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Magnetic resonance (MR) images often suffer from random noise pollution during image acquisition and transmission, which
impairs disease diagnosis by doctors or automated systems. In recent years, many noise removal algorithms with impressive
performances have been proposed. In this work, inspired by the idea of deep learning, we propose a denoising method named 3D-
Parallel-RicianNet, which will combine global and local information to remove noise in MR images. Specifically, we introduce a
powerful dilated convolution residual (DCR) module to expand the receptive field of the network and to avoid the loss of global
features. Then, to extract more local information and reduce the computational complexity, we design the depthwise separable
convolution residual (DSCR) module to learn the channel and position information in the image, which not only reduces
parameters dramatically but also improves the local denoising performance. In addition, a parallel network is constructed by
fusing the features extracted from each DCR module and DSCR module to improve the efficiency and reduce the complexity for
training a denoising model. Finally, a reconstruction (REC) module aims to construct the clean image through the obtained noise
deviation and the given noisy image. Due to the lack of ground-truth images in the real MR dataset, the performance of the
proposed model was tested qualitatively and quantitatively on one simulated T1-weighted MR image dataset and then expanded to
four real datasets. The experimental results show that the proposed 3D-Parallel-RicianNet network achieves performance superior
to that of several state-of-the-art methods in terms of the peak signal-to-noise ratio, structural similarity index, and entropy
metric. In particular, our method demonstrates powerful abilities in both noise suppression and structure preservation.

1. Introduction

Medical image information is playing an increasingly im-
portant role in disease diagnosis. However, during the image
acquisition process, due to the improper actions of patients
or staff, strong random noise will inevitably be generated.
This noise not only reduces the resolution of the image but
also affects the precision of clinician diagnosis [1, 2].

At present, popular magnetic resonance (MR) imaging
technology is commonly used as a medical imaging tech-
nology for visualizing human tissues and organs. It does not
pose any radiation hazard, unlike CT imaging [3], and it
achieves multiaspect, multiparameter, and high-contrast-
resolution images without bone artifacts. However, the

random noise will affect the inspection quality in clinical
diagnosis, as well as image processing and analysis tasks such
as image segmentation, registration, and visualization.
Hence, solving the problem of MR image denoising is
critical.

The purpose of image denoising is to remove back-
ground noise and retain valuable information [4]. Many
conventional filtering techniques are often used, such as
Wiener filtering [5], bilateral filtering [6], and total variation
filtering [7]. Yang and Fei proposed a multiscale wavelet
denoising method based on the Radon transform to denoise
MR images [8]. Phophalia et al. mitigated the problem of
medical image denoising by using rough set theory (RST)
[9]. Awate and Whitaker devised a Bayesian denoising
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method and verified it on diffusion-weighted MR images
[10]. Satheesh et al. developed an MR image denoising al-
gorithm using the contourlet transform, which achieved a
higher peak signal-to-noise ratio than the wavelet transform
[11]. Zhang et al. used an improved singular value de-
composition method to denoise simulated and real 3D
images. The experimental results showed that their method
was superior to the existing denoising methods [12]. Leal
et al. presented a method based on sparse representations
and singular value decomposition (SVD) for nonlocally
denoising MR images. This method prevents blurring, ar-
tifacts, and residual noise [13]. In addition, by extending the
local region to a nonlocal scheme, the nonlocal means
(NLM) strategy was used for MR image denoising [14-16].
Gautam et al. proposed a novel denoising technique for MR
images based on the advanced NLM method with non-
subsampled shearlet transform (NSST) [17]. Kanoun et al.
proposed an enhanced NLM filter using the Kolmogorov-
Smirnov (KS) distance. The experimental results provided
excellent noise reduction and image-detail preservation [18].

In recent years, the explosive development of deep
learning has suggested a new methodology for image
denoising. It can use multiple convolution filters to auto-
matically extract features, with large receptive fields, to
reconstruct high-resolution images. In [19], the authors used
the self-encoder to train the image features of different
resolutions to achieve adaptive denoising. Zhang et al.
exploited denoising convolutional neural networks
(DnCNNs) for Gaussian noise removal and achieved ex-
cellent performance by using residual learning strategy [20].
Cherukuri et al. applied a deep learning network that lev-
eraged the prior spatial structure of images to reconstruct
high-resolution images [21]. Manjo'n et al. proposed a novel
automatic MR image denoising method by combining a
convolutional neural network (CNN) with a traditional filter
[22].

Deep learning-based denoising methods can grasp
richer contextual information in large regions to improve
performance. With very deep architectures, it can expand
the receptive field of the network to capture more global
contextual information over large image regions. Liu et al.
utilized the multiscale fusion convolution network
(MFCN) to perform super-resolution reconstruction of
MR images [23]. Pham et al. used a deep 3D CNN model
with residual learning to reconstruct MR images [24]. Their
model exploited a very deep architecture with a large re-
ceptive field to acquire a powerful learning ability. Jiang
et al. described a multichannel denoising convolutional
neural network (MCDnCNN) that directly learned the
process of denoising and performed experiments on
simulation and real MR data [25]. In [26], Ran et al.
suggested a residual encoder-decoder Wasserstein gener-
ated countermeasure network (RED-WGAN) for MR
image denoising. Hong et al. designed a spatial attention
mechanism to obtain the area of interest in MR images,
which made use of the multilevel structure and boosted the
expressive ability of the network [27]. Tripathi and Bag
proposed a novel CNN for MR image denoising. The
proposed model consisted of multiple convolutions that
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captured different image features while separating inherent
noise [28]. Li et al. designed a progressive network learning
strategy by fitting the distribution of pixel-level and fea-
ture-level intensities. Their experimental results demon-
strated the great potential of the proposed network [29].
Gregory et al. created HydraNet, a multibranch deep neural
network architecture that learned to denoise MR images at
a multitude of noise levels, and proved the superiority of
the network on denoising complex noise distributions
compared to some deep learning-based methods [30].
Aetesam and Maji proposed a neural framework for MR
images denoising, using an ensemble-based residual
learning strategy. High metric value and high-quality visual
results were obtained in both synthetic and real noisy
datasets [31].

