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Repulsive guidance molecule-a (RGMa) is a member of glycosylphosphatidylinositol- (GPI-) anchored protein family, which has
axon guidance function and is widely involved in the development and pathological processes of the central nervous system
(CNS). On the one hand, the binding of RGMa and its receptor Neogenin can regulate axonal guidance, differentiation of neural
stem cells into neurons, and the survival of these cells; on the other hand, RGMa can inhibit functional recovery of CNS by
inhibiting axonal growth. A number of studies have shown that RGMa may be involved in the pathogenesis of CNS diseases,
such as multiple sclerosis, neuromyelitis optica spectrum diseases, cerebral infarction, spinal cord injury, Parkinson’s disease,
and epilepsy. Targeting RGMa can enhance the functional recovery of CNS, so it may become a promising target for the
treatment of CNS diseases. This article will comprehensively review the research progression of RGMa in various CNS diseases

up to date.

1. Introduction

RGMa (repulsive guidance molecule-a) is a member of glyco-
sylphosphatidylinositol (GPI)-anchored protein family [1]. It
was first found in the visual system of chicken embryo, with
axon guidance function [1]. Three members of the RGM
family, RGMa, RGMb, and RGMc were found in vertebrates
[2]. Their 3D structures have been partially discovered [2, 3].
RGMa and RGMbD are expressed in the central nervous
system (CNS) and other tissues (heart, lung, liver, small
intestine, etc.) with a nonoverlapping form, while RGMc is
only expressed in the skeletal muscle, liver, and blood [2].
The RGMa gene is located on chromosome 15q26.1 and
encodes a protein of 450 amino acids [1, 2]. RGMa consists
of GPI-anchored C-terminal signal peptide, N-terminal sig-
nal peptide, and RGD motif (only found in RGMa and
RGMc) and partial von Willebrand factor type D [2, 4, 5].
RGMa exists in CNS such as neural stem cells, neuron cells,
and myelin sheath in both soluble and membrane-bound
forms [4, 5]. It binds with type I transmembrane protein
Neogenin and plays the biological functions of axon guid-
ance and neuron survival through the FAK-RhoA signal-
ing pathway [4, 5]. In addition, as a coreceptor of bone

morphogenetic proteins (BMPs), RGMa can bind to BMP-
2, BMP-4, and other BMP family molecules and participate
in iron metabolism, bone development, and axon regenera-
tion through the BMP-BMPR signaling pathway [2, 5].
Currently, a number of studies have shown that RGMa is
highly expressed in the injured lesions in patients with
multiple sclerosis, neuromyelitis optica spectrum diseases,
cerebral infarction, spinal cord injury, and Parkinson’s dis-
ease [6-11]. It has also been reported that it can promote
the functional recovery of the nervous system by inhibiting
RGMa [6-11]. However, the expression of RGMa is low in
patients with epilepsy [12]. Upregulation of RGMa can
reduce epileptic seizures [12]. These data indicated that
RGMa may be involved in the pathogenesis of the above dis-
eases and may become a potential target for the treatment of
CNS diseases.

2. Role of RGMa in CNS Physiology

2.1. Cell Proliferation and Differentiation. Both RGMa and
Neogenin are highly expressed in intestinal neural stem cells
during proliferation and differentiation [13]. The loss of
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FIGURE 1: Mechanisms for RGMa Signal Transduction. (a) The role of N-RGM depends on the release of Neogenin intracellular domain
by y-secretase and LMO4. It has been suggested that Neogenin intracellular domain may enter the nucleus together with LMO4 and
regulates gene transcription and growth cone collapse. (b) In general, C-RGM-Neogenin binding can activate RhoA through Unc5
and LARG and inactivate Ras through FAK and pl120 RasGAP, thus inducing growth cone collapse and playing the role of axon
guidance and regulation of neuronal survival. The binding of C-RGMa with Neogenin inhibits the interaction between Lrig2 and
Neogenin. At this time, ADAM17 can cleave Neogenin and cause the extracellular domain of Neogenin to fall off, eventually leading
to signal termination. Therefore, LRIG2 and ADAMI17 can regulate the sensitivity of neurons to RGMa. (c) In epithelial cells,
Neogenin binds to and localizes the wave regulatory complex (WRC), leading to actin nucleation via Arp2/3, which also requires
Racl to activate the stability of adhesion junctions. (d) RGMa acts as a coreceptor of bone morphogenetic protein (BMP) and has
been proposed as a structural bridge between BMP and Neogenin. A recently proposed model suggests that RGMa induces
endocytosis of BMP receptor complexes, thereby activating classical Smad signaling. The interaction between RGM and BMP signal
transduction has been involved in iron metabolism, bone development, axon regeneration, and so on.

