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Background. Multiple organ failure (MOF) may lead to an increased mortality rate of moderately severe (MSAP) or severe acute
pancreatitis (SAP). This study is aimed to use machine learning to predict the risk of MOF in the course of disease. Methods.
Clinical and laboratory features with significant differences between patients with and without MOF were screened out by
univariate analysis. Prediction models were developed for selected features through six machine learning methods. The models
were internally validated with a five-fold cross-validation, and a series of optimal feature subsets were generated in
corresponding models. A test set was used to evaluate the predictive performance of the six models. Results. 305 (68%) of 455
patients with MSAP or SAP developed MOF. Eighteen features with significant differences between the group with MOF and
without it in the training and validation set were used for modeling. Interleukin-6 levels, creatinine levels, and the kinetic time
were the three most important features in the optimal feature subsets selected by K-fold cross-validation. The adaptive boosting
algorithm (AdaBoost) showed the best predictive performance with the highest AUC value (0.826; 95% confidence interval:
0.740 to 0.888). The sensitivity of AdaBoost (80.49%) and specificity of logistic regression analysis (93.33%) were the best scores
among the six models in the test set. Conclusions. A predictive model of MOF complicated by MSAP or SAP was successfully
developed based on machine learning. The predictive performance was evaluated by a test set, for which AdaBoost showed a
satisfactory predictive performance. The study is registered with the China Clinical Trial Registry (Identifier: ChiCTR1800016079).

1. Introduction

Acute pancreatitis (AP) is an inflammatory disorder of the
pancreas involving local and peripancreatic tissue. Organ
failure (OF) is a hallmark complication of severe acute pan-
creatitis (SAP) and may be found in approximately 20% of
all cases of AP [1]. The mortality rate of AP increases as
much as 30% when OF occurs [2]. The respiratory, cardio-

vascular, and renal systems are most frequently involved by
AP-induced organ failure [3]. Multiple organ failure (MOF)
has a higher mortality rate than OF [2]. Until organ dysfunc-
tion occurs, it is difficult to predict the clinical outcome of AP
[4]. Therefore, it is crucial to predict the risk of OF at an early
phase, so that patients with SAP can be monitored for
prompt detection of complications and the need for intensive
care [5].
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The severity of organ dysfunction in AP can be graded by
the modified Marshall grading system [3]. The existing AP
scoring systems, such as the Acute Physiology and Chronic
Health Evaluation II (APACHE II) and the Ranson score,
showed modest value in predicting possible OF. Complicated
combinations of predictive methods are more accurate but
are not convenient [6]. Therefore, it is important to develop
an effective and easily used method to predict the risk of
MOF in patients with early AP. Age, comorbid conditions,
weight, triglyceride levels, and extent of local pancreatic
injury were considered to be risk factors for MOF in patients
with AP [7]. Activation of coagulation [8] and levels of
cytokines, including interleukin- (IL-) 6 and IL-8 [9, 10],
contributed to pancreatic inflammation and systemic injury.

Machine learning (ML), aiming at coping with the
unique computational challenges of building statistical
models from massive data sets, is a research field at the inter-
section of statistics and computer science [11]. Artificial
intelligence (AI) is a concept to describe subspecialties of
computer science such as machine learning, statistical learn-
ing, deep learning, and cognitive computing [12, 13]. ML,
considered as a subset of artificial intelligence, was not only
applied in text mining and classification in the field of com-
puter science [14, 15] but also widely used in clinical practice.
In a study by Kim et al. [16], authors developed an artificial
intelligence algorithm by using structured data and unstruc-
tured clinical notes to predict and diagnose sepsis, which
achieved high predictive accuracy 12 hours before the onset
of sepsis. Zhang et al. [17] reported outcomes from the latest
studies on the management of acute respiratory distress syn-
drome (ARDS) patients by using an AI algorithm to improve
the prediction of the prognosis and care quality. Our previ-
ous research preliminarily developed models of machine
learning to predict MOF in patients with AP [18]. In this
study, we made use of other machine learning algorithms to
develop predictive models. The number of included partici-
pants was increased, and each model was tested in a prospec-
tive cohort of AP patients.

