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Abstract

Cancer is the second deadliest disease worldwide. Although recent advances applying precision 

treatments with targeted (molecular and immune) agents are promising, the histological and 

molecular heterogeneity of cancer cells and huge mutational burdens (intrinsic or acquired after 

therapy) leading to drug resistance and treatment failure are posing continuous challenges. These 

recent advances do not negate the need for alternative approaches such as chemoprevention, the 

pharmacological approach to reverse, suppress or prevent the initial phases of carcinogenesis or 

the progression of premalignant cells to invasive disease by using nontoxic agents. Although data 

are limited, the success of several clinical trials in preventing cancer in high-risk populations 

suggests that chemoprevention is a rational, appealing, and viable strategy to prevent 

carcinogenesis. Particularly among higher risk groups the use of safe, nontoxic agents is the 

utmost consideration since these individuals have not yet developed invasive disease. Natural 

dietary compounds present in fruits, vegetables and spices are especially attractive for 

chemoprevention and treatment due to their easy availability, high margin of safety, relatively low 

cost and wide-spread human consumption. Hundreds of such compounds have been widely 

investigated for chemoprevention and treatment in the last few decades. Previously, we reviewed 

the most widely studied natural compounds and their molecular mechanisms, which were highly 

exploited by the cancer research community. In the time since our initial review, many promising 

new compounds have been identified. In this review, we critically review these promising new 

natural compounds, their molecular targets and mechanisms of anti-cancer activity which may 

create novel opportunities for further design and conduct of preclinical and clinical studies.
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Introduction

Cancer is a major public health concern worldwide and is the second leading cause of deaths 

in the United States. In 2020, approximately 1,806,590 new cancer cases and 606,520 cancer 

deaths are projected to occur in the United States, which translates into about 1,663 deaths 

per day [1]. At the same time, cancer is taking an enormous toll in dollars around the world 

and is becoming a growing economic threat among low to middle-income countries. While 

there have been substantial improvements in cancer survival, the economic burden of 

medical costs for cancer treatments in the US is increasing significantly due to the increasing 

age of the population and trends in treatment patterns following cancer diagnosis. The 

estimated and projected economic burden of cancer, including health care expenditures, 

productivity loss, and morbidity for patients and their families, has become an alarming 

issue for health care policy makers, healthcare systems, physicians, employers, and the 

society overall [2]. Further, despite the advances of ongoing cancer treatments including 

surgery, radiation therapy, conventional chemotherapy, hormone therapy, immune therapy 

and targeted therapy, the overall disease-free survival rate is still disappointing and complete 

recovery remains a dream for many cancer patients. Moreover, drug-associated toxicities 

such as gastrointestinal, musculoskeletal or constitutional symptoms, hair loss, heart or 

kidney problems, lung tissue damage or nerve damage, infertility etc. are posing additional 

challenges. Therefore, the search for non-toxic alternative remedies including use of non-

toxic natural agents for chemoprevention and treatment in addition to changing dietary 

habits and lifestyle are drawing increasing attention as a cost effective means to reduce 

society’s cancer burden. Due to their easy availability, cheaper price and wide-margin of 

safety, plant-derived natural products have made a tremendous impact in drug discovery 

endeavors, receiving US Food and Drug Administration approval and are gaining increasing 

attention for chemoprevention as well as treatment [3–6]. Natural compounds generally 

exhibit multi-targeted effects affecting diverse molecular targets including transcription 

factors, cytokines, chemokine’s, adhesion molecules, growth factor receptors, and 

inflammatory enzymes etc. [7–9]. Moreover, the combination of natural compounds with 

standard chemotherapeutic drugs have significantly improved patient survival by making 

cancer cells more sensitive to chemotherapy and radiotherapy [10]. In the current review, we 

focus on an update of the biology and molecular targets of emerging natural compounds 

which possess high potential to combat cancer.

Overview of established natural products and prospective new natural 

compounds

The increase in cancer incidence along with undesirable side effects observed with 

conventional chemotherapy drugs demands the discovery of new, safe and effective agents. 

Nature has traditionally served as a rich repository of chemicals. Sesquiterpenes, flavonoids, 

alkaloids, diterpenoids, and polyphenols represent a diverse group of compounds available 
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in fruits and vegetables. These compounds, derived from medicinal plants, have been a vital 

source of anticancer therapies [11]. The anti-cancer activity of dietary botanicals, including 

cruciferous vegetables such as cabbage and broccoli, Allium vegetables such as garlic and 

onion, green tea, Citrus fruits, soybeans, tomatoes, berries, and ginger, as well as medicinal 

plants have been well established preclinically [4, 12, 13].

More than 3000 plant species containing hundreds of active compounds have been reported 

to possess anticancer activities and about thirty plant-derived compounds have been isolated 

so far that have been tested in clinical trials [14]. The list includes curcumin (from turmeric), 

resveratrol (from red grapes or red wine), epigallocatechin gallate (EGCG, from green tea), 

genistein (from soybeans), lycopene (from tomatoes), luteolin (from green vegetables), 

pomegranate (from pomegranate fruit), n-3-polyunsaturated fatty acid (from corn oil, 

sunflower oil), brassinin (from cruciferous vegetables), and indole-3-carbinol (from 

broccoli) etc. Having previously reviewed these compounds and some other extensively 

investigated compounds in detail, these compounds are excluded from this review [4, 13]. 

However, these compounds are summarized in Table 1. Most of these compounds selectively 

inhibit cell proliferation and induce growth arrest and apoptosis by targeting multiple 

cellular signaling pathways including transcription factors, growth factors, tumor cell 

survival factors, inflammatory cytokines, protein kinases, and angiogenic factors that are 

frequently deregulated in cancers (Table 1). Despite the potential activity against 

tumorigenesis and malignancy, poor pharmacokinetics including low bioavailability, limited 

tissue distribution, rapid metabolism and excretion from body impede the success of many 

natural compounds in clinical applications. To date none of them have been approved for 

clinical application. However, in last decade, many other promising natural compounds have 

emerged. The current article will discuss these natural compounds with potential anti-cancer 

activities. The following section of this review is intended to provide a flavor of some of 

these promising natural compounds. We have chosen those compounds with solid evidence 

of anti-cancer properties supported by multiple preclinical in vitro and in vivo studies (Fig. 

1, Table 2). We anticipate that some promising compounds and references are not included 

in this review due to word and reference limits. This is completely unintentional and we 

regret to those investigators whose studies are not included.

Boswellic acids

Boswellic acids (BA) such as acetyl-β BA, 11-keto-β-BA, acetyl-11-keto-β-BA (AKBA) are 

a series of pentacyclic triterpene molecules and are the major components of the resins 

produced by plants in the genus Boswellia specifically from Boswellia carterri and 

Boswellia serrata. BAs make up about 30% of the resin of Boswellia serrate (Fig. 1). 

Commonly known as Indian frankincense or olibanum, salai guggal, loban, or kundur. 

