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Delineating visual, auditory 
and motor regions in the human 
brain with functional 
neuroimaging: a BrainMap‑based 
meta‑analytic synthesis
Marisa K. Heckner1,2*, Edna C. Cieslik1,2, Vincent Küppers1,2, Peter T. Fox3, 
Simon B. Eickhoff1,2 & Robert Langner1,2*

Most everyday behaviors and laboratory tasks rely on visual, auditory and/or motor-related processes. 
Yet, to date, there has been no large-scale quantitative synthesis of functional neuroimaging studies 
mapping the brain regions consistently recruited during such perceptuo-motor processing. We 
therefore performed three coordinate-based meta-analyses, sampling the results of neuroimaging 
experiments on visual (n = 114), auditory (n = 122), or motor-related (n = 251) processing, respectively, 
from the BrainMap database. Our analyses yielded both regions known to be recruited for basic 
perceptual or motor processes and additional regions in posterior frontal cortex. Comparing our 
results with data-driven network definitions based on resting-state functional connectivity revealed 
good overlap in expected regions but also showed that perceptual and motor task-related activations 
consistently involve additional frontal, cerebellar, and subcortical areas associated with “higher-
order” cognitive functions, extending beyond what is captured when the brain is at “rest.” Our 
resulting sets of domain-typical brain regions can be used by the neuroimaging community as robust 
functional definitions or masks of regions of interest when investigating brain correlates of perceptual 
or motor processes and their interplay with other mental functions such as cognitive control or 
affective processing. The maps are made publicly available via the ANIMA database.

Visual, auditory, and motor-related processes are important for most everyday behaviors as well as laboratory 
tasks. In fact, “basic” perceptual and motor processing may play a substantive role in “higher-order” men-
tal faculties such as cognitive control. Research on cognitive aging has already implicated a significant link 
between perceptual and cognitive functions. For example, the processing-speed theory of adult age differences 
in cognition1 postulates that slowing of “higher-order” cognitive functions in older adults might be caused by 
poorer utilization of cognitive resources at an earlier processing level. Poorer performance in “higher-order” 
cognitive tasks might thus be a consequence of inefficient sensory and/or motor processing2,3. However, espe-
cially neuroimaging studies that focus on network-based substrates of cognitive functions often do not account 
for perceptuo-motor processes and their neural correlates, thereby ignoring regions whose processing might be 
crucial but not specific for the process of interest. One reason for this might be that a great number of networks 
of interest result from task-based neuroimaging studies, which typically follow a subtraction logic that “cancels 
out” any brain activation that is not specifically affected by the condition of interest, relative to a control condi-
tion, but may nonetheless be essential for solving the task at hand. This is particularly true of perceptuo-motor 
processes, which often precede, follow or accompany the mental process under scrutiny and are crucial for correct 
task performance4,5. For revealing their neural mechanisms with ecological validity, it seems useful to jointly 
address context-, input-, and output-related subprocesses, as opposed to focusing on single, isolated core func-
tions. Such an integration of perceptual and motor-related processes in research on higher cognitive functions 
in the normal population still seems to be largely missing, though.
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To date, there has not been any large-scale quantitative synthesis of functional neuroimaging studies mapping 
the brain regions recruited during such perceptuo-motor processing. Previous meta-analyses6,7 might suffer from 
a lack of power and generalizability, as they included less than half the number of experiments used in the current 
study and focused on rather specific subprocesses within their functional domains. This study therefore aimed 
to robustly and broadly define perceptual and motor-related brain regions as well as a general perceptuo-motor 
network. To do so, we used activation likelihood estimation (ALE) meta-analyses8–11 for synthesizing results from 
neuroimaging studies investigating visual or auditory processing as well as motor execution. While we focused 
on rather simple and “pure” perceptual or motor paradigms, to capture regions associated with fundamental 
perceptuo-motor processes, we did not limit our analyses to specific subprocesses or functions. Rather, our 
experiment selection aimed to be as comprehensive as possible to distill what is shared across a great number 
and variety of domain-specific tasks to allow for a robust and unbiased estimation.