2. Methods

2.1. Participants. A retrospective analysis was performed in
the three affiliated hospitals (Daping Hospital, Southwest
Hospital, and Xinqiao Hospital) of the Army Medical Uni-
versity in Chongqing, China, from July 2014 to December
2019. The dataset gathered from patients from July 2014 to
May 2018 was regarded as the training and validation set
and was retrospectively collected, and the dataset gathered
from patients from June 2018 to December 2019 was pro-
spectively recorded as the test set.

The diagnostic criteria for AP were set up according to
the revised Atlanta classification of acute pancreatitis 2012.
At least two of the following three criteria had to be satisfied
for a diagnosis of AP: [1] abdominal pain, [2] serum amylase
and/or lipase levels elevated to at least three times the normal
upper limit, and [3] characteristic findings of AP on contrast-
enhanced computerized tomography, magnetic resonance, or
transabdominal ultrasonographic images [3]. Adult patients
(≥18 years old) who had not received initial treatment out-

side of the three hospitals were included in this study. The
time from onset to hospital admission did not exceed 24
hours. Patients who were pregnant; had pancreatic cancer,
liver cirrhosis, or coagulation system disease; and whose lab-
oratory examinations were incomplete were excluded from
this study.

All patients received standardized treatment in accor-
dance with the guidelines for the management of AP [19].
The presence and persistence of OF were evaluated by the
modified Marshall score during hospitalization.

2.2. Technical Protocols. Feature selection was applied to
choose the features that had significant differences between
the MOF group and non-MOF group. The combination of
the training and validation sets for this study was obtained
retrospectively. We used K-fold cross-validation for the
training and validation set for internal validation, and it
was also applied to build predictive models and obtain opti-
mal features. To evaluate the predictive performance of our
proposed models [20], we established a prospective cohort
as a test set. The flow diagram of the training, validation,
and test process of the prediction models is shown in Supple-
mentary Figure 1. All authors had access to the study data
and reviewed and approved the final manuscript. The study
protocol was approved by the Research Ethics Commission
of Daping Hospital (No.10,2018).

2.3. Data Collection. Demographic and clinical information
and outcome data were extracted from electronic medical
records. For the laboratory data, 23 features were chosen,
including the complete blood count, coagulation profile,
and serum biochemical tests. All data obtained on admission
are shown in Supplementary Table 1.

2.4. Machine Learning. The models were based on machine
learning algorithms with the inputting of variables that had
significant differences (p < :05) in univariate analysis
between AP patients with MOF or without MOF to predict
the risk of MOF. Six machine learning algorithms were
selected: support vector machine (SVM) algorithm, logistic
regression analysis (LR), naive Bayes (NB) algorithm, qua-
dratic discriminant analysis (QDA), adaptive boosting (Ada-
Boost), and back propagation network (BP); they were
applied by using Matlab 2014. To select the optimal feature
subset for each machine learning method, five-fold cross-
validation was used for the training and validation set. Four
of the five folds were used as the training set, and the remain-
ing one was used as the validation set. Because each of the five
folds was used as the validation set, the above process was
repeated 20 times. Thereafter, a single optimal feature,
optimal feature subset, and all features in corresponding
models were generated.

2.5. Evaluation and Testing of the Machine Learning Models.
The area under the curve (AUC) of the receiver operating
characteristic (ROC) curve, sensitivity, and specificity were
used to evaluate the predictive performance of the established
models. These machine learning models trained on optimal
feature subsets were then tested by a prospective cohort of
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116 adult patients admitted to the three affiliated hospitals
mentioned above.

2.6. Quantification of Feature Importance in the Optimal
Feature Subset.We quantified the importance of each feature
in the optimal feature subset in corresponding models by the
method of stepwise elimination; we eliminated features one
by one from the optimal feature subset (with replacements)
to compare the AUC values of the remaining feature combi-
nations. The importance of each feature was defined as:

ηi =
AUC_optimal −AUCi

∑n
i=1 AUCoptimal −AUCi

� � ð1Þ

where ηi is the importance of the feature and n is the number
of features in the optimal feature subset.

2.7. Statistical Analysis. Categorical variables were expressed
as proportions. Continuous variables were expressed as
median and interquartile range values. We compared the
included variables by the Pearson chi-square test for categor-
ical variables and the Student’s t-test and nonparametric
Mann–Whitney U test, respectively, for the continuous vari-
ables of the normal and skewed distribution. A two-sided p
value of less than.05 was considered statistically significant.
Analyses were performed with SPSS Statistics V.23.0.