RGMa and Neogenin resulted in the decrease of neurons,
glial cells, and ganglia in the intestinal system, indicating that
RGMa is involved in the proliferation and differentiation of
intestinal neural stem cells [13]. RGMa had a rejection effect
on differentiating progenitors via Neogenin [13, 14]. In the
midbrain of a chicken embryo, RGMa overexpression can
temporarily inhibit cell proliferation [15]. In addition, RGMa
promotes neuronal differentiation in the midbrain through
Neogenin signal transduction [15].

2.2. Cell Adhesion and Migration. RGMa can improve the
adhesion of embryonic cells in vitro, and RGMa overexpres-
sion can also induce the migration defects in early embryonic
ectodermal cells, indicating that RGMa is related to the adhe-
sion and migration of embryonic cells [16]. RGMa increases

the adhesion between cells through Neogenin, recruiting cell
adhesion molecules [17]. Moreover, RGMa and Neogenin
jointly act on adhesion junctions (AJ) to regulate actin and
maintain epithelial fidelity. In epithelial cells, Neogenin binds
to and localizes the wave regulatory complex (WRC), leading
to actin nucleation via Arp2/3 (Figure 1(c)) [2]. RGMa
induces cell migration through Neogenin, independent of
the BMP pathway [17]. Recent studies have shown that Neo-
genin-Netrin-1-RGMa complex regulates neuron migration
[18]. The vVWF and RGD domains in RGMa play a functional
role in cell adhesion and cell migration [17].

2.3. Neurogenesis and Neural Tube Closure. RGMa and Neo-
genin can coregulate the differentiation and migration of
embryonic neurogenesis, and they can also coregulate the
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development of an adult central nervous system (Figures 1(a)
and 1(b)) [15, 17]. In addition, RGMa can induce Neogenin
protein hydrolysis and promote neural tube morphogenesis
[19]. The closure defects of neural tube may occur if RGMa
is exhausted [19]. Neogenin-Netrin-1-RGMa complex
may regulate neurogenesis and neural tube closure through
the RhoA/ROCK pathway [18]. In addition, whether the
RGMa-BMP pathway plays a role in neurogenesis is a
hot topic in future research [17].

3. Role of RGMa in CNS Pathology

3.1. Survival of Neurons. On the one hand, inhibition of
RGMa in adult dentate gyrus can increase the number of
new neurons; on the other hand, inhibition of Neogenin
can improve neuron survival and behavioral recovery after
spinal cord injury [20, 21]. It has been proved that both
RGMa and Neogenin regulate the survival of neurons
[20, 21]. Some scholars believe that RGMa binds to Neo-
genin on neural stem cells and regulates neuron survival by
regulating caspase-3 and Rock [15, 17]. Other scholars
believe that the combination of RGMa and Neogenin affects
the survival of neurons in the CNS through death-
associated protein kinase (DAPK) and LMO4. DAPK affects
cell survival by activating the apoptotic pathway, while
LMO#4 affects the cytoskeleton and gene expression [2, 22].

3.2. Synapse Formation. RGMa can inhibit synapse forma-
tion by interfering with the expression of presynaptic protein
synapsin-1 and postsynaptic protein PSD-95 in cortical
neurons [23]. Inhibition of RGMa can increase the coexpres-
sion of the above two proteins, thus enhancing the synaptic
formation after spinal cord injury [23]. RGMa, especially
C-RGMa, may inhibit synaptic formation through Neogenin
[24]. The latest research shows that RGMa can regulate
neuronal branching through the RhoA pathway to mediate
synaptic plasticity [25].

