators scaled by n1/3 as a function of n for different values of 

a and in contexts in which μn and gn are either consistent or inconsistent, computed 

empirically over 1000 simulated datasets of different sizes.
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Figure 3: 
Absolute bias of the three estimators scaled by n1/3 as a function of n for different values of 

a and in contexts in which μn and gn are either consistent or inconsistent, computed 

empirically over 1000 simulated datasets of different sizes.
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Figure 4: 
Observed coverage of pointwise 95% confidence intervals using θn and the plug-in method 

(top row), θn and eht doubly-robust method (second row), the local linear estimator and 

associated intervals (third row), and the sample splitting estimator (bottom row), considered 

for different values of a and computed empirically over 1000 simulated datasets of different 

sizes. Columns indicate whether μn and gn is consistent or not. Black dashed lines indicate 

the nominal coverage rate.
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Figure 5: 
Observed coverage of pointwise 95% doubly-robust and plug-in confidence intervals using 

machine learning estimators based on simulated data including n = 1000 observations. 

Columns indicate whether μn and gn are consistent or not. Black dashed lines indicate the 

nominal coverage rate. CF stands for cross-fitted; PI for plug-in; DR for doubly-robust.
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Figure 6: 
Estimated probabilities of CD4+ T-cell response and 95% pointwise confidence intervals as 

a function of BMI, adjusted for sex, age, number of vaccinations received, vaccine dose, and 

study. The left panel displays the estimator proposed here, the middle panel the local linear 

estimator of Kennedy et al. (2017), and the right panel the sample-splitting version of our 

estimator with m = 5 splits. In the left panel, the blue dashed lines are confidence intervals 

based on the plug-in estimator of the scale parameter, and the dotted lines are based on the 

doubly-robust estimator of the scale parameter.
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