3. Results

3.1. Demographic and Clinical Characteristics. A total of 447
patients with AP were included in this study. MOF occurred
in 142 of the 447 patients (32%) in the whole cohort. Of these
patients, 331 were retrospectively included in the training
and validation set from July 2014 to May 2018 (101 with
MOF and 230 withoutMOF). A total of 116 patients were pro-
spectively selected as a test set from June 2018 to December
2019 (41 with MOF and 75 without MOF). Supplementary
Table 2 shows the demographic and clinical characteristics
of the 331 patients included in the training and validation
set, and the clinical characteristics of patients included
in the test set are summarized in Supplementary Table 3.
Supplementary Table 4 lists the types and combinations of
OF in different subsets of patients.

In the training and validation set, the median age of
the patients was 48 years, ranging from 19 to 88 years, and

63% of the patients were male (Supplementary Table 2).
Consistent with our previous reports [12], biliary tract
disease (in 36% of patients) and hypertriglyceridemia (in
37% of patients) were the most common causes of AP. Of all
of the patients, 175 were obese (body mass index [BMI]
≥25kg/m2) (Supplementary Table 2). Statistically significant
univariate features included the risk factors mentioned
above, such as triglyceride levels, blood coagulability as
measured by a coagulogram and thromboelastogram, and IL-
6 levels. Patients with MOF had reduced platelet counts and
high-density lipoprotein levels and elevated levels of alanine
aminotransferase, aspartate aminotransferase, creatinine, and
other substances. Interestingly, the white blood cell counts
and calcium ion levels, which are the diagnostic criteria for
the Systemic Inflammatory Response Syndrome (SIRS) score
and elements of the Ranson score, were not significantly
different between the MOF and non-MOF groups. No
statistical differences were observed in gender, age, history of
hypertension and diabetes, etiology, and BMI between the
two groups (p > :05).

3.2. Predictive Performance of Machine Learning Models in
the Validation Set. Eighteen features that had a significant
difference between the two groups were introduced into the
machine learning algorithms to determine which optimal
feature subsets could effectively predict the risk of MOF
in patients with AP (detailed in Supplementary Table 5).
Creatinine was the optimal feature with the highest AUC
values in all the candidate evaluations in the LR, QDA,
NB, and SVM methods (0.7235 in LR, 0.7319 in QDA,
0.7153 in NB, and 0.7234 in SVM) (Supplementary
Table 6). The kinetic time and blood urea nitrogen levels
were the optimal features with the highest AUC values
in all the candidate evaluations by AdaBoost and BP,
respectively (0.7024 in the AdaBoost model; 0.7325 in the
BP model) (Supplementary Table 6). Because different
feature combinations had different predictive performances,
the combinations with the maximum AUC values in the
five-fold cross-validation were defined as the optimal
feature subsets. Among these six models in the training and
validation set, the QDA model obtained the highest AUC
value (0.8653; 95% confidence interval [CI]: 0.824 to 0.900)
in the subset of eight features including the levels of
triglyceride and low-density lipoproteins (Table 1). The
ROC curves obtained for the optimal feature subsets, the

Table 1: The optimal feature subset of each machine learning method.

Features TG HDL LDL PT APTT TT INR FIB R-time K-time α MA IL-6 PCT BUN Creatinine K+ Na+ AUC

LR √ √ √ √ √ √ √ √ √ √ √ √ 0.8401

QDA √ √ √ √ √ √ √ √ 0.8653

NB √ √ √ √ √ √ √ 0.8646

SVM √ √ √ √ √ √ √ √ 0.8390

AdaBoost √ √ √ √ √ √ √ √ 0.8629

BP √ √ √ √ √ √ √ √ 0.8616

Abbreviations: TG: triglyceride; HDL: high-density lipoprotein; LDL: low-density lipoprotein; PT: prothrombin time; APTT: activated partial thromboplastin
time; TT: thrombin time; INR: international normalized ratio; FIB: fibrinogen; R-time: reaction time; K-time: kinetic time; α: alpha angle; MA: maximum
amplitude; IL-6: interleukin-6; PCT: procalcitonin; BUN: blood urea nitrogen; K+: potassium; Na+: sodium.
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Figure 1: The ROC curves of different models in the validation set. (a) LR. (b) QDA. (c) NB. (d) SVM. (e) AdaBoost. (f) BP.
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Figure 2: The importance of each feature in optimal feature subset in the validation set. (a) LR. (b) QDA. (c) NB. (d) SVM. (e) AdaBoost.
(f) BP.

