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Abstract

Background—The heterogeneous nature of mood and anxiety disorders highlights a need for 

dimensionally based descriptions of psychopathology that inform better classification and 

treatment approaches. Following the Research Domain Criteria (RDoC) approach, the current 

investigation sought to derive constructs assessing positive and negative valence domains across 

multiple units of analysis.

Methods—Adults with clinically impairing mood and anxiety symptoms (N=225) completed 

comprehensive assessments across several units of analysis. Self-report assessments included nine 

questionnaires that assess mood and anxiety symptoms and traits reflecting the negative and 

positive valence systems. Behavioral assessments included emotional reactivity and distress 

tolerance tasks, during which skin conductance and heart rate were measured. Neuroimaging 

assessments included fear conditioning and a reward processing task. The latent variable structure 

underlying these measures was explored using sparse Bayesian group factor analysis (GFA).

Results—GFA identified 11 latent variables explaining 31.2% of the variance across tasks, none 

of which loaded across units of analysis or tasks. Instead, variance was best explained by 

individual latent variables for each unit of analysis within each task. Post-hoc analyses showed 1) 
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associations with small effect sizes between latent variables derived separately from fMRI and 

self-report data and 2) that some latent variables are not directly related to individual valence 

system constructs.

Conclusions—The lack of latent structure across units of analysis highlights challenges of the 

RDoC approach, and suggests that while dimensional analyses work well to reveal within-task 

features, more targeted approaches are needed to reveal latent cross-modal relationships that could 

illuminate psychopathology.
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Introduction

Mood and anxiety disorders are among the most common and debilitating mental health 

conditions worldwide (1,2). Diagnostic systems for these disorders have largely relied upon 

presenting signs and symptoms that do not necessarily reflect underlying neurobiological 

and behavioral systems (3). However, the phenotypic and etiological heterogeneity of Major 

Depressive Disorder (MDD) and anxiety disorders poses significant challenges to 

understanding biological and behavioral mechanisms, which may account for the partial 

effectiveness of extant treatments (e.g., 4,5).

These challenges have motivated the use of latent variable approaches (6) to help delineate 

distinct syndromes of mood and anxiety disorders that better reflect the underlying 

neurobiology. Latent variable approaches treat mental disorders as latent constructs that can 

be associated with measures from multiple units of analysis and multiple tasks (7–9). These 

approaches are consistent with the goal of the Research Domain Criteria (RDoC) framework 

– to develop a research classification system for mental disorders based upon both 

neurobiology and observable behavior (10,11). The RDoC approach aims to derive 

psychological constructs that are observable in multiple units of analysis, including but not 

limited to self-report, behavior, physiology, and neural circuits. The identification of such 

constructs may allow us to transcend traditional diagnostic groups and more adequately 

capture variation in clinical populations. This could lead to more accurate, personalized 

diagnostic measures for mental health that could inform more targeted treatments.

RDoC constructs of particular relevance to mood and anxiety disorders are the positive and 

negative valence systems (12). Low positive affect is linked to depression and some anxiety 

disorders, high negative affect is common to both anxiety and depression, and comorbid 

anxiety and depression are associated with more negative affect than either disorder alone 

(7,13–20). Additionally, psychophysiological and neurobiological data indicate that the 

positive and negative valence systems are closely tied to reward and threat sensitivity, 

respectively (21), making them amenable to investigation through reinforcement-based 

behavioral paradigms. The goal then, from the RDoC perspective, is to determine whether 

common measures of anxiety, depression, threat sensitivity, and reward sensitivity — 
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extending across the self-report, behavioral, physiological, and neural domains — map onto 

shared latent constructs that reflect underlying positive and negative valence systems.

Despite this promising blueprint, however, previous results suggest limitations in the RDoC 

approach. For example, previous studies have failed to identify latent psychological 

constructs that cut across two critical units of analysis: behavioral tasks and self-report 

measures (22,23). Eisenberg et al. (22) found that self-report and task measures of self-

regulation cluster in separate regions of a latent psychological space, suggesting a weak 

relation across the two units of analysis. This is consistent with correlational approaches that 

indicate a lack of coherence between behavioral and self-report measures for self-control 

(24,25), impulsivity (26), and cognitive empathy (27; see (28) for a review). Thus, it remains 

unclear whether unifying psychological constructs are observable across units of analysis 

and what the optimal analytic approaches are for identifying them.

