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Abstract

The circadian rhythm has a strong influence on both cardiac physiology and disease in humans. 

Preclinical studies primarily using tissue specific transgenic mouse models have contributed to our 

understanding of the molecular mechanism of the circadian clock in the cardiovascular system. 

The core clock driven by CLOCK:BMAL1 complex functions as a universal timing machinery 

that primarily sets the pace in all mammalian cell types. In one specific cell or tissue type, core 

clock may control a secondary transcriptional oscillator, conceptualized as slave clock, which 

confers the oscillatory expression of tissue-specific effectors. Here, we discuss a core clock-slave 

clock-effectors network, which links the molecular clock to cardiac function.
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1 Introduction

Circadian rhythm is a cell-autonomous timing system evolved to optimize biological 

processes in anticipation of recurring external cues [1,2]. In the cardiovascular system 

physiological parameters such as heart rate, blood pressure and endothelial function show 

diurnal rhythmicity [3,4]. Whilst disruption of circadian rhythm is associated with 

cardiovascular disease (CVD) such as myocardial infarction, strokes and sudden cardiac 

death [5**,6,7,8**,9,10*].

Here we will discuss a core clock-slave clock-effector network which governs the cardiac 

function (Figure 1). The primary molecular motor for circadian rhythm is the core clock. It 

consists of both transcriptional activators and repressors, which rhythmically express within 

an autoregulatory transcription-translation feedback circuit. The core clock presides over the 

slave clock, a secondary oscillator that governs the gene transcription of essential 

downstream output effectors and enables rhythmic tissue-specific functions. The core clock 

may also directly regulate certain effectors. Finally, dual regulation from the core clock and 

slave clock is also possible.

In this review, we will first discuss the function and regulation of the core clock and the 

slave clock in the heart. Kruppel-like factor 15 (KLF15) will be highlighted as an essential 

slave clock in heart. In the latter part, we will focus on downstream oscillatory effectors 

which are critical in cardiac function and have shown significant cardiac phenotypes in 

animal studies when their circadian regulation is disrupted. We will discuss the circadian 

regulation of these effectors by core clock and slave clock as well as their impact on cardiac 

pathophysiology.

2 The core clock

2.1 The molecular core clock

The molecular circuit of the core clock is identical across all tissues and cell types. The 

CLOCK:BMAL1 complex activates Cry and Per gene expression. Accumulation of 

cytoplasmic CRY:PER complex leads to their nuclear translocation and switches off the 

CLOCK:BMAL1-driven gene transcription of Cry and Per [11,12]. Moreover, 

CLOCK:BMAL1 complex also drives the transcription of Nr1d1/2 and Nr1f1 which encodes 

nuclear receptors REV-ERBα/β and RORα. REV-ERB competes with RORα at the ROR 

binding elements (ROREs), which suppresses and actives the transcription of Bmal1, 

respectively [13,14,15].

The critical function of the peripheral core clock in the heart has been directly demonstrated 

by the significant cardiac phenotypes in mouse models where core clock function was 

genetically ablated in a tissue specific manner. Mice bearing cardiomyocyte-specific Clock 
mutant (CCM) [16,17] and Bmal1 knockout (CBK) [18,19,20] display significant 

disturbance of circadian rhythm in blood pressure and heart rate accompanied with abnormal 

cardiac electrophysiology and function. Additionally, PER2 regulates the rhythmicity of 

heart rate [21] and susceptibility to ischemia-reperfusion injury (I/R injury) in mice 

[22,23,24,25]. Further, REV-ERBα agonists and antagonists have been shown to provide 
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cardioprotection against heart failure in mouse models and I/R injury in both mice and 

humans [26,27,28,29**].