6 Mediators of Inflammation



T
a
bl
e
3:
C
om

pa
ri
so
n
of

th
e
pr
ed
ic
ti
ve

pe
rf
or
m
an
ce

of
di
ff
er
en
t
m
od

el
s
in

op
ti
m
al
fe
at
ur
e
su
bs
et
in

te
st
se
t.

V
ar
ia
bl
e

LR
(9
5%

C
I)

Q
D
A
(9
5%

C
I)

N
B
(9
5%

C
I)

SV
M

(9
5%

C
I)

A
da
bo

os
t
(9
5%

C
I)

B
P
(9
5%

C
I)

p
va
lu
e

SE
N

58
.5
4%

(4
2.
20
%
-7
3.
30
%
)

60
.9
8%

(4
4.
54
%
-7
5.
38
%
)

73
.1
7%

(5
6.
69
%
-8
5.
25
%
)

60
.9
8%

(4
4.
54
%
-7
5.
38
%
)

80
.4
9%

(6
4.
63
%
-9
0.
63
%
)

75
.6
1%

(5
9.
36
%
-8
7.
09
%
)

0.
15

SP
E

93
.3
3%

(8
4.
47
%
-9
5.
52
%
)a
,c
,d
,e

86
.6
7%

(7
6.
39
%
-9
3.
08
%
)d

76
.0
0%

(6
4.
50
%
-8
4.
79
%
)b

89
.3
3%

(7
9.
54
%
-9
4.
95
%
)d

73
.3
3%

(6
1.
66
%
-8
2.
58
%
)a
,b
,f

74
.6
7%

(6
3.
08
%
-8
3.
69
%
)a
,b

0.
00

1

FP
R

6.
67
%

(1
.0
2%

-1
2.
32
%
)a
,c
,d
,e

13
.3
3%

(5
.6
4%

-2
1.
03
%
)
d

24
.0
0%

(1
4.
33
%
-3
3.
67
%
)
b

10
.6
7%

(3
.6
8%

-1
7.
66
%
)
d

26
.6
7%

(1
6.
66
%
-3
6.
67
%
)
a,
b,
f
25
.3
3%

(1
5.
49
%
-3
5.
17
%
)
a,
b

0.
00

1

FN
R

41
.4
6%

(2
6.
38
%
-5
6.
54
%
)

39
.0
2%

(2
4.
09
%
-7
7.
80
%
)

26
.8
3%

(1
3.
27
%
-4
0.
39
%
)

39
.0
2%

(2
4.
09
%
-7
7.
80
%
)

19
.5
1%

(7
.3
8%

-3
1.
64
%
)

24
.3
9%

(1
1.
25
%
-3
7.
53
%
)

0.
15

P
P
V

82
.7
6%

(6
3.
51
%
-9
3.
47
%
)

71
.4
3%

(5
3.
48
%
-8
4.
76
%
)

62
.5
0%

(4
7.
33
%
-7
5.
68
%
)

75
.7
6%

(5
7.
37
%
-8
8.
26
%
)

62
.2
6%

(4
7.
87
%
-7
4.
88
%
)

62
.0
0%

(4
7.
16
%
-7
5.
00
%
)

0.
28
1

N
P
V

93
.3
3%

(8
4.
47
%
-9
7.
52
%
)

80
.2
5%

(6
9.
61
%
-8
7.
95
%
)

83
.8
2%

(7
2.
47
%
-9
1.
27
%
)

80
.7
2%

(7
0.
29
%
-8
8.
25
%
)

87
.3
0%

(7
5.
96
%
-9
3.
97
%
)

84
.8
5%

(7
3.
44
%
-9
2.
11
%
)

0.
87

A
cc
ur
ac
y

80
.3
%

(7
3.
0-
87
.7
%
)

78
.5
%

(7
1.
1-
85
.9
%
)

75
.0
%

(6
7.
0-
83
.0
%
)

79
.3
%

(7
1.
8-
86
.8
%
)

75
.9
%

(6
8.
0-
83
.8
%
)