Imaging data was obtained from the BrainMap database (http://​www.​brain​map.​org)12–15, which stores peak 
coordinates from published neuroimaging studies along with metadata describing the paper. In order to capture 
brain activations associated with perceptuo-motor processes, our meta-analyses only included experiments that 
did not cancel out these basic processes. That is, we excluded all experiments that performed subtractions with 
sensory or motor control conditions, respectively. The term “experiment” refers to a single contrast between 
imaging data yielding condition-specific localization information. A scientific publication can report one or more 
experiments15. Our definition of perceptuo-motor processes was based on BrainMap’s taxonomy of Paradigm 
Classes, that is, a set of descriptive labels categorizing the experimental tasks16. For example, for visual processes 
we included, among other paradigms: film viewing, fixation, and flashing checkerboard; for auditory processes we 
included paradigms such as passive listening, music comprehension and pitch monitor; and for motor execution 
we included paradigms such as chewing, grasping, and finger tapping (see Methods for a full list).

In a first step, the neural correlates of visual, auditory or motor-related processes were examined in three 
separate ALE meta-analyses. In a second step, the maximum z-statistic of the three resulting sets of regions was 
computed to obtain a general perceptuo-motor network. In a third step, we compared our meta-analytically 
derived task-based networks to previously published definitions of brain networks based on data-driven analy-
ses of resting-state functional connectivity (RSFC). Since it has been shown that task-related brain activation 
patterns are mirrored by functional connectivity patterns at rest17–20, the comparison to previously published 
resting-state networks was used as a means to assess the validity of our task-based network definitions. Further, 
this comparison enabled us to distinguish brain regions associated with “basic” perceptuo-motor processes (i.e., 
brain regions that are common between our task-based and at least one RS-derived network) from domain-
unspecific regions linked to task execution and/or setting. Finally, we computed a minimum z-statistic conjunc-
tion across visual, auditory and motor networks to identify regions that are domain-general (i.e., independent 
of fundamental perceptuo-motor processes).

Methods
Sample.  Using Sleuth 3.0.3 (http://​www.​brain​map.​org/​sleuth/), we identified relevant functional imaging 
experiments in the BrainMap database12–15, which contained 16,901 experiments at the time of analysis. We only 
considered activation data from functional magnetic resonance imaging (fMRI) or positron emission tomog-
raphy (PET) studies with healthy adult participants. Furthermore, we only included experiments with whole-
brain coverage (i.e., no results of region-of-interest analyses) and low-level control condition (i.e., task > resting 
baseline). We excluded results of correlation analyses with external variables and between-group contrasts. To be 
precise, our exclusion criteria were applied to experimental conditions and not the paper per se. Hence, if a paper 
reported a whole-brain analysis that met the criteria but also reported (additional) post-hoc region-of-interest 
analyses, the whole-brain results were still included.

In BrainMap, experimental tasks are coded along two dimensions16: Behavioral Domains describe the cog-
nitive process probed by an experiment, and Paradigm Classes label the task category used. Here, we selected 
all Paradigm Classes that captured basic sensory visual or auditory input processing or relatively simple motor 
execution processes, respectively. After an initial automated extraction, experiments were further screened in 
BrainMap’s Workspace by the first author to double-check their match with our inclusion and exclusion crite-
ria. In particular, it was ascertained that the visual, auditory and motor-related processes of our interest were 
not subtracted out by an active sensory or motor baseline condition (see Fig. 1 for an overview of the different 
analysis steps conducted). A checklist for neuroimaging meta-analyses21 including detailed information about 
the automated and manual inclusion and exclusion criteria can be found in Supplementary Table S1.

For elucidating regions consistently involved in visual processing, we included experiments of the following 
Paradigm Classes: face monitor/discrimination, film viewing, fixation, flashing checkerboard, passive viewing, visual 
object identification, visual pursuit/tracking, and visuospatial attention. The automated extraction resulted in 168 
experiments, 114 of which were included in our analysis after further manual screening.

For identifying regions consistently involved in auditory processing, we included experiments of the Paradigm 
Classes: divided auditory attention, music comprehension, oddball discrimination, passive listening, phonological 
discrimination, pitch monitor/discrimination and tone monitor/discrimination. The automated extraction resulted 
in 154 experiments, 122 of which were included in our analysis after further manual screening.