3.3. Growth Cone Collapse and Axon Growth Inhibition.
RGMa can inhibit the axon growth after CNS injury, but
the specific mechanism is not clear. It may inhibit the axon
growth by stimulating neurons to induce RhoA and ROCK
(Rho-associated coiled-coil protein kinase) expression [5].
It has been confirmed that RGMa may cause cone collapse
by activating downstream Rho-GTPase activity [26]. In
addition, RGMa can regulate the phosphorylation of collapse
response mediator protein-2 (CRMP-2) by activating Rho-
kinase and glycogen synthase kinase 3 3 (GSK-3f3) signaling
pathways, thus regulating the axonal shortening [26]. Two
independent c-RGMa and n-RGMa can activate different
intracellular pathways to regulate neuronal survival: (1) in
general, c-RGMa combines with Neogenin to activate RhoA
through Unc5 and LARG (Figure 1(b)) [27-29]. C-RGMa
can inhibit axon growth through the Rho-GEF (LARG)/
Rho/ROCK  signaling pathway and also inactivate Ras
through FAK and p120 Ras-GAP to induce growth collapse
(Figure 1(b)) [27-29]. (2) When C-RGMa and Neogenin
bind to inhibit the interaction between LRIG2 and Neogenin,
then, C-RGMa can promote ADAMI17 specific cleavage of

Neogenin, resulting in signal termination (Figure 1(b))
[27-29]. (3) N-RGMa mainly depends on y-secretase to
cleave the intracellular part of Neogenin to generate intracel-
lular domain [27]. This domain can inhibit axonal growth by
binding to LIM protein 4 (LMO4) (Figure 1(a)) [27]. Inhibi-
tion of RGMa with specific antibodies can promote axonal
germination, regeneration, and motor recovery after spinal
cord injury (SCI) in primates [30].

3.4. Immunoregulation. RGMa can regulate T cell activation
and autoimmunity through dendritic cells (DCS) [31].
RGMa in dendritic cells can also bind to Neogenin on
CD4" T cells to activate inflammatory cells, enhance the
adhesion between inflammatory cells and ICAM-1, and
indirectly regulate the release and diffusion of cytokines
[31]. Treatment with RGMa neutralizing antibody can cause
dendritic cell tolerance and immunomodulatory function;
reduce the levels of MHC II, CD86, CD80, and CD40;
decrease the levels of IL-12, IL-1 8, and TNF-a; and increase
the secretion of IL-10, resulting in reducing T cell prolifer-
ation and enhancing the T cell differentiation into Th2
cells [32].

3.5. Inhibition of Angiogenesis. RGMa is a negative regulator
of angiogenesis [33]. The binding of recombinant RGMa
with Neogenin on endothelial cells can significantly reduce
endothelial cell proliferation, migration, and formation of
vascular endothelium, as well as the level of phosphorylated
focal adhesion kinase (p-FAK Tyr397) [5, 33, 34]. In
addition, F-actin assembled in the cytoskeleton was also
significantly inhibited, thereby inhibiting cytoskeleton
reorganization [5]. Removal of Neogenin or Unc5b could sig-
nificantly reduce the effect of RGMa [5, 34]. RGMa can
inhibit angiogenesis by down-regulating VEGF and p-FAK
(Tyr397) in vitro [34, 35]. Recombinant RGMa can also
inhibit angiogenesis [36].