75
.0
%

(6
7.
0-
83
.0
%
)

0.
83
1

A
U
C

0.
78
2
(0
.6
94
-0
.8
53
)

0.
78
5
(0
.6
86
-0
.8
48
)

0.
77
9
(0
.6
88
-0
.8
49
)

0.
77
2
(0
.6
79
-0
.8
42
)

0.
82
6
(0
.7
40
-0
.8
88
)

0.
80
5
(0
.7
14
-0
.8
69
)

/
a C
om

pa
re
d
w
it
h
Q
D
A
,p

<
0:
05
;b
C
om

pa
re
d
w
it
h
LR

,p
<
0:0

5;
c C
om

pa
re
d
w
it
h
N
B
,p

<
0:
05
;d
C
om

pa
re
d
w
it
h
A
da
B
oo
st
,p

<
0:0

5;
e C
om

pa
re
d
w
it
h
B
P
,p

<
0:0

5;
f C
om

pa
re
d
w
it
h
SV

M
,p

<
0:0

5.
p
va
lu
e
de
no

te
d
th
e

ov
er
al
ls
ta
ti
st
ic
al
re
su
lt
fo
r
th
e
fo
ur

m
od

el
s.

7Mediators of Inflammation



single features, and all of the features using K-fold cross-
validation are shown in Figure 1. Table 1 shows the optimal
feature subsets with the highest AUC values in each model.

Moreover, we compared the predictive performance
obtained by the optimal feature subsets resulting from LR,
QDA, NB, SVM, AdaBoost, and BP. The sensitivity (SEN),
specificity (SPE), false-positive rate (FPR), false-negative rate
(FNR), positive predictive value (PPV), negative predictive
value (NPV), and accuracy of the six models are shown in
Table 2. No significant differences were observed among
these six models in PPV, NPV, accuracy, and AUC values
(p > :05). The SEN of QDA and the SPE of LR were superior
to the other models (p < :05) (Table 2).

3.3. Importance of each Feature in the Optimal Feature Subset
of the Validation Set. We quantified the importance of each
feature in the optimal feature subset in corresponding models
by the method of stepwise elimination. As is shown in
Figure 2, the IL-6 level was the most important feature in
both the LR and BP models. In the QDA, NB, and SVM
models, the most predictive feature was the creatinine level.
The kinetic time was the foremost feature in the AdaBoost
model (Figure 2).

3.4. Predictive Performance of Machine Learning Models in
the Test Set. To evaluate the predictive performance of each
machine learning model trained by the optimal feature
subsets, we performed an external evaluation and intro-
duced a test set from a prospective cohort in the three hos-
pitals. The AUC values obtained by the six models in the
test set were 0.782 (95% CI: 0.694 to 0.853) for LR, 0.785
(95% CI: 0.686 to 0.848) for QDA, 0.779 (95% CI: 0.688
to 0.849) for NB, 0.772 (95% CI: 0.679 to 0.842) for
SVM, 0.826 (95% CI: 0.740 to 0.888) for AdaBoost, and
0.805 (95% CI: 0.714 to 0.869) for BP (Table 3). The
ROC curve obtained by each model in the test set is shown
in Figure 3. No significant differences were observed among
these four models regarding the SEN, FNR, PPV, NPV, accu-
racy, and AUC values (p > :05) (Table 3). The SPE and FPR
of LR were best (p < :05). AdaBoost achieved the highest
AUC value in the test set (Table 3).

3.5. Construction of Software for Predictive Models. To make
use of this predictive tool in the hospital setting, we devel-
oped software based on machine learning. Clinicians can
use this software easily by inputting the clinical parameters
and laboratory results to train a predictive tool (Supplemen-
tary Figures 2 to 4). The first page provides the function
of training and validation by using K-fold cross-validation
to select the optimal feature subset. Six machine learning
methods were employed in this software, and three
manners of feature selection were provided (Supplementary
Figure 2). Once the optimal feature subset was confirmed
for a specific type of machine learning, the final predictive
model was trained in the training and validation set and
saved in a designated location. On the second page, one
trained model is selected and its performance is evaluated
in the test set (Supplementary Figure 3). On the third page,
the primary data for admitted patients are input, and the

verified predicting model, which was confirmed on the
second page, is used to obtain a prediction probability for
an upcoming patient (Supplementary Figure 4).