2.2 Regulation of the core clock by post-translational modification

The core clock components undergo extensive and diverse post-translational modifications, 

including acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, O-

GlcNAcylation, ADP-ribosylation and S-nitrosylation [8**,30,31,32,33,34]. Particularly, 

acetylation, phosphorylation, ubiquitination and O-GlcNAcylation of core clock are known 

to modulate circadian rhythm in heart. Acetylation of BMAL1 directly regulates the 

CLOCK:BMAL1 activity. In fact, CLOCK itself is an acetyltransferase and acetylates its 

partner BMAL1 on K536 [35], which is required for gene transactivation [31]. In contrast, 

deacetylation of BMAL1 by sirtuin 1 (SIRT1) suppresses the core clock-activated 

transcription [31,36,37]. SIRT1 also deacetylates PER2 and promotes its degradation [38]. 

Either loss or overexpression of SIRT1 in heart can lead to cardiac dysfunction and heart 

failure [39,40]. Phosphorylation mediated by casein kinase 1 delta/epsilon (CK1δ/ε) 

promotes nuclear translocation and degradation of PER1/2 [12,41], which is critical for the 

clock period [8**,42*,43]. Mutation in CK1ε (tau mutant) that impairs the kinase activity 

reduces the amplitude of Bmal1 circadian expression and induces a phase shift for Per1 and 

Dbp in hamster heart [43]. In addition, Durgan et al. showed that Bmal1 is O-GlcNAcylated 

in mouse heart with the peak O-GlcNAcylation level in the middle of the active phase 

[44**]. O-GlcNAcylation of BMAL1/CLOCK inhibits their ubiquitination and promotes the 

transcriptional activity [45,46]. As the O-GlcNacylation modification is sensitive to glucose 

level, future study may investigate whether O-GlcNacylation can serve as a metabolic sensor 

to regulate circadian clock in heart [47*].

2.3 The core clock affects cardiac function through both transcription and translation

2.3.1. The core clock regulates circadian transcription—Approximately 10% of 

the gene transcription oscillates in the heart similar to other organs in the body 

[16,17,20,48,49]. In addition to acetylating BMAL1, CLOCK also functions as a histone 

acetyltransferase (HAT) for histone H3 [50]. BMAL1 enhances the HAT function and serves 

as pioneer factor for driving the circadian transcription due to its accessibility to closed 

chromatin [51,52]. A comprehensive interrogation of the cistrome profile uncovered the 

circadian rhythmic recruitments of BMAL1 and RNA polymerase II (RNAPII) that occur on 

a genome-wide scale [53,54]. This landmark finding suggests that global mobilization of 

BMAL1 and RNAPII is the foundation for circadian oscillation in gene transcription and 

cardiac function.

2.3.2 The core clock regulates circadian translation—The activity of protein 

synthesis also oscillates in a circadian fashion in the heart [55]. CBK mouse hearts have 

increased translation level [55]. Detailed biochemical study showed that BMAL1 serves as a 

negative regulator for AKT signaling in the heart [55] which activates the mammalian target 

of rapamycin (mTOR)/ribosomal protein S6/eukaryotic translation initiation factor 4E-

binding protein 1 signaling axis, a classic mechanism that promotes protein synthesis [56]. 

Importantly, loss of BMAL1 persistently activates mTOR signaling leading to increased 
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protein synthesis level as well as attenuated autophagy, which causes cardiac hypertrophy 

[55].

3 The slave clock in heart

While each tissue has about 5-10% of the genes oscillating, the overlap between different 

tissues is exceedingly small, suggesting a local factor interfacing with the core clock and 

determines the tissue specificity of transcript oscillation [48,57]. The concept of “slave 

clocks” has long been proposed to explain this phenomenon, however, there is very few 

examples of well described slave clocks. Our work demonstrated that the Kruppel-like factor 

15 (KLF15) is an essential slave clock in the heart (Figure 2A) [58]. KLF15 is a 

transcription factor that oscillates in a circadian fashion under the control of BMAL1 [59]. 

Additionally, a recent study identified enhancer of zeste homolog 2 (EZH2) as a novel 

suppressor for Klf15 transcription in the heart in the setting of ischemic heart failure [60**]. 