In the above reported deep learning denoising tasks, the
depth and width of the networks were often increased to
capture more contextual information. However, these
methods introduced a number of parameters, which made it
difficult to train the denoising models. Some of the methods
learned the Rician noise distribution solely by stacking
convolution layers, which easily overlooked much local
information and led to unsatisfactory denoising results at
some key local anatomical positions.

To address the above shortcomings, this work proposes
a novel network termed 3D-Parallel-RicianNet that is used
to remove the noise of MR images. First, to expand the
receptive field without introducing more parameters, we
design a dilated convolution residual (DCR) module and
use it to build a subnetwork (DCRNet) that can extract
global information by cascading. Then a depthwise sepa-
rable convolution residual (DSCR) module is designed and
used to construct a subnetwork (DSCRNet) to extract local
information. Finally, the features of each module of
DCRNet and DSCRNet are merged and cascaded to obtain
full-scale mappings between image appearances and noise
deviation.

The main contributions of this work are summarized as
follows:

(1) DCRNet expands the receptive field to extract rich
context information through cascading DCR mod-
ules, which capture the real Rician distribution in the
global area

(2) DSCRNet uses the DSCR module to focus on the
local area of the image and effectively removes local
anatomical noise. Each DSCR module of this sub-
network is added to the output part of each DCR
module of the corresponding DCRNet

(3) The 3D-Parallel-RicianNet uses a residual learning
mechanism to prevent vanishing and exploding
gradient problems

The remainder of this work is organized as follows. In
Section 2, we describe the proposed denoising networks
and loss function. Then, in Section 3, we present the
experimental tests of our approach on synthetic and real
MR noisy data. Additionally, a comparison of our method
with state-of-the-art algorithms is provided. Finally, in
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Section 4, we discuss our conclusions and give future
directions.

2. Materials and Methods

2.1. Noise Reduction Model. MR magnitude image is cor-
rupted by independent Gaussian distribution noise in the
real part and the imaginary part of images [32-34]. Previous
studies suggest that the probability distribution of noisy MR
image pixel intensity can be represented as a Rician dis-
tribution [35, 36]. Deep learning can ignore the physical
process and model this procedure corruption by learning
from the samples [26]. Hence, the MR image degradation
model with noise can be described as

Y =X +68(Y), (1)

where Y is the noisy MR image, X is the noise-free image,
and 8 (Y) is the deviation between X and Y influenced by the
Rician distribution. According to equation (1), §(Y) can be
expressed as (Y — X), so it was employed to train a residual
mapping  f(Y;0)=48(Y), and we <can obtain
X =Y - f(Y;0). Figure 1 shows that the probability
density distribution (PDF) of noisy MR images varies in
global and local regions. It can be seen from the top left
image that the noise reduces the quality of the MR image and
blurs the boundaries of some tissue structures, which results
in increased difficulty in recognizing the image details. Liu
et al. pointed out that the PDFs of Rician noise vary spatially
in different anatomical regions of brain MR images [37].
Hence, the nonlinear mappings between image appearances
and Rician distributions vary in global and local regions.
Based on this conclusion, we propose the 3D-Parallel-
RicianNet MR image denoising model, which combines the
global and local feature information on global regions and
local regions.

2.2. DCR Module for Global Feature Representation. It is
known that context information is important to reconstruct
corrupted pixels for image denoising. Specifically, it is a
common way to capture more global context information by
expanding the receptive field [38]. In the reported deep
learning denoising tasks, increasing the depth and width of
the deep networks can enlarge the receptive field. However,
the width-adding methods may produce more parameters,
which results in overfitting of the network. The depth-
adding methods may lead to vanishing gradients when the
depth of the network is enormous.

To solve these problems, dilated convolutions have been
developed [39]. The dilation rate of the convolution kernel
can be controlled to obtain receptive fields of different sizes,
as shown in Figure 2. The size of the receptive field, v, is
denoted as

V= ((ksize - 1) x (R - 1) + ksize)d’ (2)

where kg,. is the size of the filter, R is the dilated rate, and d is
the dimension (2 or 3) of the image. The receptive field of the
convolution operation can be expanded by setting different
R. This creates a tradeoff between increasing the depth and

width of CNNs. In [40], Peng proposed dilated residual
networks with symmetric skip connection (DSNet). The
experiments demonstrated that the model was more feasible
for the task of image denoising, especially for Gaussian
noise. Zhang et al. proposed a dual-domain multiscale CNN
(DMCNN) for JPEG artifacts based on dilated convolution.
This also proved that dilated convolution had advantages in
restoring image quality [41].

In this study, we construct the DCR module as one
component of our 3D-Parallel-RicianNet. It exploits dilated
convolutions to extract global features, as shown in Figure 3.
The DCR module consists of dilated convolution, residual
learning, batch normalization (BN), and leaky rectified
linear unit (LeakReLU). Residual learning fundamentally
breaks the symmetry of the network, thereby improving the
ability of the representation network. By setting the BN
layer, the generalization ability of the network is improved.
Due to the problem of vanishing gradients using the ReLU
activation function, we use LeakReLU as the activation
function of the network. The input and output of a two-level
dilated convolution are briefly connected to constructa DCR
module.