Boswellia have long-standing application as traditional remedies for various ailments, 

especially inflammatory diseases (asthma, arthritis, chronic bowel diseases), cerebral edema, 

chronic pain syndrome and have been shown to exhibit immense potential in combating 

cancer [15–17]. At the molecular level, BAs modulate multiple molecular targets 

functionally characterized as kinases, transcription factors, enzymes, receptors, growth 

factors, and others which are directly or indirectly associated with carcinogenesis [17].
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The anti-cancer potential of BAs have been demonstrated against multiple cancer types and 

have been shown to induce cell cycle arrest and apoptosis, inhibit cell proliferation, survival, 

angiogenesis, tissue invasion, and metastasis. Molecularly, BAs exert their anti-cancer 

actions by inhibition of growth factor mediated activation of AKT and extracellular signal 

regulated kinase (ERK), inactivation of the transcription factors nuclear factor- κB (NF-κB) 

and signal transducer and activator of transcription (STAT)-3, inhibition of cell cycle 

regulatory proteins cyclin D and cyclin E, and downregulation of anti-apoptotic proteins 

Bcl-2, Bcl-xL, and Mcl-1 (Table 2 and Fig. 2) [17, 18]. AKBA induced apoptosis of prostate 

cancer cells in a death receptor 5 (DR5)- and caspase-8- dependent, but DR4- or Fas- 

independent mechanisms [19]. AKBA also modulated specific cancer-related miRNAs, 

particularly miR-34a and miR-27a in colorectal cancer cells, which had been tested in-vivo 
using a xenograft mouse model [20]. BAs decreased cyclin D, cyclin E, and Cyclin 

dependent kinase CDK2 and CDK4, along with significant reductions in phosphorylated Rb 

(pRb) in HCT116 colon cancer cells [21]. In pancreatic cancer cell lines, AKBA inhibited 

constitutively active NF-κB and NF-κB regulated genes such as COX-2, MMP-9, CXCR4, 

and VEGF [22]. 3-α-propionyloxy-β-BA-induced cell cycle arrest and apoptosis of cancer 

cells of varied tissue origin and tumor regression in murine models [23]. Chemically 

modified BA (cyano enone of methyl boswellates) showed cytotoxic activity on a number of 

cancer cell lines with IC50 ranging from 0.2 to 0.6 μM, and inhibits DNA synthesis and 

induces apoptosis in A549 cell lines [24]. AKBA inhibited constitutively active STAT3 and 

STAT3-targeted genes involved in cell proliferation, survival, and angiogenesis by activating 

Src homology region 2 domain-containing phosphatase 1 (SHP-1), which is responsible for 

dephosphorylation of STAT-3 [25].

The anti-cancer efficacy of BAs has also been demonstrated in vivo in colorectal, pancreatic, 

leukemia and prostate cancers [15, 22, 26–28]. In a HT-29 colon cancer xenograft model, 

AKBA activated apoptotic proteins, suppressed inflammatory cytokines, and modulated 

epidermal growth factor receptor (EGFR) and ATM/p53 signaling pathways resulting in 

inhibition of adenocarcinoma growth, G1-phase cell cycle arrest, and induction of apoptosis 

[21, 26, 29]. Additionally, AKBA prevented spontaneous intestinal polyposis and induced 

apoptosis in intestinal adenocarcinomas through inhibition of the Wnt/β-catenin and NF-κB/

cyclooxygenase-2 signaling pathways in APC min/+ mice models [26, 30, 31]. Acetyl-β-BA 

and AKBA promoted apoptosis, inhibited cell proliferation and prostate tumor burden in 

PC-3 transplanted NMRI/nu-nu mice, PC-3 xenograft and PC-3 xenotransplanted mouse 

models [28, 32, 33]. Further in vivo studies revealed that 3-α-butyryloxy-β-BA and AKBA 

induced cancer cell specific apoptosis, inhibited metastasis and suppressed tumor growth of 

leukemia and pancreatic tumors [22, 27].

Cucurbitacins

Cucurbitacins (Cu) are a group of tetracyclic triterpenes derived from the climbing-stems of 

members of the pumpkin and gourd families (Fig. 1) [34]. They have been extensively used 

as traditional folk medicines throughout Asia and have antipyretic, analgesic, anti-

inflammatory, antimicrobial and anticancer activities with selective activities against 

carcinogenesis [35–37]. However, low therapeutic indices, nonspecific cytotoxicity and 

poisoning in humans have dampened the initial interest of using crude extracts [37–40]. Cus 
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contain 17 principal compounds differing in their side chains (A to T), and hundreds of 

derivatives. Among them, Cu B, D, E, I, and derivatives have been studied extensively for 

their anticancer potential [37]. Several in vitro and in vivo studies have demonstrated the 

anti-cancer efficacy of Cu E and Cu B against colon, gastric, breast, thyroid, pancreatic and 

hepatocellular cancer, glioblastoma, medulobastom, leptomenigial and meningioma, and B 

cell leukemia (Table 2) [41–45].

Cus induce cell cycle arrest, apoptosis and inhibit growth of many cancer cells in a cell-type 

specific manner. Multiple studies revealed that Cu I or JSI-124 is a potent JAK-STAT 

inhibitor and blocks the tyrosine phosphorylation of STAT-3 and JAK2 and affect other 

oncogenic signaling pathways, such as the Akt/PKB or MAPK/ERK pathways (Fig. 2) [46–

48]. Cu B inhibited the tyrosine phosphorylation of STAT-3, STAT-5, and JAK-2 in 

pancreatic cancer cell lines in vitro and in xenografts in vivo [49]. The inhibition of JAK-

STAT pathway resulted in the alteration of many downstream targets such as growth 

stimulating signals (e.g., c-myc, cyclins, survivin) and apoptosis (e.g., p53, Bcl-xL, Bcl-2) 

[48, 50]. Cu E has inhibitory effects on cancer cell proliferation, actin polymerization, and 

permeability [35, 51–53]. It induced G2/M cell cycle arrest in human malignant glioma 

cells, colorectal cancer cell lines as well as pharyngeal and nasopharyngeal carcinoma cells 

by inducing GADD45-γ [54–56]. Furthermore, Cu E inhibited growth of triple negative 

breast cancer cells and induced cell cycle arrest and apoptosis by inhibiting AKT and ERK 

activation and cyclin D1, survivin, XIAP, Bcl-2, Mcl-1 expression in MDA-MB-468 and 

SW527 cells [57]. Taken together, Cus are promising multi-targeted natural compounds that 

require further in vitro and in vivo studies against a variety of cancers to pave the way for 

clinical trials.