EZH2 may also modulates the circadian function of KLF15 as it directly associates with 

CLOCK:BMAL1 [61], the details of which, remain to be studied.

Circadian RNA-seq revealed that KLF15 governs 75% of oscillating genes in the heart 

without affecting the oscillation of the core clock, including direct regulation of catabolic 

genes in the active phase [58]. Additionally, KLF15 allows the recruitment of REV-ERB and 

nuclear receptor corepressor which suppresses hundreds of genes from aberrant oscillation 

[58]. KLF15 deficiency leads to cardiac lipid utilization defect and cardiomyopathy 

[58,62*]. Further, our recent work demonstrated that KLF15 also regulates MnSOD activity 

through acetylation on lysine 122 in a SIRT3-dependent fashion and provides circadian 

cardioprotection against oxidative stress induced by I/R injury [63**]. Thus, KLF15 

coordinates the catabolic activity and clearance of the accompanied oxidative stresses in a 

circadian fashion, thereby exemplifying one of the proposed evolutionary benefit of 

circadian rhythm (Figure 2B). In addition to the core clock, KLF15 is also regulated by other 

physiological and pathological inputs such as diet and exercise, disease status and aging. For 

instance, Prosdocimo et al. showed that KLF15 expression in the mouse heart may be 

induced by fasting, and activates lipid metabolic genes and promotes myocardial lipid 

utilization [62*]. Thus in contrast to what’s implied by their name, “slave clocks” are not 

completely subordinate to the core clock, but integrate circadian rhythmic gene expression 

with local lineage specific information as well as metabolic signals (Figure 2C).

4 Effectors for circadian rhythm in cardiac function

Ultimately, the diverse rhythmic activity of the heart is carried out by various effectors, such 

as ion channels, metabolic enzymes, and signaling molecules. Here, we will review the 

major categories of effectors with implications in cardiac function (Table 1). The effectors 

that have exhibited circadian rhythm in in vivo studies will be discussed here in more details.

4.1 Ion channels

Ion channels are the molecular basis for cardiac electrophysiology [64]. Comparing to 

neurological tissues, cardiac ion channels have shorter half-lives (hours) and undergo more 

rapid turnover [65,66]. Therefore, by modulating the expression of cardiac ion channel genes 
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(e.g. Scn5a, Kcnip2 and Cacna1c) the circadian clock readily regulates cardiac 

electrophysiology in a rhythmic fashion [19,59,67**,68]. For instance, BMAL1 and KLF15 

directly regulates the rhythmic expression of Nav1.5 channel (SCN5A) [19,59] and Kv 

channel interacting protein 2 (KChIP2) [59], respectively. Studies from CCM, CBK and 

KLF15-null models indicate that loss of circadian clock can cause abnormal cardiac 

electrophysiology through effector channels and result in slowed heart rate, prolonged QRS 

intervals [19], reduced rhythmic amplitude of heart rate [16] and absence of oscillation in 

QT variation [59], which increases the risk for arrhythmia.

4.2 Metabolic enzymes

The heart demands continuous energy to support its contractile function [69,70]. Cardiac 

metabolism is tightly controlled by metabolic enzymes where dysregulation may lead to 

energy failure, metabolic remodeling and heart failure [71,72,73]. Early expression analysis 

of CBK mice revealed 19 putative direct BMAL1 target genes including three genes 

encoding essential metabolic enzymes in the heart [20], which are Nampt for nicotinamide 

adenine dinucleotide (NAD+) biosynthesis [63**,74,75,76**,77], Dgat2 for triacylglycerol 

biosynthesis [78,79,80,81*], and Bdh1 for ketone body catabolism [82].

Circadian rhythm in metabolic enzyme highly correlates with the metabolic status in the 

heart. For instance, nicotinamide phosphoribosyltransferase (NAMPT) level is increased 

prior to the sleep-to-wake transition in the heart in anticipation of the upcoming active phase 

when the demand of NAD+ will be elevated for fuel catabolism [20,63**,77,83]. 