2.3. DSCR Module for Local Feature Representation. It is very
important to recover the local fine details in image
denoising. When some local features are not well extracted,
the local denoising effect will be degraded. Recently,
depthwise separable convolution (DSConv) has been used in
many advanced neural networks, such as Xception [42],
MobileNets [43], and MobileNets2 [44], to replace the
standard convolutional layer, aiming to reduce CNN
computational cost and to extract local features [45].

DSConv consists of two parts: depthwise convolution
and pointwise convolution. As shown in Figure 4, the
depthwise convolution acts on each input channel sepa-
rately, to exact local features, followed by a pointwise
convolution that uses 1 x 1/1 x 1 x 1 convolution to weight
the features among channels at every point. Hence, this
would efficiently extract the local features among different
channels. The input feature map is I = {I,1,,...,1,}. First,
using  depthwise  convolutions with n filters
K ={K,K,,...,K,}, an intermediate result ] ={J,/,,
..-» J,} is produced, which is then processed into the output
feature map O = {O,,0,, ..., 0,,} by means of the pointwise
convolutions using m filtersk = {k;, k,, ..., k,,}.

DSConv can extract local delicate features of the image
by considering the information of the position and channel
separately. Imamura et al. designed a denoising network for
hyperspectral images using DSConv and demonstrated its
ability to realize efficient restoration [46]. The advantage of
DSConv is that it reduces the number of network parameters
and the computational complexity in convolution opera-
tions [42-44].

The model designed by using dilated convolution can
restore the image quality globally [40, 41] but can easily
ignore local information. To solve this problem, inspired by
DSConv, we extend the technique to the DSCR module to
extract the local information of the MR images, as shown in



Noisy MR image (160 x 192 x 160) Noisy MR image (1/2 voxels )

Computational Intelligence and Neuroscience

Noisy MR image (1/4 voxels) Noisy MR image (1/8 voxels)

The pixel distribution The pixel distribution The pixel distribution The pixel distribution
0.015 of all voxels 0.04 of 1/2 voxels 0.05 of 1/4 voxels 0.06 of 1/8 voxels
0.04 0.05
0.03
Z 001 z £ 003 £ 004
= = 002 = 2 0.03
S kS S 0.02 2
= 0.005 = = = 0.02
A /&~ 0.01 A
0.01 0.01
0 0 0 0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 010203040506 0.7 0 0.1 0.2 03 04 0.5 0.6 0.7

Pixel values Pixel values

Pixel values

Pixel values

FiGure 1: PDFs in different sizes of subwindows. The height of each vertical bar is the proportion of the corresponding pixel value. The lines
represent the fitted pixel distribution. Top row from left to right: a 3D T1-weighted MR image with 7% Rician noise, a 1/2-voxel T1-weighted
MR image, a 1/4-voxel T1-weighted MR image, and a 1/8-voxel T1-weighted MR image. Bottom row PDFs are of intensity in the cor-
responding voxels. As shown, the PDF (1/2 voxels) within the red region tends to be similar for the whole image. However, the PDFs in the
small local green region (1/4 voxels) and local blue region (1/8 voxels) are different from those in the global region.
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FiGure 2: Dilated convolution. (a) The receptive field of the convolution kernel of size 3 x 3 pixels, which covers a 3 x 3 subregion in the
image through a convolution operation. (b) The receptive field of the convolution kernel with an R of 2. (c) The receptive field of the

convolution kernel with an R of 3.
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FiGgure 3: The structure of the DCR module.

Figure 5. We utilize the residual strategic idea and take the
depthwise separable convolutions as the main construction
module. On the one hand, we design two continuous
depthwise separable convolutions with the BN layer after

each convolution layer to improve the generalization ability
of the network. On the other hand, we use another depthwise
separable convolution to shortcut the module to prevent
vanishing gradients.

2.4. The Proposed 3D-Parallel-RicianNet Model. The pro-
posed 3D-Parallel-RicianNet framework consists of a global
feature extraction network DCRNet, a local feature ex-
traction network DSCRNet, and a reconstruction (REC)
module. Under this framework, the pipeline of MR image
denoising is composed of three major steps (see Figure 6).
First, we apply DCRNet and DSCRNet to extract the global
features and local features, respectively. Then, we fuse the
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F1GURrE 5: The structure of the DSCR module.

global and local features through an additional layer to
obtain real Rician distribution features. Finally, we use the
REC module to obtain a predicted clean MR image X.

DCRNet. The proposed DCRNet framework is a cascade of
18 DCR modules with different R. The kernel size is 3 x
3/3x 3 x 3 for 2D slices/3D patches. Dilated convolution
with a large R behaves well for low-frequency noise removal.
When R is too large, it is difficult to capture some small
contextual information, which will cause the waste of re-
ceptive fields. If R is 1, it is the same as the traditional
convolution in each channel. In DCRNet, to ensure that all
feature maps have the same size as the input, we symmet-
rically pad zeros around the boundaries before applying the
convolution operation. As the convolutional layer increases,
the range of the receptive field will gradually increase. In
addition, a gridding problem is known to exist in dilated

convolution [47]. To solve these problems, considering the
size of the input in our experiments, we applied DCR
modules with different dilation rates. Therefore, the dilated
rate of each layerissetto1,1,1,1,1,1,2,3,1,2,3,1,2,3,1,2,
3, and 1. The final receptive field is 61. Multiscale global
features are extracted by using multiple DCR modules with
different dilation rates. Each module has 16 filters. The
implementations can avoid the gridding effects and reduce
the influence of unrelated information.

DSCRNet. DSCRNet is further used to compensate for the
local information ignored by expanding the receptive field. It
is a cascade of 18 DSCR modules. The size of the convolution
kernel of each module is 3 x 3/3 x 3 x 3. Each module also
has 16 filters.