Previous reports, however, have two important limitations. First, they have largely been 

restricted to behavioral and self-report levels of analysis. It therefore remains an open 

question whether expanding analyses to include neural and physiological data can enhance 

the identification of latent psychological constructs. Second, previous latent variable 

approaches have used methods like exploratory factor analysis (22) and principal component 

analysis (29) that are designed to account for correlational structure between individual 

variables, but that do not explicitly account for relationships between groups of variables. In 

this regard, group factor analysis (GFA; 30) provides a compelling alternative as it allows for 

examination of the latent variable structure underlying a set of experimental measures across 

multiple units of analysis, while rigorously accounting for relationships between the 

different groups of variables that compose each unit.

Here, we used GFA to analyze self-report, behavioral, physiological, and neural data from a 

population with significant mood and anxiety symptoms to (1) extract latent factors 

putatively reflecting underlying positive and negative valence systems, and (2) examine 

whether variables across different units of analysis map onto the same latent factor. We 

studied a clinical population with significant mood and anxiety symptoms that, importantly, 

were not required to meet DSM disorder criteria for study entry. By studying patients in this 

setting, we gain access to a generalizable sample of persons with anxiety and/or depressive 

symptoms without the filtering inherent to general psychiatric or other more specialized 

clinical settings.

Participants completed a battery of well-established tasks and self-report questionnaires that 

are heuristically aimed at quantifying positive and negative valence domains, as well as 

anxiety and depression symptoms. For physiology and behavior, we measured heart rate and 

subjective ratings to positive, negative, and neutral images from the International Affective 

Picture System (IAPS; 31,32). Further, we measured heart rate while participants performed 

the mirror tracing persistence task (MTPT), a measure of distress tolerance (33,34). For 

neural circuits, functional magnetic resonance imaging (fMRI) was used to measure brain 

activity while participants performed fear conditioning (35–37) and monetary incentive 

delay (MID; 38–40) tasks. These tasks targeted neural circuits for threat sensitivity and 

reward processing, respectively. We hypothesized that using a relatively broad range of tasks 
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and units of analysis would improve the chances of identifying either cross-unit or cross-task 

latent variables reflecting the positive and negative valence systems that are putatively 

perturbed in anxiety and depression.

Methods

Sampling and Participants

We recruited participants from two clinics: UCSD Primary Care Clinics (N=101) and the 

UCLA Family Health Center (N=124). For inclusion and exclusion criteria and sample 

characteristics see supplemental methods section 1.1 and Tables S2, S3.

Procedures—Patients presented to the UCSD and UCLA clinics or responded to flyers 

and completed screening measures (OASIS and PHQ-9) for eligibility. Individuals who 

accepted an invitation to participate in the study provided consent and underwent a 

structured diagnostic DSM-5, Mini International Neuropsychiatric Interview (MINI Version 

7.0.0.0, used by permission of David Sheehan, MD). Subsequently, participants returned for 

a behavioral testing session and a neuroimaging testing session.

Nine scales were used to assess self-reported symptoms of positive and negative valence 

processing in the behavioral session (see Supplemental Materials for details). An 

International Affective Picture System (IAPS) task (31,32; Supplemental Materials) was 

used to measure physiological and behavioral responses to positively and negatively 

valenced stimuli. For images that represent pleasant, unpleasant, and neutral valence 

categories, we measured subjective valence and arousal ratings as well as heart rate (HR) 

and skin conductance response (SCR). Distress tolerance was indexed by the total duration 

of a frustrating computerized mirror tracing persistence task (MTPT; 34) that participants 

could opt out of at any time. Mean HR and the change of HR over the first minute (see 

Supplemental Materials) were included as physiological measures.

In the neuroimaging session, fear conditioning and monetary incentive delay (MID) tasks 

were conducted. To measure neural circuits associated with fear learning, participants 

completed a differential Pavlovian Fear Learning Task (41,42; Supplemental Materials) with 

two stages: fear acquisition and fear extinction. The MID task was used to probe neural 

responses to the anticipation and receipt of monetary reward and loss (38,39,43,44).