For determining regions consistently involved in motor-related processing, we included experiments of the 
Paradigm Classes: writing, chewing/swallowing, drawing, isometric force, motor learning, grasping, finger tapping/
button press, and flexion/extension. The automated extraction resulted in 331 experiments, 251 of which were 
included in our analysis after further manual screening.

http://www.brainmap.org
http://www.brainmap.org/sleuth/
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Activation likelihood estimation.  The meta-analyses were conducted using the revised version of the 
ALE algorithm for coordinate-based meta-analysis of neuroimaging results as implemented in GingerALE 
3.0.28,9,11. This algorithm aims to identify areas with across-experiment activity convergence that is higher than 
expected from random spatial association. ALE models the activation coordinates included as centers of 3-D 
Gaussian probability distributions to acknowledge the spatial uncertainty associated with each focus, which is 
weighted according to the number of participants per experiment. The probability distributions of all activation 
foci of a given experiment are then combined for each voxel, which creates a modeled activation (MA) map. 
Taking the union across these MA maps of all experiments included yields voxel-wise ALE scores describing 
the convergence of results (i.e., the estimated activation likelihood) across studies at each particular location 
of the brain. These ALE scores are then compared to an empirical null distribution reflecting random spatial 
associations between all MA maps to distinguish “true” convergence across studies from random convergence. A 
detailed description can be found in the Supplementary Material. All results were thresholded at p < 0.05 (cluster 
inclusion threshold at voxel level: p < 0.001).

In addition to the three individual meta-analyses, we combined their results by calculating a voxel-wise maxi-
mum z-statistic on the thresholded result images (i.e., the greatest z-value per voxel of each of the three images 
was retained) to define a comprehensive perceptuo-motor processing network. Furthermore, we computed a 
voxel-wise minimum z-statistic on the thresholded result images to display common regions between all three 
perceptuo-motor domains. All results were anatomically labeled by reference to probabilistic cytoarchitectonic 
maps of the human brain using the SPM Anatomy Toolbox version 322,23. Cortical and cerebellar clusters of 
convergence were visualized with the BrainNet Viewer24; subcortical clusters were rendered on the individual 
anatomical template (“ch2better”) provided with MRIcron25.

Comparison to RSFC‑based data‑driven network definitions.  For comparing our meta-analytically 
derived ALE maps to RSFC-based data-driven network definitions we used the Jaccard similarity coefficient26,27. 
The Jaccard coefficient as a comparison of two binarized activation maps is the intersection divided by the union 
of all voxels [Jaccard = C/(A + B − C), where C is the number of significant voxels at the intersection of both maps 
and A and B the number of significant voxels of each map]. A Jaccard coefficient of 1 indicates perfect between-
map overlap, a coefficient of 0 no overlap.

In particular, we compared our results with Yeo et al.’s28 networks reflecting an RSFC-based 7-cluster par-
cellation of the cortex, with Smith et al.’s17 networks reflecting a 20-component decomposition obtained with 
independent component analysis, and Power et al.’s29 subnetworks obtained with a subgraph detection algorithm.

Figure 1.   Flowchart of the meta-analysis steps conducted.
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As there was no 3D-image of the Power networks available, we calculated the overlap as number of Power 
network coordinates within the corresponding ALE-derived network divided by the total number of nodes 
comprising the respective Power network. For visualization of the overlap, task-based and the corresponding 
resting-state derived brain networks were rendered on the individual anatomical template (“ch2better”) provided 
with MRIcron25. Venn diagrams were created using the Python package Matplotlib-venn.

Results
Meta‑analyses.  We performed three ALE meta-analyses to uncover the neural correlates of visual or audi-
tory input processing as well as motor execution. Regions of significant convergence across visual tasks are 
shown in Fig. 2 and Supplementary Table S2. In brief, convergence was found in bilateral visual cortices, fusi-
form gyrus, pre-supplementary motor area (preSMA), inferior frontal junction (IFJ), intraparietal sulcus (IPS), 
superior parietal lobule (SPL), and dorsal premotor cortex (PMd) including the right frontal eye field (FEF). 
Further convergence was observed in left lingual gyrus and left SMA as well as right anterior insula (aINS).

Regions of significant convergence across tasks taxing auditory processing were found in bilateral planum 
temporale, Heschl’s gyrus, aINS, superior temporal gyrus, pre-SMA, SMA, PMd/FEF, and inferior frontal gyrus 
(IFG) pars opercularis, as well as putamen, thalamus, and cerebellum (see Supplementary Table S3 and Fig. 3).

