Skip to main content
. 2021 May 3;2021:6630643. doi: 10.1155/2021/6630643

Table 5.

Comparison results of different research work on the CCDD.

Literature ECG categories Classifier Performance
[32] 2 CBRNN Spe = 76.32%
Se = 75.52%
Acc = 87.69%

[44] 2 Ensemble deep learning Spe = 86.86 ± 3.51%
Se = 80.23 ± 4.49%
Acc = 84.84 ± 1.82%

[45] 2 LCNN Spe = 83.84%
Se = 83.43%
Acc = 83.66%

[46] 2 Heart rate and LCNN fuse Spe = 84.45%
Se = 85.19%
Acc = 84.77%

[47] 2 ResNet50 Spe = 91.63%
Se = 87.73%
Acc = 89.43%

[24] 7 multilabel Ensemble multilabel classification model Se (Rec) = 71.6%
Acc = 75.2%
Pre = 80.8%
F1 = 75.2%

This work 9 multilabel CSA-MResNet Spe = 98.7%
Se (Rec) = 85.9%
Acc = 97.1%
Pre = 90.6%
F1 = 88.2%