Group Factor Analysis—Group Factor Analysis (30) is an unsupervised learning 

technique that identifies latent variables, or “group factors” (GFs), across “blocks” of input 

variables that are assumed to be related due to an underlying construct. GFA extends 

traditional factor analysis approaches, which identify latent variables that describe 

relationships between individual variables of a dataset, by identifying additional latent 

variables that describe relationships between groups, or blocks of related variables with a 

sparsity constraint. Specifically, a sparse Bayesian estimation procedure identifies latent 

factors that either explain variance that is unique to a specific block or that describe a robust 

relationship between all or a given subset of blocks; otherwise a sparsity prior sets the factor 

loadings for all other blocks to zero. Here, we treated separate tasks and separate units of 
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analysis within tasks (e.g., behavioral versus physiological measures) as separate GFA 

blocks.

Table 1 illustrates how different measures from each task map onto constructs and 

subconstructs of the positive and negative valence systems according to RDoC guidelines. 

Among the 225 participants, 107 had missing or unusable data in at least one task due to 

factors such as participant dropout or poor signal-to-noise ratios for physiological measures. 

In our first GFA (Figure 1), which uses blocks of variables from different tasks, we used a 

subset of all of the available variable blocks in order to maximize the number of participants 

with complete data, yielding a total of 118 participants with complete data. The variable 

blocks included were fear acquisition fMRI, fear extinction fMRI, MID fMRI, MTPT 

behavior, MTPT heart rate, IAPS heart rate, and self-report symptoms (see Supplemental 

Table S1 for detailed information on missing data for each measurement). Larger sample 

sizes (from N=139 to N=220) were achieved in subsequent GFAs that were constrained to 

within-task variable blocks that contained fewer missing entries (see Within-task group 

factor analysis section and Supplemental Materials).

For fear conditioning, CS+ minus CS- contrasts from 7 regions of interest (ROIs) (ACC, 

vmPFC, dmPFC, sgACC, anterior insula, ventral hippocampus, amygdala) based on the 

results of meta-analyses (45,46) were included as GFA blocks for acquisition and extinction 

phases respectively. For the MID task, percent signal change scores from fMRI contrasts 

(e.g., gain versus no gain; see Supplemental Materials) in 3 previously identified ROIs 

(insula, NAcc, caudate head; 39,44) were used as a block. For all fMRI data, bilateral ROIs 

that did not show significantly different activations across subjects were merged together 

(e.g., left and right amygdala; see Supplemental Materials for details).

Heart rate responses for the MTPT and IAPS tasks were each included as separate 

physiology blocks, while the single behavioral measure of MTPT duration was included as a 

behavioral block. Lastly, 20 subscale scores across 9 self-report questionnaires were entered 

as a block for self-report measures. Fear conditioning contingency ratings and IAPS SCR, 

which were omitted from the cross-task GFA in order to maximize the sample size, were 

included in subsequent within-task GFAs.

We did not attempt to increase GFA sample sizes through imputation due to the non-random 

nature of the missing data. Namely, all missing data occurred either for an entire unit of 

analysis (e.g., skin conductance) or for an entire task. However, as a supplemental control 

we reran the GFA with expectation maximization imputation and found a similar pattern of 

results (Supplemental Results 2.3, Figure S1).

Per the assumptions of factor analysis, all input variables were standardized to have a mean 

of zero and standard deviation of 1. To minimize the risk of identifying spurious GFs, GFA 

estimation was repeated 10 times with different random seeds to retain robust components 

consistent across sampling chains. Robust components were selected by optimizing two 

parameters in order to minimize cross-correlation among the resulting group factors and to 

maximize variance explained. The first parameter was a “correlation threshold”, which 

describes the minimum Pearson correlation between posterior means of GFs obtained from 
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separate sampling chains in order for those GFs to be considered as the “same”. The second 

parameter was a “matching threshold”, which describes the minimum proportion of 

iterations that a single GF must be identified in, per a given correlation threshold, to be 

deemed robust. Although the GFA procedure is designed to extract orthogonal GFs (30), 

some random nonzero correlation will still occur. To ensure the orthogonality of extracted 

GFs, we used an iterative procedure that removed GFs contributing to any observed 

intercorrelation greater than that expected by chance (see Supplemental Materials). Data 

analyses were carried out using the statistical software R (47) and the GFA package (30).