Mechanistically, circadian transcription of Nampt is controlled by the dual regulation of 

BMAL1 (core clock) [36,37,84,85,86,87] and KLF15 (slave clock) [63**], in which KLF15 

integrates external metabolic inputs [88,89**,90,91] and fine-tunes NAD+ biosynthesis 

besides the clock control (Figure 2C). KLF15 also transcriptionally activates numerous other 

effector enzymes in the fatty acid and multiple amino acid metabolic pathways [58]. 

Dysregulation of these effectors has been associated with I/R injury [63**,74,80] and heart 

failure [62*,74,75,76**,78,92].

4.3 Metabolites

In addition to providing building blocks and energy, metabolites serve important signaling 

functions and connects cardiac metabolism with contractile function and cell survival in the 

heart [93,94].

4.3.1 NAD+—The NAD+ level in the heart is higher than most of the other organs [95]. 

Besides interacting with over 500 enzymes, NAD+ is involved in almost every key biological 

process in the mammalian cells [96,97**]. Dysregulated NAD+ homeostasis has been 

associated with various CVD and NAD+-boosting is emerging as a novel strategy for 

treating and preventing CVD [97**, 98*,99,100**].

The oscillatory NAD+ level in heart is primarily governed by the circadian NAMPT levels 

[20,97**,77,83]. This is likely further driving the rhythmic activity of certain NAD+-

dependent enzymes that have Km values within the physiological range of NAD+(300-700 

μM) [97**,101], such as SIRT1 (94-888 μM) [102,103,104,105] and SIRT3 (280-880 μM) 
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[106,107]. Indeed, we found that KLF15 regulates circadian susceptibility to I/R injury 

through the KLF15-Nampt-NAD+-SIRT3-MnSOD axis [63**]. Further, we found 

administration of an NAD+ precursor, nicotinamide mononucleotide (NMN) provided 

cardioprotection against I/R injury when the NAD+ level was at nadir but not when the NAD
+ level was at peak, supporting the use of chronotherapy in NAD+-boosting strategies 

[63**].

4.3.2 H2O2—In mammalian cells, most of the H2O2 is produced in the mitochondria 

[108]. Excessive production of H2O2 can be detrimental to cardiac function [109**] which 

underlies a number of CVD [110,111,112,113]. Peroxiredoxin III (Prx III) is the major 

H2O2-eliminating enzyme in the mitochondria where it reduces H2O2 into H2O in the 

presence of thioredoxin (Trx) through the catalytic cycle [114,115,116,117]. However, when 

H2O2 production rate is boosted due to increased energy demand during the active phase, 

Prx III can undergo hyperoxidization cycle, through which it turns into its inactive form 

(PrxIII-SO2) [114,117]. A redox cycling between Prx III and PrxIII-SO2 is then established 

based on H2O2 release from the mitochondria and mitochondrial translocation of 

sulfiredoxin (Srx) that reactivates Prx III (Figure 3A) [117,118]. This mechanism was found 

to exhibit a circadian rhythm in many types of cells/tissues including the heart 

[118,119,120,121,122,123]. H2O2 could potentially damage the mitochondrial [124] and the 

cardiac function [109**], however, a direct investigation of mitochondrial function 

correlating with oscillating H2O2 level in a circadian fashion has not be performed.

4.4 Intracellular signaling pathways

4.4.1 AMPK signaling—AMPK is a metabolic sensor that integrates the energy status 

with circadian regulation on key metabolic pathways [125,126]. For example, AMPK 

regulates the rhythmic activity of NAMPT [77] and hormone-sensitive lipase [127] which 

affects the NAD+ metabolism and the triglyceride metabolism in heart, respectively. The 

core clock regulation of AMPK is evidenced by the CCM model where oscillation in AMPK 

activity is lost [127]. Notably, CCM only disrupts the rhythm without affecting the baseline 

expression [127]. On the other hand, AMPK can also influence the core clock activity by 

phosphorylation on core clock suppressor CRY1/2 [128] and PER2 [129] which promotes 

their degradation.