We fused the features extracted from each module of
DCRNet and DSCRNet to gradually realize the complemen-
tarity of global and local information. This process particularly
helps to preserve critical image features in global regions and
local regions. Therefore, the proposed 3D-Parallel-RicianNet
model will have better denoising ability than other methods.

REC Module. After a convolution layer, we obtain the
estimated deviation f (Y;®) and then use X=Y- f(Y;0)
to obtain a predicted clean MR image.

2.5. Loss Function. Our loss function uses the mean squared
error (MSE) as follows:

N
(O) = YV~ f(V;0) - X, 3)
i=1

where X is the i™ noise-free image, Y is the corresponding
noisy image, and ® denotes the network parameters. We
minimize this loss function to learn the output noise-free
image (Y; - f(Y;;©)).

3. Experiments Results and Analysis

3.1. Dataset Description. To validate the performance of the
proposed 3D-Parallel-RicianNet, extensive experiments
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FIGURE 6: The proposed network architecture for MR image denoising.

were performed on both public simulated and clinical
datasets.

For simulated experiments, the BrainWeb dataset
[48, 49] was used. In this work, we obtained 18 T1-weighted
(T1w) MR images with different noise levels (1%, 3%, 5%,
7%, and 9%). The size of the image is 181 x 217 x 181, and its
resolution is 1 x 1 x Imm?. The brain skull is stripped by the
skull mask. To further speed up the training process and
obtain fewer redundant areas, we cropped the edges of the
image, and the image size is 160 x 192 x 160.

One critical problem of the deep learning approach is
weak generalization applicability. Networks trained on one
dataset from a specific manufacturer or setting may not
perform well for a different dataset. The noise in the sim-
ulation dataset is assumed to come from single coil acqui-
sition systems. However, clinical MR image noise
distributions come from multiple coils, and these noises
are subject to a noncentral Chi distribution with a sum-
of-squares (SoS) reconstruction. Actually, the Rician dis-
tribution is a special case of the noncentral Chi distribution
[50] and varies spatially in real MR images [37].

To verify the generalization ability of the proposed
model, we carried out experiments on real datasets. For the
first clinical experiment, the well-known IXI dataset [51] was
used, which was collected from 3 different hospitals. We
randomly selected 100 Tlw brain images from the Ham-
mersmith dataset. The image size is 256 x 256 x 150, and the
voxel resolution is 0.9375 x 0.9375 x 1.2mm?>. Sixty images
were randomly selected as the training set, 20 images for
validation, and the other 20 images for testing. In this
dataset, we manually added different levels of Rician noise to
simulate the noisy image [26]. The brain skull was stripped
by the VolBrain method [52].

For another experiment, we randomly selected 35 Tlw
images in ADNI [53]. Each of these samples contained 192 x
192 x 160 voxels with 1.2 x 1.25 x 1.25mm? voxel resolu-
tion. For the experiment, the original scan was resized to
dimensions of 256 x 256 x 128. The brain skull was also
stripped by the VolBrain method. Due to the lack of
knowledge about the noise level in real data, we used the
variance-stabilization approach to estimate the Rician noise

level of ADNI data, which was approximately 3% [54].
Hence, we selected IXI models trained with a 3% noise level
to test ADNI data.

The last dataset comes from the Combined Healthy
Abdominal Organ Segmentation (CHAOS) challenge
[55, 56]. The dataset included 40 abdominal T1w MR images.
On average, each volume size is 256 x 256 x 36, and the
noise level is unknown. We adjusted the image to
256 x 256 x 64 through zero-padding operations to be uni-
form. To substantiate the robustness and generalization
capability of the proposed framework, we employed this
dataset for our experiments, splitting it into subsets of 25, 5,
and 10 subjects that were used for training, validation, and
testing.

3.2. Training Details. We use two strategies for training on
the three datasets of BrainWeb, IXI-Hammersmith, and
CHAOS: 2D slice-based training and 3D patch-based
training. For 2D training, we extracted 2D coronal slices
from 3D data in the BrainWeb dataset. We obtained 2880
slices by rotating 90° and mirroring, with 1920 slices for
training, 384 slices for validation, and 576 slices for testing.
In the IXI-Hammersmith dataset, we cropped the image to
256 x 256 x 128 and tested it in all clinical brain datasets. We
extracted 7680 slices for training, 2560 slices for validation,
and 2560 slices for testing in the sagittal plane. In the
CHAOS dataset, using rotation and mirroring to expand the
data, we obtained 6400 sagittal slices for training, 1280
sagittal slices for validation, and 640 sagittal slices for testing.

For patch-based training, 3D data in the BrainWeb
dataset was also expanded by rotation and mirroring. To
reduce memory burden, we used patches with a size of
64 x 64 x 64 voxels. A sliding window strategy with a stride
of 16 x 32 x 16 was then used to obtain 3675 patches to train
the 3D model. Using the same strategy as the BrainWeb
dataset, 4500 training patches, 1500 validation patches, and
1500 test patches were extracted from IXI-Hammersmith
with a step size of 48 x 48 x 32. We used rotating and
mirroring to expand the CHAOS dataset before extracting
patches and finally obtained 4900 training patches, 980
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validation patches, and 490 test patches with a stride of
32 x 32 x 64. In the training stage, since the CHAOS dataset
did not have clean images and the noise level was unknown,
we used the 5% noise model trained by IXI-Hammersmith to
estimate clean images as ground truth. In the testing stage,
we applied the trained network to patches of the test set. The
resultant predictions were averaged in the overlapping
regions.

All training was conducted using a deep learning ac-
celeration computing service, which is configured with a
2.20 GHz Core i7-8750H CPU, an NVIDIA GeForce GTX
1070 (8G) GPU, and 16 GB RAM. All the deep learning
models were implemented with the publicly available Ten-
sorFlow framework and Keras artificial neural network li-
brary. In the training process, the learning rate was set to le-
3. We used Adam optimization.