Deguelin

Deguelin is a flavonoid isolated from leguminous plants such as Derris trifoliata Lour. and 

Mundulea sericea (Fig. 1). It has been used as a commercial insecticide and pesticide [58], 

but also possesses antitumor potential as supported by multiple in vivo and in vitro studies 

(Table 2). Deguelin modulates various signaling pathways and affects tumor cell 

proliferation with little or no toxicity. Deguelin induced apoptosis of cancer cells by 

blocking anti-apoptotic pathways, such as PI3K-Akt, IKK-IκBα-NF-κB and AMPK-

mTOR-survivin, while inhibiting tumor cell propagation and malignant transformation 

through p27-cyclinE-pRb-E2F1 cell cycle control and HIF-1α-VEGF anti-angiogenic 

pathways (Fig. 2) [59–63].

In vitro studies using lung, breast and leukemia cancer cell lines suggest that degueilin 

induced apoptosis by disrupting the PI3K-Akt cell survival pathway - inhibition of PI3K 

activity and phosphorylation of Akt, and upregulation of pro-apoptotic Bad and Bax [64–

67]. Furthermore, deguelin induces apoptosis of lung squamous cell carcinoma cells by 

decreasing the expression of Galectin-1 in vitro and in vivo [68]. Deguelin also inhibits cell 

proliferation, and cell invasion and metastasis by reorganization of the actin cytoskeleton, 

and decreased filopodia and lamellipodia formation as a result of decreased expression of 

tumor metastasis related genes such as CD44, MMP2 and MMP9 at protein and mRNA 

levels [69]. In colon cancer and pre-malignant human bronchial epithelial cells, deguelin 
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induces G1/S cell cycle arrest through increased expression of cell cycle regulatory proteins 

p21 and p27 [70, 71]. Similarly, deguelin induced G1/S cell cycle arrest in breast cancer cell 

line MDA-MB-231 and lymphoma Daudi cells by reducing cyclinD/pRb expression [72].

In the two-stage 7,12-dimethylbenz(a)anthracene/TPA skin carcinogenesis model with CD-1 

mice, at a dose of 33 μg, deguelin decreased tumor incidence from 60% to 10% and tumor 

multiplicity from 4.2 to 0.1 as compared to untreated controls [60]. At 330 μg, no tumors 

were observed in the treatment group. In N-methylnitrosourea mammary carcinogenesis 

model with Sprague Dawley rats, intragastric administration of 2 or 4 mg of deguelin/kg, 5 

days/week, reduced tumor multiplicity from 6.8 tumors/rat in the control group to 5.1 or 3.2 

tumors/animal, respectively [60]. In A/J mice, deguelin significantly reduced tumor 

multiplicity, tumor volume and overall tumor burden with exposure to the tobacco-specific 

carcinogen benzo(a)pyrene (Bap) and other carcinogens, with no detectable toxicity [62, 

63]. Deguelin also inhibits vasculogenic function of endothelial progenitor cells (EPCs) in 

tumor progression and metastasis via suppression of focal adhesion kinase (FAK) [73]. In a 

mouse xenograft model, tumor growth, lung metastasis and tumor-induced circulating EPCs 

were suppressed by deguelin treatment with 2 mg/kg dose [74]. A study evaluating the anti-

metastatic potential of deguelin in vivo and in-vitro using TGFβ1-stimulated PanC-1 cells 

demonstrated that tumor growth, peritoneal-dissemination and liver/lung metastasis of 

orthotopically implanted PanC-1-luc cells were significantly reduced in deguelin-treated 

mice along with the induction of apoptosis [75]. Furthermore, deguelin-treated tumors 

showed an increased epithelial signature such as increased expression of E-Cadherin and 

cytokeratin-18 and decreased expression of Snail [75].

Mangiferin

Mangiferin, a bioactive polyphenolic compound primarily derived from the Cashew 

(Anacardiaceae) and Gentian (Gentianaceae) families, though also found in mangoes and 

honeybush tea, has been extensively studied for its therapeutic properties. Salicia chinesis 
(saptarangi) and Mangifera indica (mango), widely used in Indian Ayurvedic medicine, also 

contain high levels of mangiferin (Fig. 1) [76]. Salicia chinesis has been extensively 

investigated for its hypo-lipidaemic, anti-diabetic, hepatoprotective and antioxidant 

properties [77]. Mangifera indica is used not only in Indian ayurvedic medicine but also 

used in Cuba, China and throughout East Asia for its anti-inflammatory, anti-viral, anti-

diabetic properties. Mangiferin is gaining attention for its chemopreventive as well as 

chemotherapeutic properties against various types of cancer [78–80]. Mangiferin has been 

shown to inhibit the initiation, promotion, and metastasis of cancers by targeting multiple 

proinflammatory transcription factors, cell-cycle regulatory proteins, growth factors, kinases, 

cytokines, chemokines, adhesion molecules, and inflammatory enzymes (Table 2 and Fig. 2) 

[81].

In vitro studies demonstrated that mangiferin induces G2/M cell cycle arrest through 

modulation of multiple proteins and signaling pathways including ATR, Chk1, Wee1, Akt, 

Erk1/2, cdc2 and cyclinB1 in breast, glioma, leukemia, hepatocellular, and nasopharyngeal 

carcinoma [82–84]. Recent in vitro and in vivo studies have shown that mangiferin triggered 

G2/M cell cycle arrest and apoptosis of lung cancer cells via down regulating the cdk1-
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cyclin B1 and PKC-NF-κB pathways and significantly reduced tumor burden of A549 

xenografts in mice [85]. Mangiferin reduced cell proliferation and epithelial to mesenchymal 

transition through the modulation of β-catenin signaling, MMP-7 and MMP-9 [82, 86]. In 

human prostate cancer cells, mangiferin inhibits cell proliferation and induces apoptosis by 

downregulation of Bcl-2 and upregulation of miRNA-182 [87]. In vitro and in vivo studies 

suggest that mangiferin upregulates the expression of various detoxifying enzymes, resulting 

in enhanced clearance of reactive oxygen species (ROS). In N2A neuroblastoma cells, 

mangiferin reduced oxidative stress and protected cells from 1-methyl-4-phenylpyridine 

(MPP+) induced cytotoxicity by restoring glutathione action and reducing the expression of 

superoxide dismutase (SOD) and catalase [76]. Furthermore, mangiferin time- and dose-

dependently inhibits telomerase activity and induces apoptosis by upregulating the 

expression of Fas mRNA and protein in K562 cells [88]. Mangiferin aglycon, a metabolite 

of mangiferin, reduced UBV-induced skin cancer in mice primarily through interaction with 

the ERK pathway [89]. Mangiferin also reduced tumor volume in a breast cancer xenograft 

model by disruption of MMP expression and β-catenin signaling pathway [86]. In summary, 

mangiferin is primarily implicated in down-regulating inflammation, causing cell cycle 

arrest, reducing proliferation/metastasis, and promoting apoptosis in malignant cells and 

protecting against oxidative stress and DNA damage.