4.4.2 PI3K/AKT (mTOR and GSK3β) signaling—PI3K/AKT is involved in diverse 

biological processes such as cell proliferation, survival and migration [130,131]. PI3K/AKT 

signaling activates mTOR but inhibits GSK3β [131,132]. The core clock controls the 

circadian rhythm in PI3K/AKT signaling as well as mTOR and GSK3β. Expression analysis 

of CBK mice revealed that BMAL1 directly regulates Pik3r1 which encodes p85α, the 

regulatory subunit of PI3K [20]. Consistently, CCM or CBK heart exhibits disrupted 

circadian rhythm in p85α expression and also the phosphorylation states of AKT, mTOR 

and GSK3β [55,133]. The importance of circadian PI3K/AKT signaling in cardiac function 

has been demonstrated in vivo. McGinnis et al. showed that loss of circadian PI3K signaling 

in CBK mouse disrupted circadian mTOR signaling, which led to increased protein 

synthesis rate, suppressed autophagy and cardiac hypertrophy [55]. Additionally, PI3K/AKT 
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signaling has been shown to contribute to the oscillatory physiological response to insulin 

[55] and the circadian rhythmic expression of Cav1.2 channel (CACNA1C) [68].

4.4.3 PKA signaling—PKA signaling transduces β-adrenergic signaling and 

phosphorylates several proteins that are essential for Ca2+ transient such as L-type calcium 

channel (Cav1.2 [134] and β2a subunits [135]), ryanodine receptor 2 (RYR2) [136], and 

phospholamban (PLN) [137], which ultimately increases the contractile function in heart 

(inotropic) (Figure 3B) [138,139,140,141]. One study found modest transcriptional 

oscillation of Prkar1a, a gene encodes the type 1a regulatory subunit of PKA [142], which 

was disrupted in the CCM heart [16]. Both of the Prkar1a transcriptional level [16] and the 

circulating β-agonist level exhibit in-phase rhythm with peak during the active phase [143]. 

Therefore, although lacking direct experimental data, it is likely that the actual activity of the 

PKA signaling in the heart also oscillates in a similar pattern, which may contribute to 

circadian Ca2+ transient, sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SECRCA2) 

activity and contractility in heart [8**,144,145].

4.4.4 Ca2+ and calcineurin signaling—The calcium-activated protein phosphatase or 

CaN links the Ca2+ signaling and protein phosphorylation, which is particularly important 

for excitatory cells such as the cardiomyocytes [146]. CaN also regulates mitochondrial 

dynamics [146,147,148,149,150], which is associated with I/R injury [151**], 

cardiomyocyte hypertrophy [152] and heart failure [147]. Activity of CaN exhibits circadian 

rhythm in the heart [144]. The oscillatory transcription of an important CaN-targeted gene, 

Rcan1 (regulator of CaN 1) is diminished in the CCM heart, suggesting that circadian CaN 

activity requires the core clock [16]. Circadian rhythm in CaN is influenced by two 

interconnected mechanisms (Figure 3B) [144,153]. First, CaN responses to cytosolic Ca2+ 

level change [146] which is influenced by the aforementioned circadian β-adrenergic/PKA 

signaling cascade [144]. Second, the expression of RCAN1 isoform 4 (RCAN1.4 with exon 

4 being the first exon [154,155]), a CaN inhibitor [156,157], is circadian in the heart [144]. 

The rhythmic RCAN1.4 level is partially regulated by CaN-triggered nuclear translocation 

of nuclear factor of activated T cells (NFAT) [144,158,159]. However, CaN-independent 

mechanism also exists as inhibition of CaN activity only reduces the peak transcription of 

Rcan1.4 but does not abolish its rhythmicity in the heart [144].