3.3. Evaluation Methods. Six kinds of deep learning models
were trained: CNN-DMRI [28], RicianNet [29], 2D-
DCRNet, 2D-Parallel-RicianNet, 3D-DCRNet, and 3D-
Parallel-RicianNet. We compared these six deep learning
models with four traditional denoising methods: NLM,
BM3D, ODCT3D [57], and PRI-NLM3D [57]. In the NLM
method, the fastNLMMeansDenoising function is selected,
where the template size is 7 x 7 and the filter strength is 15.

Three quantitative metrics were employed to evaluate the
denoising performance of these methods. The first was the
peak signal-to-noise ratio (PSNR). A high PSNR generally
denotes good denoising performance. The second was the
structural similarity index (SSIM), which measured the
structural similarity between the ground-truth and denoised
images. The last one was entropy, which reflected the
amount of image information. We used the natural loga-
rithm in the entropy metric.

3.4. Simulated Results. The quantitative results of NLM,
BM3D, ODCT3D, PRI-NLM3D, CNN-DMRI, 2D-
DCRNet, 2D-Parallel-RicianNet, 3D-DCRNet, and 3D-
Parallel-RicianNet on Tlw images with different noise
levels (1%, 3%, 5%, 7%, 9%) are illustrated in Tables 1-3.

Tables 1 and 2 depict the PSNR and SSIM results, re-
spectively. We can observe that the PSNR values of 3D-
Parallel-RicianNet are obviously higher than those of the
other methods at all noise levels. In Table 2, the SSIM values
of 3D-Parallel-RicianNet are closer to 1, which is higher than
those of the other methods under all noise levels except PRI-
NLM3D at the 7% noise level. This indicates that our
proposed model has good denoising performance with good
anatomical structure preservation.

Table 3 shows the entropy results of 10 methods. We find
that the proposed 3D-Parallel-RicianNet can obtain the
lowest entropy under all five noise levels. Hence, considering
the three metrics in 3 tables, we find that our method has
better noise reduction performance. In addition to visual
quality, another important aspect of the MR image denoising
method is the time complexity. We give running times for
different methods in Table 4. It is clear that 3D-DCRNet and
our proposed 3D-Parallel-RicianNet are much faster than

other methods. Once the deep learning-based method fin-
ishes training, forward propagation is very fast. In Table 5,
our method has the fewest parameters, which means that our
network does not need too much computational power.
From this, we can see that our model has competitive ad-
vantages for small data sets.

Figures 7 and 8 provide a visual comparison for Tlw
images from testing data under 3% and 9% noise levels using
10 methods. The zoomed-in regions of the denoised images
are shown to observe noticeable details. In Figure 7, all
methods can achieve good performance under low-level
noise circumstances. However, traditional methods suffer
from obvious oversmoothing effects and distort some
important details. Among deep learning methods, the
images processed by CNN-DMRI, 2D-DCRNet, 2D-
Parallel-RicianNet, and 3D-DCRNet have obvious Rician
noise. RicianNet increases the brightness of the brain area
and makes it difficult to clearly observe the anatomical
structure. Figure 7 shows that the 3D-Parallel-RicianNet
denoising method gives better results and preserves the
key information in the image.

While the noise level increases, the traditional methods
suffer from obvious oversmoothing effects, as shown in
Figure 8. CNN-MRI and RicianNet models still have some
noise and suffer from slight oversmoothing of textured
regions. By using the DCR module, 2D-DCRNet and 3D-
DCRNet have a strong denoising ability globally for 2D slice-
based and 3D patch-based cases. However, without con-
sidering local structural features, the DCRNet model loses
some important local details in the denoising process.
Hence, by combining global features of DCRNet and local
features of DSCRNet, the proposed 3D-Parallel-RicianNet
can preserve finer detailed structures in homogeneous areas,
and it obtains the most consistent results with noise-free
images. Hence, our 3D-Parallel-RicianNet method can
better retain the key information in denoised MR images,
which is useful for improving the precision of clinician
diagnosis.

3.5. Clinical Results

3.5.1. Results from the IXI-Hammersmith Dataset. To vali-
date the performance of the proposed 3D-Parallel-RicianNet,
ten denoising methods were compared on different clinical
data sets.

Figures 9-11 summarize the three metrics in the IXI-
Hammersmith dataset with 10 methods under different
noise levels. At a noise level of 1%, the PRI-NLM algo-
rithm achieves denoising performance comparable to that
of 3D-Parallel-RicianNet in terms of PSNR. At noise levels
above 5%, the proposed model produces higher PSNRs
than the competing methods. In particular, in Figure 10,
we can see that the 3D-Parallel-RicianNet model con-
sistently yields SSIMs higher than the other nine methods
for all noise levels. From the perspective of entropy, our
method had a low entropy value. These results indicated
that the 3D-Parallel-RicianNet model had a strong
denoising ability.



TaBLE 1: PSNRs on different noise levels from BrainWeb dataset
with 10 methods.
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TaBLE 4: Execution time on different noise levels from BrainWeb
dataset with 10 methods.