Withaferin-A

Withaferin-A (WA) is isolated from the plant Withania somnifera, commonly known as 

Indian Winter cherry or Ashwagandha and has long been used in a wide variety of ayurvedic 

formulations and herbal remedies for the treatment of cancers, inflammation, and 

neurological disorders (Fig. 1) [90–92]. In vitro and in vivo studies have revealed that WA 

suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-

oxidative, anti-inflammatory, anti-proliferative and proapoptotic properties (Table 2, Fig. 2). 

Moreover, WA sensitizes resistant cancer cells to existing chemotherapeutic agents [93]. 

WA-induced G2/M cell cycle arrest in colorectal cancers through degradation of Mad2 and 

cdc2 thus interfering with spindle assembly causing delayed mitosis [94]. WA inhibited 

AKT activity in AKT overexpressing colorectal cancer cells leading to inhibition of cell 

proliferation, migration and invasion and downregulation of EMT markers in vitro and 

significantly suppressed AKT-induced aggressive tumor growth in a xenograft model [95]. 

In head and neck squamous cell carcinoma (HNSCC) cells, WA induced apoptosis by 

increasing the expression of pro-apoptotic Bim, truncation of Bid, and activation of the 

DR5- caspase-8 pathway [96]. In breast cancer cells, WA induces apoptosis and down 

regulates cell proliferation through upregulation of proapoptotic Bim, Bax and Bak, cell 

cycle regulatory proteins p53 and p21, and downregulation of anti-apoptotic Bcl-2 and 

apoptosis inhibitory proteins XIAP, c1IAP and survivin [97–99]. Furthermore, in lung 

cancer cells, WA decreased the expression of Bcl-2, phospho Akt and active caspase-2, and 

increased cleavage of PARP resulting in Go/G1 cell cycle arrest and apoptosis [100]. 

Potential anti-tumor activity of WA has been also tested in other cancers such as 

glioblastoma, cervical, melanoma, leukemia and pancreatic cancer cells [101–105]. WA also 

exhibits synergistic effects with other drugs. WA sensitizes ovarian cancer cells to cisplatin-

induced cytotoxicity [106] and synergizes the activity of doxorubicin against ovarian cancer 
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cell lines, thus reducing doxorubicin dose as well as doxorubicin-induced adverse effects 

[107]. Further, WA in combination with doxorubicin reduced tumor growth of ovarian tumor 

xenografts 70%−80% in nude mice [107].

Administration of WA reduced the growth of Ehrlich ascites tumor in Swiss albino mice and 

prolonged the survival of mouse sarcoma and ascites tumor-bearing mice [108, 109]. WA 

also reduced the growth of human prostate cancer (PC3) cell tumor xenografts in nude mice 

by blocking angiogenesis and inducing apoptosis [110]. WA inhibits the growth of human 

breast cancer cells injected subcutaneously into nude mice [97] and 4T mouse mammary 

tumor cells implanted orthotopically into Balb/c mice [111]. This activity is linked to 

FOXO3a-Bim-dependant apoptosis and modulation of vimentin disassembly and 

phosphorylation. WA inhibits growth and metastasis of orthotopic ovarian tumors [106], 

pancreatic cancer xenograft tumors [105] and HCT116 colon cancer xenograft tumors [112] 

in nude mice. In vivo anti-tumor efficiency was also tested in other cancers such as 

melanoma, thyroid, mouse mesothelioma, and glioblastoma cancer [113–115]. Taken 

together, both in vitro and in vivo studies establish that WA is a promising candidate for 

further preclinical and clinical development as an anticancer agent.

Oroxylin A

Oroxylin A (OA) is a flavonoid isolated from the root of Chinese Skullcap (Scutellaria 
baicalensis, Fig. 1). OA exhibits multiple pharmacological activities, including antioxidant, 

anti-inflammatory, anti-viral and anti-tumor properties (Table 2) [116]. Multiple studies have 

demonstrated the potential of OA as a promising anticancer drug. OA induces apoptosis, cell 

cycle arrest, and inhibits metastasis (Fig. 2) [117–119]. OA inhibits glycolysis and 

glycolysis-dependent proliferation of human breast cancer cells by sirtuin-3 (SIRT3) 

dependent binding of hexokinase II (HK II) in mitochondria [116] and promotes SIRT3-

mediated superoxide dismutase (SOD2) transcription and HIF1α destabilization [120]. OA 

also modulates mitochondrial function, inducing apoptosis via mitochondrial translocation 

of wild-type p53 in vitro, and significantly inhibits tumor volume in vivo in HCT-116 tumors 

transplanted in BALB/C nude mice [121].

OA decreased the ATP level, inhibited glycolysis and sensitized A549 lung cancer cells to 

anoikis by deactivating the c-Src/AKT/HK II pathway in addition to inducing dissociation of 

HK II from mitochondria and inhibited lung metastasis in vivo in nude mice [122]. Another 

study demonstrated that OA inhibits invasion and migration through suppressing ERK/

GSK-3β signaling in snail-expressing non-small-cell lung cancer cells, and inhibits the 

growth and lung metastasis in A549 orthotopic models [123]. OA also induces autophagy in 

human malignant glioma cells. Mechanistically, OA inhibits phosphorylation of AKT, ERK, 

mTOR and STAT-3, and expression of Notch-1 and Mcl-1 but upregulates Beclin 1, the key 

autophagy-related protein [124]. OA has also been found to be beneficial in other cancers 

such as acute myeloid leukemia cells, hepatocellular carcinoma, and cervical cancer cells 

[117, 125, 126].
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Ursolic Acid

Ursolic acid (UA) is a pentacyclic triterpene acid present in many foods and medicinal 

herbs, usually in the bark, leaves or fruit peels. UA exhibits a wide array of pharmacological 

activities such as protective effects on lungs, kidneys, liver and brain, anti-inflammatory 

properties, anabolic effects on skeletal muscles and the ability to suppress bone density loss 

leading to osteoporosis. Fruit peel of apple, leaves of marjoram, oregano (Fig. 1), rosemary, 

sage, thyme, coffee, hawthorn leaves and flowers of lavender, leaves and bark of eucalyptus 

and black elder, and the wax layer of many edible fruits contain high amounts of UA [127, 

128]. Multiple studies have demonstrated the potential anticancer effects of UA against 

various types of cancers [129].

UA displays chemopreventive and anticancer properties through the inhibition of multiple 

signaling pathways resulting in the suppression of proliferation of a number of tumor cells, 

induction of apoptosis, and inhibition of angiogenesis and metastasis (Table 2, Fig. 2) [130–

133]. UA induced apoptosis of human leukemia HL-60 cells through the up-regulation of 

intracellular Ca2+ release [134]. Further studies demonstrated that UA induces apoptosis of 

human leukemia cells and exhibits anti-leukemic activity in nude mice through the PKB 

pathway [134, 135]. Another study demonstrates that UA induced apoptosis of K562 cells 

via modulation of Gfi-1/Stat5/Akt pathway and downregulation of Mcl-1 and Bcl-xL and 

synergizes with imatinib in both K562 and imatinib-resistant K562/G01 cells [136]. UA 

induced apoptosis of breast cancer cells by activating Fas receptor, caspase 3 and PARP in 

the mitochondrial death pathway, and suppressed migration and invasion by modulating 

JNK, Akt and mTOR signaling [137, 138]. UA inhibited tumor size by inhibiting cell 

proliferation, inducing apoptosis and modulating AKT/mTOR signaling pathway in an in 
vivo study in which MMTV-Wnt-1 mammary tumors were injected into the mammary fat 

pad of ovariectomized female C57BL/6 mice [139].