Circadian CaN activity modulates the functional consequence of β-agonist/PKA signaling in 

a daily fashion (Figure 3B). CaN activity reaches trough at the sleep-to-wake transition so 

that key modulators for β-adrenergic signaling such as PLN [160,161] could maintain in the 

phosphorylated state (inactive). This helps maximize the stimulation of contractile function 

by β adrenergic signaling and helps anticipate the elevation of cardiac workload in the 

upcoming active phase [144]. Indeed, epinephrine induces a greater increase in cardiac 

power ex vivo during the active phase than inactive phase [16]. On the other hand, 

isoproterenol induces a more pronounced hypertrophic growth at the wake-to-sleep 

transition, [162] likely due to high CaN activity that promotes cardiac hypertrophy [163]. 

Moreover, high CaN activity increases dephosphorylation of PLN and impairs Ca2+ uptake 

by SERCA2 which elevates diastolic Ca2+ level [140,164,165,166] and may further enhance 

the CaN-induced hypertrophy.
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4.5 MicroRNAs

Several oscillatory miRNAs have been implicated for cardiac function, however, the 

molecular mechanism remains sparse [167,168]. Recently, Bartman et al. demonstrated that 

miR-21 is a downstream target of PER2 that exhibits rhythmic expression in the heart. They 

showed that miR-21 plays a crucial role in glycolysis, metabolic adaptation and 

cardioprotection in response to I/R injury [22,169]. Intense light exposure induces PER2 

expression [170,171] and upregulates miR-21 level in mouse heart and human plasma [169], 

suggesting a potential therapeutic benefit for intense light therapy through this pathway 

[167]. Future study is required to elucidate the detailed mechanisms of circadian miRNAs in 

various diseases settings.

5 Novel mechanisms

Recent evidence suggests that circadian rhythm also exist in mitochondrial dynamics 

(mitophagy, fission and fusion) [8**,172,173,174,175], alternative splicing [176,177**] and 

long non-coding RNA [178] in the heart. In addition, BMAL1-independent clock that has 

been found in other types of cells/tissues [119,120,121,122,179**,180,181,182,183**] may 

also play a role in the heart. Future studies exploring these novel mechanisms will elucidate 

exciting new avenues in the circadian regulation of the cardiac function.

6 Conclusion

In the modern society exposures to artificial lighting and temperature control disrupt our 

intrinsic circadian rhythm. Approximately 15%-20% of industrial workers are shift workers 

who have increased risks for hypertension and coronary artery disease 

[184,185,186,187,188,189]. The contribution of circadian disruption to CVD inevitably 

increases with continued modernization. Thus, understanding the molecular mechanisms and 

designing novel therapeutic strategies targeting the core clock or the slave clocks as well as 

chronotherapies targeting the effectors are in urgent need for the treatment and prevention of 

CVD.

The core clock-slave clock-effectors forms an expansive and intricate system to optimize the 

physiological function of the heart. We have just begun to understand this sophisticated 

system. The discovery of KLF15 as an essential slave clock that coordinate s intrinsic core 

clock and metabolic output has open up a new dimension in the cardiac circadian rhythm 

research. Although KLF15 regulates about 75% of the oscillatory gene expression in heart, it 

still remains an open question whether there’s other slave clock in the heart. In addition, it is 

not well understood how external metabolic signals regulate KLF15. Future study may also 

explore the roles of novel effectors in regulating circadian rhythm in heart (Table 5), 

particularly through non-transcriptional mechanisms, such as microRNA, long non-coding 

RNA and alternative splicing, all of which can potentially lead to broad regulation of gene 

program and cellular function.
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Highlights

• A network of core clock-slave clock-effectors links the molecular clock to 

cardiac function

• The core clock machinery BMAL1:CLOCK regulates circadian rhythm 

through both transcription and translation in the heart

• KLF15 is an essential slave clock in the heart that coordinates cardiac 

catabolism and clearance of the accompanied oxidative stresses in a circadian 

fashion

• Circadian rhythm in cardiac function is carried out by various circadian 

effectors including ion channel, metabolic enzyme, metabolite, intracellular 

signaling, microRNA as well as other novel mechanisms.