Methods 1% 3% 5% 7% 9% Methods 1% 3% 5% 7% 9%  Average
NLM 341381 321259 29.9717 29.4599 27.8319 NLM 10.55 10.54 10.58 10.54 10.55 10.55
BM3D 353151 331937 31.0144 30.4890 28.9093 BM3D 2826 28.13 2729 27.37 2825 27.86
ODCT3D 48.1295 362756 31.5857 30.5124 28.2452 ODCT3D 23.54 17.56 18.02 14.75 1454 17.68
PRI-NLM3D  49.8923 36.8192 31.9597 30.9418 28.5961 PRI-NLM3D 14.07 12.50 12.92 13.59 1328 13.27
CNN-DMRI 47.8125 354720 30.8958 29.3533 27.2152 CNN-DMRI 113 111 113 112 112 112

RicianNet 43.4145 37.0095 27.4807 27.6777 28.8616 RicianNet 171 165 165 169 166 1.67

2D-DCRNet 46.8168 38.6786 34.6277 32.4664 30.5232 2D-DCRNet 127 132 134 133 129 131

2D-Parallel- 50.9072 41.8099 38.8218 35.9767 34.5207 2D-Parallel- 118 114 113 112 112 114

RicianNet RicianNet

3D-DCRNet 48,5120 39.1336 351466 32.7280 31.0916 3D-DCRNet 094 092 091 091 092 092

3D-Parallel- 51.7192 43.9950 40.9218 37.6896 37.1069 3D-Parallel- 0.89 0.89 0.89 0.89 0.89 0.89

RicianNet RicianNet

TaBLE 2: SSIMs on different noise levels from BrainWeb dataset
with 10 methods.

TABLE 5: Number of parameters of different networks.

CNN- .. 3D-Parallel-
Methods 1% 3% 5% 7% 9% Method pMRI  RicianNet o i nNet
NLM 0.9669 0.9605 0.9539 0.9521 0.9454 Number of
BM3D 0.9768 0.9725 0.9673 0.9649 0.9584 parameters 1,444,929 5,346,114 395,405
ODCT3D 0.9992 0.9959 0.9903 0.9857 0.9778
PRI-NLM3D 0.9995 0.9967 0.9922 0.9889 0.9823
RicianNet 0.9606 0.8906 09221 0.7246 0.6319 dataset, which reflects network generalization on other
2D-DCRNet 0.9986 0.9900 0.9906 0.9535 0.9346 nontrained datasets. The 3D-Parallel-RicianNet shows the

2D-Parallel-RicianNet 0.9992 0.9933 0.9864 0.9685 0.9722
3D-DCRNet 0.9985 0.9898 0.9587 0.9561 0.9373
3D-Parallel-RicianNet 0.9995 0.9982 0.9942 0.9883 0.9859

TaBLE 3: Entropy on different noise levels from BrainWeb dataset
with 10 methods.

Methods 1% 3% 5% 7% 9%
2.4787 2.5067 2.5266 2.5482 2.5556

Noisy image

NLM 24721 2.4581 2.4474 2.4470 2.4324
BM3D 24532 2.4476 2.4849 2.4676 2.4803
ODCT3D 2.4516 2.4844 2.4988 25102 2.5033
PRI-NLM3D 2.4447 2.4415 2.4291 2.4330 2.4201
CNN-DMRI 2.4499 2.4869 2.5086 2.5313 2.5406
RicianNet 2.4629 2.4715 2.4519 24511 2.4606
2D-DCRNet 24624 2.4701 2.4742 2.3481 2.4142
2D-Parallel-RicianNet 2.4693 2.3995 2.4073 2.4631 2.1374

3D-DCRNet 2.4556 2.4488 2.4331 2.3340 2.1787
3D-Parallel-RicianNet 2.4364 2.3469 2.3275 2.2890 2.0642

Figure 12 shows an example of denoising results using 10
methods on the IXI-Hammersmith dataset with 3% noise. It
can be seen in the figure that the proposed 3D-Parallel-
RicianNet model gives the best denoising results and the
denoised image is virtually identical to the ground-truth image.
After visual inspection, it can be deduced that the outcome of
our proposed 3D-Parallel-RicianNet is improved compared to
the others in terms of fine-structure retention and edges.

3.5.2. Results from the IXI-Guys Dataset. Figures 13-15
summarize the PSNR, SSIM, and entropy values using 10
methods on the IXI-Guys dataset. We test the trained model

most robust performance among the tested methods in
terms of PSNR, SSIM, and entropy. In particular, our model
still achieves better denoising ability than other methods at
higher noise levels.

Figure 16 shows an example of denoising results ob-
tained with 10 methods on data from the IXI-Guys dataset at
the 3% noise level. Consistent with the denoising perfor-
mance on the IXI-Hammersmith dataset, the proposed 3D-
Parallel-RicianNet method provided the best denoising re-
sult and removed the image noise more robustly than the
other methods on the IXI-Guys dataset. Particularly in the
region indicated by the red line, the 3D-Parallel-RicianNet
model achieved better visual results.

3.5.3. Results from the ADNI Dataset. This subsection is
devoted to verifying the consistency of the proposed ap-
proach on the ADNI dataset. Because noise-free images are
unavailable, entropy is measured and used as the quanti-
tative metric. The results are shown in Figures 17 and 18.

As shown in Figure 17, although the RicianNet and 2D-
DCRNet remove noise, they suffer from obvious over-
smoothing effects, and it is difficult to identify the key
anatomical structures. In addition, the denoising effect is not
satisfactory when using BM3D, ODCT3D, PRI-NLM3D,
CNN-DMRYI, 2D-Parallel-RicianNet, and 3D-DCRNet. The
results of these methods still contain substantial noise and
miss some of the structural details. It can be noted that 3D-
Parallel-RicianNet retains the details better than other
methods.

According to Figure 18, the entropy results of denoised
MR images in the ADNI dataset using different processing
methods are compared. We find that 3D-Parallel-RicianNet
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FIGURre 7: Denoising effect of different methods with 3% noise level. (a) Noisy image; (b) noise-free image; (c) NLM; (d) BM3D;
(e) ODCT3D; (f) PRI-NLM3D; (g) CNN-DMRI; (h) RicianNet; (i) 2D-DCRNet; (j) 2D-Parallel-RicianNet; (k) 3D-DCRNet; (1) 3D-Parallel-

RicianNet.