UA induced cell death and modulated autophagy through the JNK pathway in apoptosis-

resistant colorectal cancer cells [140]. Another study demonstrates that UA induced 

apoptosis of colorectal cancer cells by inhibiting constitutively active NF-κB and down-

regulation of cell survival (Bcl-xL, Bcl-2, cFLIP, and survivin), proliferation (cyclin D1), 

and metastatic (MMP-9, VEGF, and ICAM-1) proteins [141]. UA inhibited colonic 

adenocarcinomas in an orthotopic mouse model by reducing the proliferation marker Ki-67 

and microvessel density marker CD-31. UA triggered the concomitant suppression of NF-

κB, STAT-3, β-catenin, cell survival proteins and induction of DR4 and DR5 [141, 142]. In 

prostate cancer, UA suppressed TNF-α induced NF-κB activation and IL-6-induced STAT-3 

activation in LnCaP cells [143], induced autophagy in PC3 cells [144], and induced 

apoptosis via Beclin-1 and Akt/mTOR pathways [145]. Further, UA suppressed 

subcutaneously implanted DU145 prostate cancer cells in male nude mice, reduced the 

expression of VEGF and increased the expression of caspase-3 in tumor tissues [143]. The 

in vivo and in vitro efficacy of UA has also been tested against other cancers such as lung, 

bladder, cervical, pancreatic, ovarian, multiple myeloma, and hepatocellular carcinoma 

[146–150]. All these studies suggest that UA modulates multiple molecular targets that play 

vital roles in carcinogenesis.
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Sulforaphane

Sulforaphane (SFN) is an organosulfur isothiocyanate found abundantly in cruciferous 

vegetables such as broccoli, brussel sprouts, and cabbage (Fig. 1) and is produced through 

enzymatic hydrolysis by myrosinase enzyme during chewing or harvesting [151–153]. SFN 

has been extensively studied due to its apparent health-promoting properties in disease and 

limited toxicity in normal tissues. SFN interferes with the multistage process of 

carcinogenesis through the modulation and/or regulation of critical cellular mechanisms 

(Table 2, Fig. 2). SFN inhibits phase I enzymes (such as multiple cytochrome P450s) 

responsible for the activation of pro-carcinogens and induces phase II enzymes (such as 

UDP glucuronosyl transferase 1A1, glutathione S transferase A1, NADPH:quinone 

oxidoreductase 1) critical for mutagen elimination [154–156]. Furthermore, SFN modulates 

a number of anticancer processes, including activation of apoptosis, inhibition of cell 

proliferation, and induction of cell cycle arrest [157, 158].

Numerous cell culture and animal model studies have shown that SFN induces apoptosis of 

bladder, brain, breast, colon, pancreatic and prostate cancers through modulation of critical 

signaling molecules essential for tumor survival and progression. SFN induces 

mitochondria-dependent apoptosis of glioblastoma cells through release of cytochrome C, 

and activation of casepage-3 resulting in a favorable Bax:Bcl-2 ratio [159]. It induces 

apoptosis of colon cancer cells by inhibition HDAC, expression of cell cycle regulatory 

protein p21, activation of caspase-9 and 7, and expression of Bcl-xL and Bax [160]. In 

human hepatoma HepG2 cells, SFN induced apoptosis via both intrinsic and extrinsic 

apoptotic pathways as indicated by expression of DR5, fragmentation of DNA, activation of 

caspase-3 and modulation of Bax, Bcl-2 and Bcl-xL protein expression [161, 162]. SFN 

decreased tumor mass, increased TUNEL positive cells, cleaved PARP and increased 

expression of pro-apoptotic BID and Bax in BALB/C mice implanted with mammary 

carcinoma cells, and in immune compromised nude mice xenografted with PC-3 prostate 

cancer cells [163, 164].

SFN induced the G1 cell cycle arrest of androgen-dependent LnCaP and androgen-

independent DU-145 cells [165, 166]. Furthermore, it induced G2/M arrest in HT-29 colon 

cancer cell, PC-3 prostate cancer cells, sarcomatid mammary F311 cells [163], MCF-7 

mammary cancer cells, human T-cell leukemia [167], and human pancreatic cancer cells 

[159]. In vivo studies clearly demonstrate the ability of SFN to inhibit cell proliferation 

[168]. In addition, SFN interferes with essential steps in the progression of the 

carcinogenesis process, such as the progression of benign tumors to malignant tumors, 

angiogenesis, and metastasis. Taken together, the anti-cancer properties of SFN makes these 

compounds attractive multipotent agents, and indicate an important new avenue for future 

researches on clinical applicability of SFN to cancer patients. Two clinical trials using SFN 

have been listed in www.clinicaltrials.gov (NCT03232138; NCT03665922)

Other potential natural compounds for cancer prevention and therapy

Beside the aforementioned compounds, there are many other dietary natural compounds that 

are currently under investigation for their potential anti-cancer effects. For example, 
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damnacanthal, JapA, vibsanin-A, wedolactone and thymol, and others have shown 

promising anticancer properties (Fig. 1). Damnacanthal, an anthraquinone present in the 

roots of Noni plants (Morinda citrifolia L.), exhibits numerous pharmacological activities, 

including anti-cancer activity. It targets several tyrosine kinases and signal transduction 

pathways that play a role in cell growth and apoptosis of cancer cells [169, 170]. 

Damnacanthal inhibits activation of c-Met, decreases phosphorylation of Akt and inhibits 

MMP-2 secretion in HepG2 cells, and inhibits the growth and clonogenic potential and 

induces apoptosis [170]. A further study demonstrated that damnacanthal induced inhibition 

of cell growth through the degradation of cyclin D1 in colon, breast and prostate cancer cells 

[169]. Ex vivo and in vivo experiments revealed that damnacanthal possesses anti-

angiogenic properties mediated via three different kinases: vascular endothelial growth 

factor (VEGF) receptor-2, c-Met and FAK [171].

