Skip to main content
. 2020 Oct 15;48(5):1538–1549. doi: 10.1007/s00259-020-05065-6

Table 3.

Performance of prediction models for predicting subtypes in NSCLC

Training set AUC (95% CI) Sen (%) Spe (%) Acc (%)
Clin-Lab Model 0.887 (0.843–0.931) 78.57 88.75 80.91
PET-Rad Model 0.835 (0.780–0.890) 90.00 62.50 78.64
CT-Rad Model 0.784 (0.733–0.855) 69.29 81.25 75.00
Combined Model 0.932 (0.900–0.964) 96.25 95.00 84.09
Validation set AUC (95% CI) Sen (%) Spe (%) Acc (%)
Clin-Lab Model 0.860 (0.789–0.931) 80.65 76.56 72.63
PET-Rad Model 0.740 (0.639–0.840) 83.87 75.00 66.32
CT-Rad Model 0.710 (0.606–0.815) 70.97 60.94 68.42
Combined Model 0.901 (0.840–0.957) 93.55 81.25 85.95

Clin-Lab Clinical-Laboratory, PET-Rad positron emission tomography-radiomics, CT-Rad computed tomography-radiomics, AUC area under the receiver operating curve, CI confidence interval, Sen sensitivity, Spe specificity, Acc accuracy