FIGURe 8: Denoising effect of different methods with 9% noise level. (a) Noisy image; (b) noise-free image; (c) NLM; (d) BM3D;
(e) ODCT3D; (f) PRI-NLM3D; (g) CNN-DMRI; (h) RicianNet; (i) 2D-DCRNet; (j) 2D-Parallel-RicianNet; (k) 3D-DCRNet; (1) 3D-Parallel-
RicianNet.

achieves the lowest entropy value. Combined with Figure 17,
we find that our method not only effectively removes noise
but also preserves more useful key information in images.
Hence, our 3D-Parallel-RicianNet method has strong gen-
eralization ability and strong robustness. These experimental
results once again demonstrate the advantages of our pro-
posed model.

3.5.4. Denoising of Real Abdominal MR Data. In this sub-
section, we performed denoising for abdominal MR images
by the proposed network. We compared three denoising
methods, and the experimental results are shown in Table 6.

Table 6 shows that the PSNR of our method can reach
39.7090, which is higher than those of BM3D, CNN-DMR]I,
and RicianNet. On SSIM, RicianNet is lower than BM3D and
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F1GURE 10: SSIMs using 10 methods under different noise levels for
the IXI-Hammersmith dataset.

CNN-DMR], indicating that although RicianNet can
remove noise, it cannot retain the structure information of
the image. Our method can still obtain the highest SSIM
value. We show the denoising results of the four methods in
Figure 19. It can be seen from the figure that our method can
not only remove noise but also preserve the key anatomical
position information in the image completely.
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FiGure 11: Entropy using 10 methods under different noise levels
for the IXI-Hammersmith dataset.

3.6. Comparisons of the Results with Different Spatial
Resolutions. The image resolution affects the quality of the
image. Generally, when the image resolution is smaller, the
denoising ability of the model is significantly reduced. In this
part, we use the BrainWeb dataset to verify the denoising
effect of images with different resolutions at a noise level of
3%. The results are shown in Table 7.

From Table 7, it can be observed that the proposed 3D-
Parallel-RicianNet outperforms other methods tested among
the different spatial resolutions. For BM3D and RicianNet, they
are difficult to remove noise at low spatial resolutions. It is
noted that noise cleaning appears to have a consistent effect
when different spatial resolutions are relatively close, such as
0.9375 x 0.9375 x 0.9375mm” and 1 x 1 x Imm’. However, it
should be noted that some loss of contrast and spatial reso-
lution is possible. Once the difference between the resolutions
becomes larger, the denoising effect will also change signifi-
cantly, such as 1 x 1 x Imm? and 2 x 2 x 2mm?®. In addition,
the PSNRs of deep learning methods decrease significantly with
decreasing spatial resolution, while the SSIM values are rela-
tively close, indicating that deep learning methods recover most
of the complex anatomical structures. Compared to other
methods, our model has a more balanced denoising ability at
different spatial resolutions, and the mean value of PSNR can
reach 41.6373. Since the proposed 3D-Parallel-RicianNet can
extract the global and local features in the noisy image and
restore the clean image, it can still maintain denoising ability at
low spatial resolution.

3.7. Comparisons of the Results with Different Brain Tissues.
Based on MR imaging technique, key brain tissues like
gray matter (GM), white matter (WM), and cerebrospinal
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FIGURE 12: The denoising effect for IXI-Hammersmith dataset with different methods at 3% noise level. (a) Noisy image; (b) noise-free
image; (c) NLM; (d) BM3D; (e) ODCT3D; (f) PRI-NLM3D; (g) CNN-DMRI; (h) RicianNet; (i) 2D-DCRNet; (j) 2D-Parallel-RicianNet;
(k) 3D-DCRNet; (1) 3D-Parallel-RicianNet. Each method below shows the corresponding edge detection image of the enlarged area (green),
and the yellow represents the overlapping area with the noise-free image (red).
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FIGURE 13: PSNRs using 10 methods under different noise levels for the IXI-Guys dataset.
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FIGURE 15: Entropy using 10 methods under different noise levels for the IXI-Guys dataset.

fluid (CSF) become visible. These three tissues help vi-
sualize brain structures and guide surgery but noise can
affect the interpretation of brain tissue [58]. To evaluate
the denoising effectiveness of 3D-Parallel-RicianNet on
different brain tissues, state-of-the-art methods BM3D,
CNN-DMRI, and RicianNet are compared in Table 8. The
proposed model can achieve better PSNR and SSIM

results than the competing methods in different brain
tissues. In particular, in CSF, we can see that the PSNR of
3D-Parallel-RicianNet can reach 51.9105. We also show
the different brain tissue denoising results of four
denoising methods in Figure 20. These experimental re-
sults once again demonstrate the advantages of the pro-
posed model.
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FIGURE 16: The denoising effect for IXI-Guys dataset with different methods at 3% noise level. (a) Noisy image; (b) noise-free image;
(c) NLM; (d) BM3D; (e) ODCT3D; (f) PRI-NLM3D; (g) CNN-DMRI; (h) RicianNet; (i) 2D-DCRNet; (j) 2D-Parallel-RicianNet; (k) 3D-

DCRNet; (1) 3D-Parallel-RicianNet.

1) ()

FIGURE 17: The denoising effect of ADNI set with different methods at 3% noise level. (a) Noisy image; (b) NLM; (c) BM3D; (d) ODCT3D;
(e) PRI-NLM3D; (f) CNN-DMRI; (g) RicianNet; (h) 2D-DCRNet; (i) 2D-Parallel-RicianNet; (j) 3D-DCRNet; (k) 3D-Parallel-RicianNet.