JapA is a structurally unique dimeric sesquiterpenoid compound isolated from the above 

ground part of Inula japonica Thunb, a plant that has been widely used in traditional Chinese 

medicine for the treatment of inflammation, diabetes, digestive disorders, and bronchitis 

[172–174]. JapA bears similar chemical structural features with artemisinin and 

parthenolide, which are currently under preclinical and clinical studies for cancer therapy 

[175]. However, due to dimerization and unique mechanisms of action, JapA is considered 

to be more effective than these analogs as an anticancer drug. JapA decreased cell 

proliferation and induced G2/M cell cycle arrest and apoptosis through down regulation of 

MDM2, regardless of p53 status both in vitro and in vivo without causing any host toxicity 

in breast cancer models [176]. Further molecular studies revealed that JapA inhibits 

transcription factor NFAT1 which regulates transcription of MDM2 and contributes to the 

anti-cancer activity of JapA [177]. JapA is safe and effective in treating other cancers 

expressing high levels of MDM2, e.g., Burkitt lymphoma and lung cancer [178, 179].

Vibsanin A (VA), a vibsane-type diterpenoid isolated from the leaves of Viburnum 
odoratissimum, has been observed to induce differentiation of myeloid leukemia cells 

through direct interaction with and activation of PKC [180]. In mouse xenograft models of 

acute myeloid leukemia, VA administration prolonged host survival and inhibited PKC-

mediated inflammatory responses correlated with promotion of skin tumors in mice; 

recommending VA as a myeloid differentiation-inducing compound, with potential 

application as an antileukemic agent [180]. Wedelolactone is a known inhibitor of the IκB 

kinase II (IKK II) [181], an upstream kinase and activator of NF-κB by mediating 

phosphorylation and degradation of IκBα and has many different bioactivities including 

anti-hepatotoxic, anti-hypertensive and anti-tumor properties [182, 183]. Wedelolactone has 

been shown to reduce growth of various cancer cells such as prostate, breast, ovarian cancers 

and myeloma. Wedelolactone suppressed growth and induced apoptosis of androgen 

receptor-negative MDA-MB-231 breast cancer cells at concentrations that did not inhibit 

NF-κB activity [184]. Wedelolactone also inhibited anchorage-independent growth and 

suppressed cell motility and invasion of MDA-MB-231 cells [185]. Another study 

demonstrated that wedelolactone downregulates the expression of c-Myc mRNA in prostate 

cancer cells. Further in-vitro studies demonstrated that wedelolactone dramatically decreases 

the protein level, nuclear accumulation, DNA-binding, and transcriptional activities of c-

Haque et al. Page 11

Eur J Cancer. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Myc which is consistent with downregulation of c-Myc in prostate cancer xenograft model 

[186].

Mechanisms and molecular targets of natural compounds

Human cancers evolve through a multistage process driven by the progressive accumulation 

of genetic and epigenetic abnormalities leading to aberrant expression of genes and proteins 

that support cancer promotion, progression and acquiring resistance to cancer therapy. 

Molecular-based targeted cancer therapies with high impact on patient’s outcome is one of 

the major medical advances in the last few decades and has been foundational in the success 

of precision medicine. Moreover, the fact that cancer’s multistage progression requires that 

numerous signaling pathways be compromised, targeting a single gene is unlikely to 

produce meaningful outcomes. A significant advantage of natural compounds is that most of 

them are multi-targeted, often in a context dependent process that inhibits and/or activates 

many different signaling pathways. The key signaling pathways modulated by these natural 

compounds are illustrated in (Table 2, Fig. 2), and described in the following part of this 

article.

p53 tumor suppressor

p53, also known as the “guardian of the genome”, is a transcription factor and a tumor 

suppressor and is among the most inactivated genes in cancers [187]. Inactivation occurs 

through deletion, mutations or disruption of regulatory pathways that regulate p53 gene or 

protein expression. Perturbations in p53 signaling pathways are believed to be required for 

the development of most cancers, and there is evidence to suggest that restoration or 

reactivation of p53 function will have significant therapeutic benefits [188]. As the 

“guardian of the genome,” p53 conserves genomic stability by preventing genome mutations 

from propagating. Activated p53 regulates genes including p21, 14-3-3, Noxa, Puma, Fas, 

Bax, and many others to direct cellular processes such as cell cycle arrest, apoptosis, genetic 

stability, and inhibition of angiogenesis [4, 189]. p53 controls cell cycle arrest in G1 phase in 

response to DNA damage and thus protects against genomic instability, abnormal DNA 

replication and chromosome segregation [190, 191]. Loss of or reductions in p53 expression 

is highly associated with increased genetic instability during tumorigenesis in HNSCC 

[190], breast [192], ovarian [193] and renal cancers [194].

Many natural compounds mentioned in this article induce cell cycle arrest and apoptosis by 

activating p53 and its target genes. For example, AKBA modulated ATM/p53 signaling 

pathways in HT-29 colon cancer xenograft model resulting in inhibition of adenocarcinoma 

growth, G1-phase cell cycle arrest, and induction of apoptosis [21, 26, 29]. Deguelin 

increased the expression of p53 and downstream p21 and p27 to induce G1/S cell cycle 

arrest [63, 70]. WA upregulates the expression of p53 and p21 to inhibit breast cancer cell 

growth and induction of apoptosis [99]. OA induced apoptosis in human colon cancer cells 

by stimulating mitochondrial translocation of wild-type p53 [121]. JapA inhibited cell 

growth, decreased cell proliferation and induced G2/M cell cycle arrest and apoptosis 

through down regulation of the p53 negative regulator MDM2, thus increasing the 

expression of p53 [176].
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Nuclear Factor-κB

NF-κB is an oncogene and a master transcription factor that functions as a regulator of cell 

proliferation, differentiation, apoptosis, inflammation, stress response, cell signaling, and 

other physiological processes. Accumulated evidence suggests that dysregulation of these 

physiological processes has been linked to the onset of many cancers and has been described 

as one of the major culprits in carcinogenesis. Experimental in vitro and in vivo studies have 

demonstrated that downregulation of NF-κB activity by natural or synthetic compounds 

suppresses the development of carcinogen-induced tumors, inhibits the growth of cancer 

cells, and induces apoptosis by altering gene expression crucial for the control of 

carcinogenesis and cancer cell survival [195]. In pancreatic cancer cell lines, AKBA 

inhibited the constitutively active NF-κB and the expression of NF-κB target genes such as 

COX-2, MMP-9, CXCR4, and VEGF [22]. Deguelin induces apoptosis of cancer cells by 

blocking the IKK-IκBα-NF-κB pathway [59]. The PKC-NF-κB pathway is a key pathway 

inhibited by Mangiferin in lung cancer cells. Further, UA induced apoptosis of colorectal 

cancer cells by inhibiting constitutively active NF-κB [141].

Signal Transducers and Activators of Transcription

Members of the STAT protein family are transcription factors aberrantly activated 

downstream of Janus kinases (JAKs) during carcinogenesis. The JAK/STAT signaling 

pathway mediates cellular responses to many cytokines and growth factors. The STAT 

family modulates transcription of genes controlling cellular processes including 

proliferation, differentiation and apoptosis [196]. Dysregulated activation of STAT3 and 

STAT5 contributes to the initiation and progression of many solid tumors including HNSCC 

and hematologic malignancies such as multiple myeloma, lymphoma and leukemia [197]. 