Regions of significant convergence across tasks probing motor processes were found in bilateral pre-SMA, 
SMA, PMd including FEF, primary motor and somatosensory cortex, IPS, SPL, posterior IFG, and aINS, as well 
as putamen, thalamus, and cerebellum. Further convergence was observed in left lingual gyrus and left pallidum 
(see Supplementary Table S4 and Fig. 4).

Taking the maximum z-statistic of the resulting three sets of regions related to visual, auditory, or motor 
processing, respectively, yielded a comprehensive perceptuo-motor network. This combined set of regions is 
depicted in Fig. 5 and Supplementary Table S5.

The minimum z-statistic on the thresholded result images revealed preSMA, right aINS, and bilateral PMd 
as regions commonly involved in visual, auditory, as well as motor processing (see Supplementary Table S6 and 
Fig. S1).

Figure 2.   Foci of brain activity showing significant across-experiment convergence of activity related to 
visual processing (cluster-level p < 0.05, family-wise error-corrected for multiple comparisons, cluster-forming 
threshold at voxel level: p < 0.001). The scale bar reflects activation likelihood estimation scores. Cortical and 
cerebellar clusters of convergence were visualized with the BrainNet Viewer24; subcortical clusters were rendered 
on the individual anatomical template (“ch2better”) provided with MRIcron25.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9942  | https://doi.org/10.1038/s41598-021-88773-9

www.nature.com/scientificreports/

Figure 3.   Foci of brain activity showing significant convergence of activity for auditory processes (cluster-
level p < 0.05, family-wise error-corrected for multiple comparisons, cluster-forming threshold at voxel level: 
p < 0.001). The scale bar reflects activation likelihood estimation scores. Cortical and cerebellar clusters of 
convergence were visualized with the BrainNet Viewer24; subcortical clusters were rendered on the individual 
anatomical template (“ch2better”) provided with MRIcron25.

Figure 4.   Foci of brain activity showing significant convergence of activity for motor execution (cluster-
level p < 0.05, family-wise error-corrected for multiple comparisons, cluster-forming threshold at voxel level: 
p < 0.001). The scale bar reflects activation likelihood estimation scores. Cortical and cerebellar clusters of 
convergence were visualized with the BrainNet Viewer24; subcortical clusters were rendered on the individual 
anatomical template (“ch2better”) provided with MRIcron25.
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Comparison to RSFC‑based data‑driven network definitions.  We compared our meta-analytically 
derived task-activation networks to results obtained with three distinct data-driven approaches to defining brain 
networks based on interregional RSFC using the Jaccard similarity coefficient. Our visual activation network 
(8,321 voxels) overlapped with Yeo et al.’s RSFC-based network (22,282 voxels) in visual cortices and right IPS. 
However, their network was more extensive in visual cortex, while our results additionally included regions of 
convergence in preSMA, bilateral IFJ, left IPS, and right FEF. The Jaccard similarity coefficient was 0.13 (see 
Fig.  6). Similarly, our motor-related activation network (19,513 voxels) also overlapped well with Yeo et  al.’s 
RSFC-based somatomotor network (19,476 voxels), which again was more extensive throughout somatosensory 
cortex proper. Our results, in turn, included additional regions of convergence in bilateral putamen, thalamus, 
and cerebellum, which Yeo et al.’s clustering approach of the cerebral cortex could not account for. The Jaccard 
similarity coefficient was 0.15 (see Fig. 8). Furthermore, their 7-cluster parcellation did not yield a separate audi-
tory network.