4. Discussion

MOF is the most important factor in determining the out-
come of AP. Patients with predicted SAP benefit from being
in the intensive care unit at an early phase of the disease [21,
22]. Single features such as age, comorbid conditions, and
obesity might be important risk factors but are poor predic-
tors for the development of MOF in these patients [19]. Here,
we developed and validated predictive models for MOF com-
plicated by MSAP and SAP to identify MOF at an early
phase. Based on our previous research, we prospectively col-
lected the test set, improved the generalization of models, val-
idated the models by using an external test set, obtained a set
of optimal features in each model, and quantified the impor-
tance of each feature.

The AdaBoost, QDA, and LR models were more likely
to predict the risk of MOF complicated by AP. AdaBoost
showed the best predictive performance in the test set.
QDA was the most accurate model for predicting MOF
with its highest AUC value and had superior SEN and
NPVs in the training and validation set. The LR model
had optimal SPE and PPVs in both the validation set and
test set. The clinical risk factors of the included patients
for MOF in this study were reported in previous studies
[23–26]. Comorbidity, older age, obesity, and higher tri-
glyceride levels were identified as independent risk factors
for the development of OF in patients with AP. An etiology
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Figure 3: The ROC curves of optimal feature set of different models
in test set.
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including hypertriglyceridemia, biliary disease, and alcohol-
ism was not found to be an independent risk factor for OF,
although patients with alcohol-induced AP may have a
higher risk of an early onset of OF [27].

The optimal feature subsets of different machine learning
methods could not be the same, but some variables were
found in the optimal set of all machine learning methods,
indicating that these features were critical for classification
and for judging whether MOF would occur. The two repre-
sentative features were IL-6 and creatinine levels. IL-6 was
the foremost feature in the LR and BP models. Creatinine
was the foremost feature in the QDA, NB, and SVM models.
Kinetic time was the foremost feature in the AdaBoost model.
Therefore, IL-6, creatinine, and the kinetic time played the
most important roles in predicting the risk of MOF. Dam-
brauskas et al. performed a prospective study showing that
IL-6 was one of the best indicators for diagnosing MSAP
and SAP [9]. Another study demonstrated that higher serum
levels of IL-6 were correlated with rates of OF and mortality
[28]. Creatinine, an indicator of renal function, was found to
contribute to the prediction of OF in SAP when its serum
level was greater than or equal to 110μmol/L [29]. As part
of the criteria for the severity stratification of OF in the mod-
ifiedMarshall score, levels of creatinine in patients withMOF
were higher than those in patients without MOF in our
study. The kinetic time, a parameter of a thromboelasto-
gram reflecting the coagulation state, is equal to the gener-
ation time of thrombin [30]. The kinetic time in patients
with MOF was prolonged compared with that in patients
without MOF, suggesting a state of hypocoagulation. The
relationship between inflammation reaction and coagulation
dysfunction has been demonstrated [31–33]. Here, three fea-
tures, creatinine, IL-6, and the kinetic time, were important
independent variables for MOF, suggesting that these fea-
tures should be monitored to prevent the occurrence of
MOF in patients with AP.

With these models, it would be very convenient to get
the predicted probability for MOF of patients with MSAP
and SAP on admission; this timing is significantly superior
to that for the evaluation of single features or intricate scor-
ing systems such as APACHE II. Compared with conven-
tional statistical methods, machine learning methods can
detect complicated nonlinear relationships between various
biochemical markers and a disease prognosis. The software
we developed to train and test the predictive model can be
conveniently used in daily clinical practice. Ensemble model
can combine the models, and hopefully, this may improve
the overall diagnostic accuracy. We will try to develop an
ensemble model in our future work.

There were several limitations of our study. Firstly,
the onset time of OF, which might be an aspect of the
likely cause of OF and its outcome, was not included in
this study. Secondly, our study reporting MOF as a bino-
mial variable (present or absent) instead of at different
stages of OF may lack the power to construct models that
can predict the dynamic development of OF. Thirdly,
Computerized tomography images are very important
for evaluating the severity of AP but were not included in
our study.

5. Conclusion

We developed effective models to predict the risk of MOF
in patients with MSAP and SAP on admission. In the test
set, AdaBoost was the superior predictive model, and IL-6
and creatinine levels were two representative predictive
indicators.
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