4. RGMa as a Therapeutic Target in
CNS Disorders

4.1. Multiple Sclerosis (MS). Many researches have shown
that RGMa plays an important role in MS. Demicheva et al.
reported that the expression of RGMa was significantly
increased in acute and chronic damaged plaques and normal
white matter of CNS in MS patients [22]. The level of RGMa
in the baseline blood was negatively correlated with the
changes of Expanded Disability Status Scale (EDSS) in MS
patients, indicating that the level of RGMa was closely related
to neurological function [2, 6, 37]. The possible pathogeneses
of RGMa in MS include the following:

(1) Abnormal signal transduction of immune cells: since
IL-17-expressing CD4" T cells (Th17 cells) strongly
expressed RGMa, so the combination of RGMa and
Neogenin on immune cells can enhance the immune
cell adhesion, promote their invasion to the brain,
and enhance T cell response [5, 37]. Neutralizing
RGMa antibody can reduce the severity of experi-
mental autoimmune encephalomyelitis (EAE) in the



MS animal model; secondly, it can inhibit peripheral
blood T cell proliferation, block the production of
inflammatory cytokines such as IL-2, IFN-y, IL-17,
and IL-4, and significantly reduce the level of CNS
inflammatory cytokines in MS patients [5, 37].

(2) Promotion of demyelinating production: in EAE,
RGMa promotes the demyelination of CNS by
enhancing the activation of CD4" T cells [38, 39].
Our previous work also found that the usage of
RGMa neutralizing antibody can reduce the demye-
lination level of EAE mice, thereby inhibiting the
neurological damage.

(3) Promotion of neurodegeneration: RGMa has strong
inhibitory activity on axon regeneration and also
plays a role in MS neurodegeneration [40]. The
possible mechanism involves RGMa inducing Akt
dephosphorylation in neurons by binding to Neo-
genin on Th17 cells [40]. Neutralizing RGMa anti-
body can enhance the axonal regeneration ability of
inflammatory lesions, reduce axonal degeneration
and clinical severity, and promote the growth of
corticospinal tract and motor recovery in EAE
mice [5, 7, 22, 40].

(4) Inhibition of angiogenesis: angiogenesis is another
key factor involved in the pathophysiology of EAE
[41]. RGMa can inhibit the formation of endothelial
vessels [5, 41].

(5) Alter the permeability of blood-brain barrier (BBB):
the damage of BBB is an important pathological fea-
ture of MS [42, 43]. Studies have found that the level
of RGMa in cerebrospinal fluid in patients with tri-
amcinolone acetonide treatment (its pharmacological
effect is mainly on improving the BBB permeability)
is reduced, which suggested that RGMa may be
involved in the pathology of MS by regulating BBB
permeability in MS patients (Table 1) [44, 45].

4.2. Neuromyelitis Optica Spectrum Disorders (NMOSD).
Systemic administration of anti RGMa antibody can delay
the onset time, alleviate its clinical symptoms, and reduce
inflammatory cell infiltration and axon damage in NMOSD
rat model, indicating that inhibiting RGMa can effectively
treat NMOSD [8]. The possible pathogeneses of RGMa in
NMOSD include the following: (1) the loss of aquaporin-4
(AQP4) and glial fibrillary acid protein (GFAP) often
occurred before the demyelination of NMOSD [46]. Anti-
RGMa antibody could partially restore the expression of
AQP4 and GFAP in NMOSD rats, resulting in preventing
astrocytopenia and relieving clinical symptoms [8, 46]. (2)
Anti-RGMa antibody can reduce the immune response of
NMOSD rats, which may help to delay the attack and/or
progress of NMOSD in the NMOSD rat model by reducing
the number of activated microglia and reducing the infiltra-
tion of IL-17A ™ T cells [8, 47]. (3) Axonal injury is an early
pathological feature of NMOSD, which can cause dyskinesia
[40]. The treatment of anti RGMa antibody can reduce
axonal degeneration and injury [8, 40, 48]. (4) Inhibition
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of RGMa can promote the repair of damaged neural net-
work and delay the secondary progression of NMOSD
(Table 1) [8, 49].