In comparison to Smith et al.’s17 three RSFC-derived visual networks (component nos. 1–3; 32,780 voxels), our 
visual-processing-related set of regions (8,321 voxels) included additional clusters of convergence in preSMA, 
bilateral IFJ, right IPS and right aIns, as well as in left precentral gyrus, while especially Smith et al.’s second visual 
network (component no. 2) included additional clusters in bilateral thalamus and was more extensive throughout 
pre- and postcentral gyrus. The Jaccard similarity coefficient was 0.14 (see Fig. 6). Our auditory-processing-
related set of regions (10,291 voxels) comprised additional regions of convergence in bilateral cerebellum, aIns, 
preSMA, precentral gyrus, and right putamen. Smith et al.’s corresponding RSFC-based network (component 
no. 7; 14,552 voxels) included more extensive parts of primary auditory cortex. The Jaccard similarity coefficient 
was 0.32 (see Fig. 7). Additionally, we compared our motor-related task activation network (19,513 voxels) to 
Smith et al.’s somatosensory network (component no. 6; 16,719 voxels). Again, both sets of regions showed 
large overlap, while our results included additional regions of convergence in bilateral putamen, thalamus, and 
cerebellum; however, Smith et al. could not include inferior parts of the cerebellum. Conversely, Smith et al. 
reported an additional cluster in posterior cingulate cortex. The Jaccard similarity coefficient was 0.22 (see Fig. 8).

Figure 5.   Union (maximum z-statistic) of the results of three meta-analyses on visual, auditory, and motor-
related processing. The scale bar reflects the maximum statistic of the activation likelihood estimation scores. 
Cortical and cerebellar clusters of convergence were visualized with the BrainNet Viewer24; subcortical clusters 
were rendered on the individual anatomical template (“ch2better”) provided with MRIcron25.
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Figure 6.   Overlap between the task-based (red) and resting-state-derived (blue) visual networks by (A) Yeo 
et al.28, (B) Smith et al.17, and (C) Power et al.29. For Power et al.’s graph nodes spheres of 6 mm were added for 
illustrative purposes. The Venn diagrams on the right illustrate the number of voxels either network as well as 
the overlap in between these networks comprises. Brain networks were rendered on the individual anatomical 
template (“ch2better”) provided with MRIcron25. Venn diagrams were created using the Python package 
Matplotlib-venn.

Figure 7.   Overlap between the task-based (red) and resting-state-derived (blue) auditory networks by (A) 
Smith et al.17 and (B) Power et al.29. For Power et al.’s graph nodes spheres of 6 mm were added for illustrative 
purposes. The Venn diagram on the right illustrates the number of voxels either network as well as the overlap 
in between these networks comprises. Brain networks were rendered on the individual anatomical template 
(“ch2better”) provided with MRIcron25. The Venn diagram was created using the Python package Matplotlib-
venn.
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Finally, our task-based results also showed high overlap with Power et al.’s29 RSFC-based data-driven sub-
graphs in primary visual-, auditory-, and motor-processing-related regions. While Power et al.’s visual subgraph 
was more extensive throughout occipital cortex, our task-based network included additional clusters in posterior 
frontal regions. 6 of their 31 coordinates showed overlap with our task-based map (19%; see Fig. 6). Likewise, our 
auditory-processing-related set of regions comprised further posterior frontal and subcortical regions. Here, 4 of 
their 13 coordinates showed overlap with our network (31%; see Fig. 7). Lastly, we compared our motor-related 
task activation network to Power et al.’s sensory/somatomotor hand and mouth networks. The RSFC-based 
networks were more extensive throughout primary motor and somatosensory cortex as well as bilateral PMd 
and included additional regions in bilateral anterior cingulate cortex and right posterior insula. Our task-based 
network, on the other hand, comprised additional regions of convergence in bilateral fronto-parietal, subcortical, 
and cerebellar regions. 9 of their 35 coordinates showed overlap with our network (26%; see Fig. 8).

Discussion
In this study, we conducted three large-scale coordinate-based meta-analyses to quantitatively synthesize results 
from neuroimaging studies on basic visual or auditory processing as well as motor execution. In a first step, we 
meta-analyzed the neural correlates of these three different processes separately. In a second step, we computed 
the maximum z-statistic of the three individual sets of regions to obtain a combined perceptuo-motor network. 
In a third step, we compared our meta-analytically derived task-based networks to three RSFC-based data-driven 
network definitions from the literature. Lastly, we computed the minimum z-statistic of our three meta-analyti-
cally derived brain networks to investigate common, domain-unspecific brain regions between these networks.

Our analyses mostly yielded regions that are well known to be recruited for the basic perceptual and motor 
processes of our interest. To our knowledge, there is no meta-analytically defined visual network published yet. 
In our analysis, convergence was found in visual cortices as well as frontoparietal brain regions including right 
ventral PMd/lateral FEF and bilateral IFJ. While ventral PMd/lateral FEF is assumed to be involved in controlling 
targeted eye movements30,31, bilateral IFJ was recently found to be consistently activated during (emotional) face 
processing32, possibly in relation to automatic processes of visual attentional orienting.