Interruption of STATs activation by natural and dietary compounds leads to decreased 

protein expression critically involved in the regulation of the cell cycle and apoptosis. 

AKBA inhibited constitutively active STAT3 in human multiple myeloma cells by the 

induction of SHP-1, a phosphatase responsible for STAT3 dephosphorylation [25]. The 

inhibition of STAT3 activation leads to the suppression of genes involved in cell 

proliferation, survival, and angiogenesis. Multiple studies confirmed that Cu I is a JAK-

STAT3 pathway inhibitor and blocks tyrosine phosphorylation of STAT3 and JAK2 in 

various human cancers [46–48]. Further studies revealed that Cu B inhibited tyrosine 

phosphorylation of STAT3, STAT5 and JAK2 in pancreatic cancer cell lines and in xenograft 

models [49]. In prostate cancer, UA suppressed IL-6-induced STAT3 activation in LnCaP 

cells [143].

Receptor Activated Signaling Pathways

Cell surface receptors are the key players for molecular communication between cells or 

intracellular organelles essential for various aspects of life. This process involves receiving, 

promoting and sending signals by means of elaborate signal transduction networks between 

extracellular and intracellular regions. In cancers, members of cell surface receptors 

including receptor tyrosine kinases (RTK), G-protein coupled receptors (GPCR), cytokines 

receptors, integrin receptors as well as death receptors are associated with regulation of cell 
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fates. RTKs such as EGFR, platelet derived growth factor receptor, fibroblast growth factor 

receptor, hepatocyte growth factor receptor, insulin like growth factor receptor-1 receptor, 

nerve growth factor receptor and others have been associated with carcinogenesis and play a 

central role by modulating a wide array of biological functions such as cell migration, 

proliferation, survival or differentiation [198]. As a consequence of growth factor receptor 

activation, several downstream signaling pathways, the most important of which are PI3K-

AKT and Ras-MAPK, are activated and have significant impacts on tumorigenesis. Tumor 

associated cell surface receptors and downstream molecules have become targets of many 

natural agents. For example, BA induces apoptosis through inhibition of the growth factor 

mediated activation of AKT and ERK resulting inactivation of NF-κB and STAT-3, 

inhibition of cyclin D and E, Bcl-2, Bcl-xL, and Mcl-1 proteins [17, 18]. Others include, 

AKBA induced apoptosis through activation of DR5- caspase-8 pathway [19] and degueilin 

induced apoptosis by disrupting PI3K/Akt pathway [63–66]. WA inhibits constitutively 

active AKT leading to the inhibition of cell proliferation, migration and invasion. Oral 

administration of WA significantly suppressed AKT-induced aggressive tumor growth in a 

xenograft model [95]. WA also induces apoptosis through DR5 - caspase-8 pathway [96]. 

Damnacanthal inhibited cell growth and induced apoptosis by inactivation of c-Met and 

AKT [170]. Finally, the anti-angiogenic effects of Damnacanthal are mediated via inhibition 

of VEGFR2, c-Met and FAK [171].

Host Immunity/ Immuneprevention

The host immune system serves as a unique natural defense to detect and destroy abnormal 

cells, thus preventing the development of cancers. However, cancer cells acquire the ability 

to evade detection and destruction by the host immune system. Reactivating the host 

immune system’s power (known as immuneprevention or immunetherapy) to eliminate 

damaged cells before tumor onset or to destroy cancer cells is the most recent development 

to in efforts in the “war on cancer”. Effective cytotoxic T cells represent a crucial component 

of the adaptive immune system that have the ability to kill specifically chosen target cells. It 

is now established that the absence of functional T cells or T cell–derived cytokines, such as 

interferon (IFN)-gamma, enhances the onset of spontaneous and carcinogen-induced tumors 

[199]. Thus, activation of functional T cells or production of several cytokines resulting in 

the improvement of anti-tumor microenvironment might contribute to cancer prevention and 

therapy. The transcription factor NF-κB, a critical signaling molecule in host innate 

immunity, is activated in response to the formation of an inflammatory tumor 

microenvironment during malignant progression and upregulates the expression of tumor 

promoting cytokines, such as IL-6 or TNF-α, and survival genes, such as Bcl-XL [200]. BA, 

mangiferin, WA, and UA have anti-inflammatory activity, inhibiting NF-κB activation and 

its downstream targets such as COX-2, MMP-9, CXCR4, and VEGF expression [22]. In 

prostate cancer, UA suppressed TNF-α induced NF-κB activation and IL-6-induced STAT3 

activation in LnCaP cells [132]. Although, some of the aforementioned natural compounds 

have been found to modulate host factors which are important for their chemopreventive or 

anti-tumor potential, very few studies have been performed to allow for a sufficient to 

understanding of the role of these compounds in host immune systems. More direct studies 

Haque et al. Page 14

Eur J Cancer. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are required for complete characterization of natural compounds in modulating host 

immunity, thus immnoprevention or immunetherapy of cancers.

Conclusion and Future directions

After FDA approval of tamoxifen and raloxifene for breast cancer risk reduction, increasing 

attention has been paid on chemoprevention research with the possibility of applying 

chemopreventive agents for individuals who are at high risk of neoplastic development. 

Various epidemiological and preclinical findings, as well as results from several early 

clinical studies convincingly demonstrate that natural dietary compounds have practical 

advantages in the treatment and possible prevention of cancers with regard to availability, 

suitability for oral application, regulatory approval and mechanisms of action. Targeting 

multiple intracellular signaling pathways with the use of combinatorial approach has been a 

promising strategy for anti-cancer drug development. Many of the above natural agents 

interrupt multiple signal transduction pathways depending on the cancer origin. However, 

researchers are struggling with key challenges to take advantage of these mechanisms for 

effective cancer treatment and prevention in populations with different cancer risks. 