4.3. Cerebral Infarction. Our previous study found that an
adenovirus vector can reduce BBB dysfunction in rats with
middle cerebral artery occlusion (MCAO)/reperfusion by
inducing specific RGMa silencing [9]. The possible mecha-
nism was that RGMa participates in BBB injury through
the CDC-42/PAK-1 pathway (Table 1) [9, 50]. We also found
that RGMa can inhibit axonal growth by phosphorylating
CRMP-2 through the Rho kinase and GSK-3f signaling
pathways (Table 1) [51, 52]. Both RGMa and Neogenin were
expressed in neurons and vessel endothelial cells after ische-
mia/reperfusion injury in rats, and angiogenesis, coupled
with functional recovery, was enhanced after RGMa RNA
interference against RGMa [34, 35]. The mechanism may
lie in RGMa inhibiting angiogenesis through VEGF, Ang2,
Angl, and BDNF (Table 1) [34, 35]. In addition, the
increased RGMa in patients with MCAO may be related to
leptomeningeal collateral damage, which can predict the
pathological state of leptomeningeal collateral by measuring
the expression of RGMa mRNA in the early stage of stroke
(Table 1) [53].

4.4. Spinal Cord Injury (SCI). The treatment of spinal cord
injury with anti-RGMa antibody can promote the recovery
of hand agility and muscle strength [10, 30]. Possibly because
the inhibition of RGMa promotes the survival and regenera-
tion of neurons, it promotes the regeneration, repairs plastic-
ity of corticospinal tract axons, improves motor function and
gait recovery, and reduces nerve pain by reducing activated
microglia (Table 1) [21].

4.5. Parkinson’s Disease (PD). RGMa is upregulated in the
substantia nigra of Parkinson’s disease patients [11]. RGMa
can induce neuropathological and behavioral changes similar
to Parkinson’s disease [11]. If RGMa in substantia nigra
dopaminergic (DA) neurons of Parkinson’s disease mouse
is significantly increased, it can lead to progressive dyskine-
sia, including motor coordination and imbalance, which
is a typical manifestation of DA reduction in striatum
[11, 54-56]. The mechanism may be the selective degenera-
tion of DA neurons and the activation of microglia and astro-
cytes in substantia nigra induced by elevated RGMa (Table 1)
[11, 57]. These data suggested that RGMa dysfunction plays
an important role in Parkinson’s disease [11, 57].

4.6. Epilepsy. RGMa has been considered a potential thera-
peutic agent for epilepsy [12, 58]. Some studies found that
the levels of RGMa are significantly decreased in both tempo-
ral lobe epilepsy patients and experimental rats [12, 58].
Some studies also confirmed that overexpression of RGMa
can inhibit epileptic seizures [12, 58]. The possible mecha-
nisms include the following: (1) in the organ slice model of
epilepsy induced by magnesium deficiency, the overexpres-
sion of RGMa can inhibit the N-methyl-D-aspartate
receptor- (NMDAR-) mediated current, thereby inhibiting
the overexcitation of hippocampal neurons [58-60]. (2)
Lentiviral vector-induced RGMa overexpression in the
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hippocampus can inhibit seizures by inhibiting mossy fiber
sprouting [12]. (3) Silencing miR-20a-5p, an upstream regu-
lator of RGMa, inhibits neuronal branching and axon growth
through the RGMa-RhoA pathway, thereby preventing epi-
lepsy (Table 1) [25].

5. Summary

In conclusion, as an axon guidance molecule, RGMa widely
participates in the development and pathological process of
CNS to regulate cell proliferation, differentiation, adhesion,
migration, neurogenesis, neural tube closure, neuronal
apoptosis, synapse formation, growth cone collapse, axon
growth inhibition, immune response, and neovascularization
through RGMa-Neogenin, RGMa-BMPs, and other signaling
pathways. Recent studies have found that RGMa can partic-
ipate in the pathogenesis of MS, NMOSD, cerebral infarction,
spinal cord injury, PD, epilepsy, and other CNS diseases. By
regulating the expression of RGMa, it can reduce neural
function damage and promote the recovery of neural func-
tion, indicating that RGMa may be a promising target mole-
cule for the treatment of CNS diseases (Table 1). As the
specific pathogenesis and signaling pathway of RGMa in
CNS diseases are not fully clear, the randomized controlled
clinical trials need to take years to conduct. Therefore, more
in-depth analysis and large sample for randomized con-
trolled clinical trials are required to elucidate the mechanism
of RGMa in the guidance of clinical treatment of CNS
diseases.
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