Figure 8.   Overlap between the task-based (red) and resting-state-derived (blue) motor-related networks by (A) 
Yeo et al.28, (B) Smith et al.17, and (C) Power et al.29. For Power et al.’s graph nodes spheres of 6 mm were added 
for illustrative purposes. The Venn diagrams on the right illustrate the number of voxels either network as well 
as the overlap in between these networks comprises. Brain networks were rendered on the individual anatomical 
template (“ch2better”) provided with MRIcron25. Venn diagrams were created using the Python package 
Matplotlib-venn.
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When comparing our resulting set of regions related to auditory processing with Petacchi et al.’s7 earlier 
meta-analytic results, which were based on a manual selection from the then available body of pertinent litera-
ture and also tested against rest or low-level control conditions, 4 of their 11 result coordinates overlap with our 
set of regions: their 3 auditory cortex coordinates as well as their coordinate in right aIns. Regions that do not 
match with our resulting clusters are right middle frontal gyrus and right IPL. Our analysis resulted in different 
clusters of convergence within the cerebellum and additional regions of convergence such as left aIns, pallidum, 
putamen, thalamus, SMA, pre-SMA, and PMd.

Our results on motor-related brain activity agree well with Hardwick et al.’s6 meta-analysis on brain regions 
involved in movement execution, which was based on a manually selected sample of all eligible studies available 
at that time. As compared to our findings, Hardwick et al. reported additional convergence in left operculum 
and more lateral convergence in right postcentral gyrus extending into parietal opercular cortex. Conversely, 
our results included additional clusters of convergence in bilateral aINS and right IPL.

A possible reason for these differences between our BrainMap-based meta-analytical results and earlier meta-
analyses on manually selected studies might be the number of experiments used for analysis. While Hardwick 
et al.6 included somewhat more than half as many (n = 142) experiments as our analysis did (n = 251), Petacchi 
et al.7 included only 27 experiments, which is less than a quarter of our number of experiments (n = 122). Further, 
topic-based, manually selected neuroimaging meta-analyses often do not only come at some expense for sample 
size but also heterogeneity.

Comparing our meta-analytic findings to data-driven RSFC-based network definitions, we found a large 
degree of overlap in expected areas associated with basic visual, auditory or motor processing. This agreement 
corroborates the notion that brain networks are rather consistently organized across states of task and “rest”17–20. 
However, as compared to RSFC-derived networks, our task-based results appear to be more specific and included 
additional, domain-unspecific regions (e.g., IFJ, preSMA, aIns) associated with “higher-order” cognitive func-
tions. This suggests that during tasks, perceptuo-motor networks are recruited alongside supramodal, integrative 
regions thought to be associated with functions like cognitive control. One possible explanation could be an 
adaptive functional brain organization that adjusts network topology depending on task demands. For instance, 
Di et al.33 found more between-network than within-network connections during task performance (vs. resting 
state) as well as a hub shift during task states. Similar to our results and the comparison of our results to RSFC-
based network definitions, these authors specifically found the thalamus to have a stronger coactivation profile 
throughout the brain (i.e., a higher number of coactivations with other brain regions) during task, relative to 
rest. The authors figured that the thalamus mediated cortico-cortical communication during tasks. Left aIns 
and preSMA, which are consistently implicated in our perceptuo-motor networks, may be similarly involved in 
mediating cortico-cortical communication during task states. aIns is supposed to play a pivotal role in monitoring 
and implementing relevant task sets34–37, while preSMA has been linked to cognitive action control and motor 
preparation38–40. These regions are part of what Duncan and his collaborators41–43 called “multiple-demand” brain 
system, which has been defined as brain regions consistently recruited during all kinds of cognitively demand-
ing tasks. Furthermore, task context effects (e.g., how an instruction is presented) have to be considered. Taken 
together, these findings support the view of brain networks as entities that are not strictly separate but can be 
(partly) combined, disconnected, and re-combined to generate the neural circuitry necessary to subserve the 
particular cognitive function at hand.