Moreover, poor pharmacokinetic activity like low potency, short bioavailability and limited 

tissue distribution of dietary agents pose further challenges. Formulation of the parent 

compounds or development of synthetic analogs with favorable pharmacokinetics might be 

ways to overcome the limitations of current natural compounds. Moreover, prospective 

natural compounds with potential anti-cancer activity should be evaluated for further drug 

design and preclinical and clinical trials. The mentioned natural compounds in this review 

have promising anti-cancer activity evidenced by both in-vitro and in-vivo studies and some 

of them are in very preliminary clinical studies. For example, Boswellic acid (BA) exerts its 

potent anti-cancer effect through modulation of multiple molecular targets such as kinases, 

transcription factors, enzymes, receptors, growth factors, and others involved in cell survival 

and proliferation. Several in vitro and in vivo studies documented the anti-cancer efficiency 

of Cu E and Cu B against many cancer cells such as bladder cancer, hepatocellular 

carcinoma, pancreatic cancer, breast cancer, HNSCC, osteosarcoma, and myeloid leukemia 

and leukemia [53, 201–204]. WA sensitizes resistant cancer cells to existing 

chemotherapeutic agents [93]. As single agent the majority of these natural compounds 

target multiple signal transduction pathways and thus testing combinations either with other 

compounds or with already validated agents could be an effective approach to enhance 

efficacy, sensitivity, and bioavailability while reducing unexpected toxicities. Administration 

of drugs locally rather than systemically (affecting the whole body) is a proven way to 

decrease side effects and drug toxicity while maximizing a treatment’s impact. So, 

introduction of modern technologies to improve local drug delivery might be more effective 

way to obtain the best response and overcome limitations associated with natural 

compounds. Since many of the limitations of these compounds have not been well studied 

more preclinical studies are certainly needed to validate the usefulness of these agents either 

alone or in combination with existing therapies.
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Figure 1: 
Structures of updated natural compounds and images of their source medicinal plants.
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Figure 2: 
Molecular targets of updated natural compounds. Each natural compound affects (activation 

or inhibition) multiple pathways. Cell surface receptors and their downstream signaling 

pathways associated with carcinogenesis are illustrated along with natural compounds that 

effect these pathways.
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Table 2

Sources, mechanism of action and molecular targets of updated natural compounds.

Active Natural Effective against Mechanism of action Molecular targets

compound source

α-Boswellic 
acid

Boswellia 
serrata

Prostate, colon, breast, lung 
and pancreatic cancer and 
leukaemia.

Antiproliferative (cell cycle arrest 
and apoptosis), anti-inflammatory, 
antiangiogcnic, anti-invasive and 
anti-metastatic effects

AKT, STAT3, ERK, Bcl-2, Bcl-
xL, DR4, DR5, cyclin D, cyclin 
E, Rb, NF-κB, COX-2, MMP-9, 
CXCR4, VEGF and SHP-1

Cucurbitacin E Cucumis 
melo L

Colon, breast, thyroid, liver, 
gastric and pancreatic cancer, 
leukaemia, glioblastoma, 
medulloblastoma and 
meningioma

Anti-inflammatory, antimicrobial, 
antiproliferative (cell cycle arrest 
and apoptosis), antipolymerization, 
antipcrmeability and antiadhesion 
effects.

AKT, ERK, STAT3, STAT5, 
JAK2, c-myc, cyclins, survivin, 
p53, Bcl-xL, GADD45-γ, XIAP, 
Bcl-2 and Mcl-1

Deguclin Mundulea 
sericea

Lung, breast, colon, prostate, 
thyroid and pancreatic cancer, 
melanoma and leukaemia.

Antiproliferative (cell cycle arrest 
and apoptosis), anti-inflammatory, 
antiangiogcnic, antiinvasion and 
anti-metastatic effects.

PI3K-AKT, IκBα, NF-κB, 
AMPK, mTOR, P27, p21, cyclin 
E, pRb, E2F1, HIF-lα-VEGF, 
CD44, MMP2, MMP9, cyclin D, 
pRb

Mangiferin Man gif era 
indica (L)

Leukaemia, glioma, 
neuroblastoma and 
nasopharyngeal, prostate, 
liver, breast, skin, lung, colon 
and ovarian cancer

Antiproliferative (cell cycle arrest 
and apoptosis), anti-inflammatory, 
antioxidant, immunomodulatory, 
antiangiogcnic and anti-metastatic 
effects

ATR, Chkl, Weel, AKT, Erkl/2, 
Cdc2, cyclinBl, protein kinase C, 
NF-κB, MMP-7, MMP-9, Bcl-2, 
VEGF, COX2, FGF and β-
catenin

Withaferin A Withania 
somnifera

Glioblastoma, melanoma, 
leukaemia and prostate, breast, 
colon, thyroid, cervical, 
pancreatic and ovarian cancer

Antiproliferative (cell cycle arrest 
and apoptosis), anti-oxidative, anti-
inflammatory and antiangiogcnic 
effects

AKT, Bim, Bid, DR5, caspase-8, 
Bax, Bak, p53, p21, Bcl-2, 
XIAP, PARP

Oroxylin A Scutellaria 
baicalensis

Colon, lung, breast, liver and 
cervical cancer, leukaemia and 
glioblastoma

Antiproliferative (cell cycle arrest 
and apoptosis), anti-metastatic, 
antioxidant, anti-viral, anti-invasion 
and anti-inflammatory effects

MMP-9, c-Src, AKT, HK II, 
GSK-3β, vimentin, AKT, ERK, 
p53, mTOR. STAT3, notch-1, 
Mcl-1, Beclin 1, SIRT3

Ursolic acid Origanum 
vulgare

Colon, prostate, lung, breast, 
bladder, liver, pancreatic, 
cervical and ovarian cancer, 
myeloma and leukaemia

Anti-inflammatory, antiproliferative 
(cell cycle arrest and apoptosis), 
antiangiogcnic, anti-metastatic 
effects

JNK, Gfi-1/Stat5, Bcl-xL, Bcl-2, 
cFLIP, survivin, cyclin Dl, 
MMP-9, VEGF, ICAM-1, NF-
kB, STAT3, β-catenin, DR4, 
DR5, TNF-alpha, STAT3, 
Beclin-1, AKT/mTOR

Sulforaphanc Brassica 
oleracea

Bladder, brain, breast, colon, 
prostate, liver and pancreatic 
cancer

Antiproliferative (cell cycle arrest 
and apoptosis), antiangiogcnic, anti-
metastatic effects

HD AC, p21, caspase-9 and 7, 
DR5, Bax, Bcl-2, Bcl-xl and Bad

STAT, signal transducer and activator of transcription; ERK, extracellular signal-regulated kinase; DR, death receptor; NF-κB, nuclear factor-κB; 
COX-2, cyclo-oxygenase 2; MMP, matrix metalloproteinase; VEGF, vascular endothelial growth factor; SHP-1, Src homology region 2 domain—
containing phosphatase-1; Rb, retinoblastoma protein; Bel, B-ccll lymphoma; CXCR4, C-X-C chemokine receptor type 4; GADD45, growth arrest 
and DNA damage—inducible 45; Mcl-1, myeloid cell leukaemia 1; AMPK, 5’ adenosine monophosphate—activated protein kinase; mTOR, 
mammalian target of rapamycin; HIF-lα, hypoxic inducing factor-lα; FGF, fibroblast growth factor; ATR, ataxia telangiectasia and Rad3-rclatcd 
protein; XIAP, X-linked inhibitor of apoptosis protein; PARP, poly (ADP-ribose) polymerase; HK II, hexokinase-II; GSK-3β, glycogen synthase 
kinase-3β; SIRT3, sirtuin-3; JNK, c-Jun-N-terminal kinase; ICAM-1, intercellular adhesion molecule 1; TNF-α, tumour necrosis factor-α; HDAC, 
histone deacetylase.
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