Results

Cross-Task Group Factor Analysis

Robust GFs from the cross-task GFA are shown in Figure 1, with each row representing 

factor loadings of one GF. We identified optimal correlation and matching thresholds of 0.8 

and 0.9, respectively, using a grid search with values of 0.1, 0.3 0.5, 0.6, 0.7, 0.8, and 0.9 for 

each parameter. A total of 11 robust GFs were extracted, explaining approximately 31.2% of 

the variance across variable blocks. Importantly, with each variable block restricted to one 

unit of analysis within one task, none of the extracted robust GFs loaded onto more than one 

block. In other words, the GFA failed to show any coherence across either units of analysis 

or tasks in latent variable space. To confirm that these findings were not specifically driven 

by the GFA algorithm, we conducted a classic principal component analysis (PCA; 29) with 

orthogonal rotation and found a similar pattern of factor loadings (Supplemental results 

section 2.4, Figure S3). However, because this frequentist approach lacks something 

equivalent to the GFA sparsity prior, it does produce factors with small magnitude loadings 

that extend across variable blocks. Therefore, for further clarity, we visualized the significant 

pairwise correlations in our dataset through a graphical network modeling procedure. The 

resulting model confirms the sparse correlational structure between variable blocks in our 

dataset (Supplemental results section 2.5, Figure S4), but suggests that there may be some 

weak cross-modal relationships between individual variables in different blocks that were 

not identified by the GFA. Further, a quantitative analysis of the potential extent of valence 

processing for each GF suggests that some GFs may not be directly related to their target 

valence system constructs (Supplemental Results 2.9).

Within-Task Group Factor Analysis

Although only a subset of participants had complete data across all tasks (N=118 out of 

225), we can achieve larger sample sizes and increase statistical power by examining the 

complete dataset acquired within a single task. We therefore computed additional within-

task GFAs in order to (1) examine whether an increase in statistical power could lead to the 

identification of cross-unit robust GFs, and (2) test the stability of the GFs extracted from 

the cross-task GFA. To test stability we examined the correlation structure between GFs 

extracted from the cross-task and within-task GFAs (see supplemental results section 2.7 for 

comparison results).

Because we had measures from multiple units of analysis for the fear conditioning, IAPS, 

and MTPT tasks, we focus on those within-task GFAs here (Figure 2; but see Supplemental 
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results section 2.6, Figure S5, for within-task GFAs for the MID and self-report tasks). Fear 

conditioning (N=158) data blocks included fMRI and contingency rating data from both the 

acquisition and extinction phases of conditioning. For the IAPS task (N=141), heart rate, 

SCR, and subjective ratings of image valence and arousal were entered as three separate 

blocks. For the MTPT (N=180), task duration and heart rate were entered as two separate 

blocks. The same procedure of extracting robust GFs was applied here as in the cross-task 

GFA.

Despite the increases in sample size from the full GFA for the fear conditioning (+N=40) 

and IAPS (+N=21) within-task GFAs, no robust cross-unit GFs were identified in either case 

(Figure 2a,b). In fact, GFA identified no latent factors corresponding to physiological 

measures, either heart rate or SCR, on the IAPS task (Figure 2b). The MTPT GFA (+N=62), 

on the other hand, identified a single robust latent factor that loaded across behavioral (task 

duration) and physiological (heart rate) units of analysis. However, the mean variance 

explained was 0.17% and 88.73 % within the task duration and heart rate variable blocks, 

respectively. Thus, while this latent factor technically contained loadings across behavioral 

and physiological levels of analysis, the physiological variables accounted for virtually all of 

the variance explained.

To further investigate the sparse cross-modal relationships at the individual variable level 

implied by our network analysis model (Figure S4), we examined the relationship between 

GFs identified in our within-task GFAs using linear regression (Supplemental Results 2.8, 

Table S4). Briefly, we found that three of the within-task fear conditioning GFs and one 

within-task MID GF were significantly associated with two of the within-task self-report 

GFs that were found to reflect valence processing (see Supplemental Results 2.9), all with 

small effect sizes (0.02 > Cohen’s f2 > 0.15; Table S4). However, these results should be 

interpreted with caution, as they are exploratory in nature, and none of the associated p-

values survive adjustment for multiple comparisons.

Discussion

This investigation used a sparse Bayesian group factor analysis to assess the latent variable 

structure underlying positive and negative valence processing across units of analyses in a 

population with anxiety or depressive symptoms. Valence processing was measured by a 

battery of tasks extending across four units of analysis: self-report, behavior, physiology, and 

neural circuits. Both cross- and within-task GFAs failed to identify robust latent variables 

that loaded onto measures spanning either multiple units of analysis or multiple tasks. 