3.8. Variants of the R Setting in the DCR Module. In our
model, the DCR module of different R is our key component.
The PSNR and SSIM are recorded in Table 9 by different R
settings at the 3% noise level in the BrainWeb dataset. We
conducted three experiments, each using the same dilation rate
for the 18 DCR modules. The final receptive fields are 37, 73,
and 109. Combining Tables 1 and 2 and Table 8, we can find

that our hybrid dilation rate can reach the highest PSNR and
SSIM. When R = 2 and 3, the receptive field has already caused
waste. In addition, using the same dilation rates can easily cause
gridding effects. There is a lack of correlation between the
feature maps extracted in this way, and an accurately predicted
result cannot be obtained in the end. Therefore, our model can
achieve superior denoising performance.
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FI1GURE 18: The entropy of the denoised images from the ADNI database.

(e)

FIGURE 19: The denoising effect of CHAOS set with different methods at 3% noise level. (a) Noisy image; (b) noise-free image; (c) BM3D;
(d) CNN-DMRI; (e) RicianNet; (f) 3D-Parallel-RicianNet.

TaBLE 6: The PSNR and SSIM on different noise levels from CHAOS dataset with 4 methods.

Method BM3D CNN-DMRI RicianNet 3D-Parallel-RicianNet

PSNR 31.9167 32.0655 35.2577 39.7090
SSIM 0.9862 0.9867 0.9258 0.9941
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TaBLE 7: PSNR (top) and SSIM (bottom) comparisons of different algorithms with different spatial resolutions.

. . Method
Spatial resolutions (mm?) o o
BM3D CNN-DMRI RicianNet 3D-Parallel-RicianNet
0.9x0.9x%x0.9 31.8908 0.9709 34.7330 0.9890 35.7466 0.9233 41.5169 0.9970
0.9375 % 0.9375 x 0.9375 32.1794 0.9718 35.2350 0.9903 36.4030 0.9117 41.9756 0.9973
Ix1x1 33.1937 0.9725 35.4720 0.9891 37.0095 0.8906 43.9950 0.9982
1.1x1.1x1.1 31.7986 0.9677 35.6006 0.9917 36.6172 0.9078 42.2193 0.9976
1.25x 1.25 x 1.25 31.3591 0.9633 34.0402 0.9917 36.0542 0.9070 41.9259 0.9974
1.5x1.5x 1.5 29.8656 0.9481 35.1568 0.9918 31.4012 0.9180 40.3297 0.9961
2x2x2 28.2362 0.9230 34.5695 0.9900 23.4731 0.9038 38.4990 0.9933
TaBLE 8: PSNR and SSIM comparisons of different methods in different brain tissues.
CSF GM WM

Method

PSNR SSIM PSNR SSIM PSNR SSIM
BM3D 27.0765 0.9213 19.1709 0.9114 18.2741 0.9350
CNN-DMRI 45.8322 0.9981 39.1790 0.9976 38.7420 0.9973
RicianNet 44.8454 0.9982 41.9853 0.9988 43.6082 0.9986
3D-Parallel-RicianNet 51.9105 0.9996 47.5288 0.9996 48.6238 0.9998

FIGURE 20: The denoising effect of brain tissues with different methods at 3% noise level. Noisy image (1 column); noise-free image (2"
column); BM3D (3™ column); CNN-DMRI (4™ column); RicianNet (5™ column); 3D-Parallel-RicianNet (6™ column).

TaBLE 9: PSNR and SSIM comparisons in different R settings.

R=1 R=2 R=3
PSNR 41.0253 40.4788 39.3627
SSIM 0.9956 0.9661 0.9946

4. Discussion and Conclusions

In this work, we propose a parallel denoising residual
network based on cascaded DCR and DSCR modules to

address the random noise in MR images. The global and
local features are extracted by the designed DCRNet and
DSCRNet, and then these features are fused together. Hence,
global and local information is captured to drive the
denoising progress of brain MR images by supervised
network learning.

The PSNR, SSIM, and entropy are calculated to compare
the proposed method with many existing methods, and the
denoising effect of the proposed method is verified on the
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BrainWeb simulation data under different noise levels. To
test the practicability of the proposed network, experiments
on real clinical MR images show that the proposed method is
superior to other methods for the IXI-Hammersmith, IXI-
Guys, ADNI, and CHAOS datasets.

In this work, one of our limitations is that although
structural information can be retained at high noise levels,
there is still a small amount of local noise, as shown in
Figure 8. Next, we will continue to study to find a balance
between noise removal and structure maintenance at dif-
ferent noise levels. Another critical limitation of our method
is the requirement for high-quality noise-free ground-truth
images, which are difficult to obtain in real applications.
Incorporation of prior knowledge about organ shape and
location is key to improving the performance of image
analysis approaches. However, in most recently developed
medical image analysis techniques, it is not obvious how to
incorporate such prior knowledge [59]. Oktay et al. incor-
porated anatomical prior knowledge into a deep learning
method through a new regularization model, and this
method showed that the approach can be easily adapted to
different medical image analysis tasks (e.g., image en-
hancement and segmentation) [59]. Furthermore, in [60],
the author used morphological component analysis (MCA)
to decompose noisy images into cartoon, texture, and re-
sidual parts that were considered noise components.
Therefore, to circumvent the limitations of our method, we
will verify it using multimodality images and incorporate
other meaningful priors, such as residual parts, organ shape,
and location to mitigate semisupervised denoising tasks in
the future.

In conclusion, the results obtained in this paper are
encouraging and efficiently demonstrate the potential of our
3D-Parallel-RicianNet method for MR image denoising.
This method can not only effectively remove noise in MR
images but also preserve enough detailed structural infor-
mation, which can help to provide high-quality MR images
for clinical diagnosis.
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