• Disruption of intrinsic circadian rhythm is highly associated with 

cardiovascular disease
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Figure 1. The core clock-slave clock-effectors network.
This schematic diagram illustrates the proposed model of the molecular mechanism of 

circadian regulation in the heart. The core clock generates the primary oscillation, which is 

either transduced by a tissue specific slave clock or directly to a variety of downstream 

effectors. The slave clock allows tissue specific circadian regulation as well as integration of 

additional environmental inputs, such as metabolic or disease status. The effectors ultimately 

affe ct cardiac physiology or pathophysiology.
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Figure 2. Cardiac slave clock KLF15.
(A) Circadian regulation of KLF15 and its slave clock function in both gene activation and 

repression. (B) KLF15 coordinates catabolism and ROS clearance in the active phase by 

regulation of myocardial NAD+ level. (C) The dual regulation of BMAL1 and KLF15 on 

cardiac NAD+ biosynthesis. Both BMAL1 and KLF15 activates Nampt transcription through 

direct binding on the promoter/enhancer. The increased NAD+ level activates SIRT1 activity, 

which deacetylates BMAL1 and histone H3 at the cis-acting site and suppresses the 

transactivation of BMAL1, forming a feedback inhibition loop. Additionally, KLF15 is 

subjected to the regulation of various metabolic inputs, which fine-tunes the circadian 

oscillatory expression of Nampt to achieve precise control of cardiac NAD+ level.
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Figure 3. Effectors of cardiac circadian clock.
(A) Circadian H2O2 release and Prx III redox cycling. During the resting phase, 

mitochondrial H2O2 level is low, Prx III is able to scavenge all the mitochondrial H2O2 

through catalytic cycle. While in the active phase, the H2O2 production is increased due to 

increased cardiac metabolism, which lead to hyperoxidization of Prx III and the formation of 

the inactive Prx III-SO2. Excessive H2O2 released into cytosol oxidizes Srx leading to the 

formation of the Srx:HSP30 complex, which is required to reactivate Prx III.

(B) Circadian regulation of PKA/β-adrenergic and CaN signaling, resulting in low diastolic 

intracellular Ca2+ concentration ([Ca2+]i) in the active phase which favors increased 

contractility, and high diastolic [Ca2+]I in the resting phase which favors hypertrophy.
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Table 1.

Effectors for circadian rhythm in cardiac function.

Category Effector Circadian regulation on cardiac physiology & disease susceptibility

Ion channel SCN5A, CACNA1C, 
KChIP2 Heart rate and cardiac electrophysiology (repolarization); arrhythmia

Metabolic enzyme

NAMPT NAD+ biosynthesis

DGCT2 Triacylglycerol biosynthesis

BDH1 Ketone body catabolism

Metabolite
NAD+ Cardiac metabolism and SIRT1/3-dependent regulation; I/R injury

H2O2 Redox cycling of Prx III and mitochondrial function

Intracellular signaling

AMPK Cardiac metabolism (NAMPT and hormone-sensitive lipase)

PI3K/AKT (mTOR & 
GSK3β)

Translation, autophagy, hormone (insulin) response and Cav1.2 expression; hypertrophy 
and I/R injury

PKA β-adrenergic signaling, SERCA2 activity and contractility

CaN β-adrenergic signaling and CaN signaling; I/R injury and heart failure

MicroRNA miR-21 Glycolysis and cardiomyocyte survival; I/R injury

Novel mechanism ? Mitochondrial dynamics (mitophagy, fission and fusion), alternative splicing, long non-
coding RNA and BMAL1-independent clock
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