Instead, variance was best explained by individual latent components for each unit of 

analysis within each task. However, exploratory post hoc regression analyses show some 

marginal relationships between valence-related within-task self-report GFs and GFs derived 

from the within-task fear conditioning and MID GFAs.

The failure to identify robust latent variables across units of analyses through GFA is in line 

with several previous studies (22–26,48). While we hypothesized that the inclusion of 

measurements from neural and physiological units of analysis might improve the chances of 

identifying cross-unit latent variables underlying anxiety and depression, we found no 
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evidence for this hypothesis. These results extend previous concerns about the challenges of 

dimensional approaches in psychology (22,23). Below we consider potential non-mutually 

exclusive explanations for the lack of cross-unit and cross-task latent structure observed 

here.

First, while the tasks included here are designed to target the positive and negative valence 

systems, different tasks may actually tap into independent latent sub-constructs within these 

systems. For example, according to the current NIMH RDoC guidelines (12), five sub-

constructs are nested within the main construct of the negative-valence system: Acute Threat 

(“Fear”), Potential Threat (“Anxiety”), Sustained Threat, Loss, and Frustrative Nonreward. 

The fear conditioning and MID tasks can be thought to map onto the Acute Threat and Loss 

sub-constructs, respectively (Table 1). Assuming this nested structure, the result that no GFA 

factors loaded onto both tasks may suggest that these different sub-constructs are relatively 

independent. It is also worth noting that the targeted sub-constructs here were asymmetric in 

terms of valence: four sub-constructs were in the negative area, while only two were in the 

positive area, the latter of which did not include a behavioral measure. While it is not clear 

that this would bias our analyses towards or away from identifying crossmodal latent 

constructs, future studies may benefit from targeting a more balanced set of constructs and 

corresponding tasks.

Even when looking within tasks with larger sample sizes, GFA failed to identify robust 

cross-unit latent variables (Figure 2). The only exception to this pattern was the cross-unit 

GF that loaded onto both heart rate and task duration for the MTPT (Figure 2, bottom). 

However, the stark contrast in variance explained between the two variable loadings (see 

Results), with variance explained by task duration being nearly zero (0.17% ± 0.05%), 

suggests that this GF essentially reflects physiological processing alone. Therefore, 

differences in targeted sub-constructs between tasks alone cannot explain the observed 

results.

Further, valence quantification analyses (Figure S7) suggest that some latent factors 

identified by GFA may reflect constructs outside of the positive and negative valence 

systems altogether. Specifically, the MID GF that explained the most variance in the cross-

task GFA (GF2_MID1, Figure 1) was not found to reflect valence processing, but instead 

reflect the distinction between anticipation and consumption in the MID task (Figure S7b,c). 

This is in contrast to the self-report GFs that explained the most variance in the cross-task 

GFA (GF1_SR1 and GF1_SR2, Figure 1), which were both shown to strongly reflect 

valence processing (Figure S7b). This is in line with previous studies that have found a lack 

of coherence in latent structure between self-report and behavioral measures (22–26,48)

Another possible explanation is that while a given task is theoretically associated with a 

given latent construct, measurements in that task can be influenced by state effects. For 

example, evidence has shown that exercise immediately before an experiment can improve 

performance on speeded-information processing and memory tasks (49). Further, cognitive 

performance varies across the day (e.g., drastic change in memory function in the morning 

versus later in the day) with large individual differences (50,51). Therefore, the measures 

used in the GFA here likely reflect a combination of many other factors in addition to the 
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targeted positive and negative valence processing systems. Such state effects may have led to 

the identification of latent variables that have relatively low factor loadings and/or explain a 

relatively small portion of the total variance among experimental variables (e.g., see bottom 

half of the heatmap in Figure 1).

Previous studies have also cited differences in test-retest reliability between self-report and 

behavioral measures as a potential explanation for the lack of shared latent structure between 

the two types of measure (23,52). FMRI and physiological measures have notoriously low 

signal-to-noise ratios and low test-retest reliability (53,54), while self-report measures are 

known to be relatively stable (23,52). This issue may have contributed to the lack of cross 

task structure observed between physiological variable blocks and other variable blocks in 

the current dataset, as physiological measures showed relatively low split-half reliability 

(Table S5). This is consistent with the lack of factor loadings on physiological variables 

observed in the cross- and within-task GFAs. Importantly, the sparse prior implemented by 

the GFA prevents noise in one variable block from interfering with the identification of 

relationships between other variable blocks (30), so any issues of poor reliability in the 

current physiological measures cannot explain the lack of latent structure observed between 

the neural, behavioral, and self-report variable blocks.

The lack of crossmodal latent structure may have been due to insufficient power to detect 

weak but consistent relationships across units of analyses. This could be due to the relatively 

low observations to features ratio of 118:64 used in the current cross-task GFA. However, 

previous simulations suggest that the current Bayesian approach to GFA can provide reliable 

estimates of latent factor structures over a range of observations to feature ratios that include 

the one used here (see Figure 4 in Klami et al., 2015 (30)). That the within-task GFAs with 

larger observations to features ratios (e.g., 158:21 for fear conditioning variables) still failed 

to show evidence for robust cross-unit factors further suggests that insufficient power was 

not a critical limiting factor.

Despite the failure of the current GFA procedure to identify robust cross-modal latent 

factors, our exploratory regression results suggest that more targeted future approaches may 

be able to identify some small effects that are relevant to the RDoC approach. However, 

given that the expected effects (roughly Cohen’s f=0.03–0.04) are small, it is an open 

question whether these cross-modal relationships would be clinically relevant. In addition, 

small effects will be easily obscured by the limitations discussed above like state effects and 

poor signal to noise ratios. We therefore conclude that our data do not provide an outright 

indictment of the RDoC approach, but rather highlight its challenges, and point towards 

more targeted approaches that emphasize design features like construct coherence, 

conditions that minimize the influence of state effects, and greater numbers of repeated 

measures. Similarly, the current findings do not rule out the possibility that the RDoC 

approach and the DSM-based multimodal categorical approach may ultimately reveal 

complementary information (55) about how to better diagnose and treat depression and 

anxiety disorders moving forward.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
GFA robust factor loadings (N=118). Heatmap colors indicate the weight of each task 

variable loading. Robust group factors are sorted in descending order by mean % variance 

explained across all groups. Asterisks indicate group factors that contained at least one task 

variable loading whose 95% credible interval did not contain zero. These task variables are 

bolded in the lower key beneath the heatmap. Group factor labels, indicating the variable 

block onto which each group factor loaded and the order by most variance explained, are 

given in the upper key beneath the heatmap. GF: group factor, MID: monetary incentive 

delay, SR: self-report, FA: fear acquisition, FE: fear extinction, MTPT: mirror tracing 

persistence task, IAPS: international affective picture system task, L: left hemisphere, R: 

right hemisphere, PHQ: Patient Health Questionnaire, OASIS: Overall Anxiety Severity and 

Impairment Scale, GAD: Generalized Anxiety Disorder questionnaire, PANAS: Positive and 

Negative Affective Schedule, BIS/BAS: Behavioral Inhibition System and Behavioral 

Activation System questionnaire, MASQ: Mood and Anxiety Symptom Questionnaire, 

SPSRQ: Sensitivity to Punishment and Sensitivity to Reward Questionnaire, TEPS: 
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Temporal Experience of Pleasure Scale, AcSEAS: Acceptance, Safety, Escape/Avoidance 

Scale.

Peng et al. Page 14

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Within-task group factor (GF) analysis factor loadings. (A) Fear conditioning (n = 158). (B) 
International Affective Picture System task (IAPS) (n = 141). (C) Mirror tracing persistence 

task (MTPT) (n = 180). Heatmap colors indicate the normalized weight of each variable 

loading. The x-axis indicates the variables included in each task-specific GF analysis. 

Extracted robust GFs and the percentage of within-task variance explained by each is shown 

on the y-axis. GFs are sorted in descending order by percent variance explained. Asterisks 

indicate GFs that contained at least one loading weight whose 95% credible interval did not 
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contain 0. ACC, anterior cingulate cortex; acq., acquisition; bilat, bilateral; CS, conditioned 

stimulus; ext., extinction; FA, fear acquisition; FE, fear extinction; fMRI, functional 

magnetic resonance imaging; HR, heart rate; L, left; medPFC, medial prefrontal cortex; R, 

right; SCR, skin conductance response; sgACC, subgenual anterior cingulate cortex; 

vHippocamp, ventral hippocampus; vmPFC, ventromedial prefrontal cortex.
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