Very recently, NeuroQuery, a new data-driven approach to meta-analysis, has been proposed44. There, in 
contrast to traditional coordinate-based meta-analytic frameworks, supervised machine learning is applied to 
predict brain maps given any combination of neuroscience-related terms. A major difference to classic topic-
based meta-analyses is that NeuroQuery weighs and combines terms to predict brain locations most likely to be 
reported in a study, rather than isolating certain terms and evaluating the across-study convergence of activations 
linked to a given topic (or set of terms). NeuroQuery thus addresses the lack of a universally established vocabu-
lary to describe cognitive processes and functions, offering a data-driven solution. We compared our coordinate-
based meta-analytic results to those obtained with this new approach. To this end, we used the same paradigm 
classes chosen for our BrainMap-based analysis as query terms in NeuroQuery, plus the terms “healthy” and 
“adult.” The results of both approaches showed large overlap. However, the NeuroQuery approach did not yield 
any subcortical or cerebellar regions for visual and auditory processing and hardly any (only smaller parts of left 
thalamus and putamen) for processes related to motor execution. However, despite these minor discrepancies, 
the overall convergence of both approaches further supports the validity of our BrainMap-derived delineation 
of functional networks in the human brain.

The goal of this study was to meta-analytically define sets of brain regions that are reliably associated with 
visual, auditory or motor-related processing. Our results are made publicly available via the ANIMA database45 
for use in subsequent research. As alluded to above, studying associations between brain networks and behav-
ior might benefit from including regions related to perceptuo-motor processes, as task performance may be 
influenced by input- or output-related processing4,46. Thus, including perceptuo-motor regions to capture the 
neural correlates of these aspects of task processing may allow drawing a more complete and accurate picture 
of brain-behavior relationships.

A limitation of the current study was the tradeoff between quantity and quality of the experiments included. 
In particular, although all contrasts were included based on carefully defined inclusion and exclusion criteria and 
further manually screened in the Sleuth workspace, our semi-automated sampling from the BrainMap database 
prevented detailed manual checking of how well each individual contrast reflected the process of interest. This 
contrasts with typical topic-based neuroimaging meta-analyses, in which stricter eligibility checks should be 
the rule (see21), which, however, often comes at some expense for sample size and heterogeneity. Furthermore, 
due to the automated extraction of experiments via Sleuth, it was impossible to control for sample overlap; that 
is, multiple experiments from one study were not pooled to constitute a single experiment11. However, given 
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the quantity of studies and experiments (see Fig. 1), it is unlikely that study-specific biases might have had a 
significant influence on the results. Further, the BrainMap database does not contain all neuroimaging studies 
available. However, with including approximately 1/4th of eligible neuroimaging studies (i.e., studies reporting 
peak activation locations in stereotaxic coordinates) across the full range of topics studied, BrainMap allows 
powerful, large-scale meta-analyses, yielding robust results that generalize well. It was the aim of this study to 
meta-analytically capture the neural correlates of “basic” perceptuo-motor processes through including a great 
diversity of tasks and including only contrasts against a resting baseline condition. Having high variability 
across tasks but low variability in the comparative baseline condition allowed us to distill the neural correlates 
of the fundamental processes that these tasks share, per domain: “basic” visual, auditory or motor processing. 
The regions of convergence known to be associated with higher-order cognitive functioning were indeed found 
to be driven by many and very diverse experiments and were not generally associated with more demanding or 
complex tasks of our sample.

In summary, based on three comprehensive coordinate-based neuroimaging meta-analyses, we provide a 
robust quantitative synthesis of the neuroimaging literature on visual, auditory, or motor-related processing in 
the human brain. These reliable definitions of domain-typical functional brain networks as well as a combined 
perceptuo-motor network are made publicly available via the ANIMA database (https://​anima.​inm7.​de) for the 
benefit of future research.

Data availability
Imaging data was obtained from the BrainMap (http://​www.​brain​map.​org) database. Sleuth (http://​www.​brain​
map.​org/​sleuth/) workflows (i.e., experiments that were included for analyses) as well as the maps of the derived 
brain networks are made publicly available via the ANIMA database (https://​anima.​inm7.​de). The meta-analyses 
were conducted using the revised version of the ALE algorithm for coordinate-based meta-analysis of neuroim-
aging results as implemented in GingerALE 3.0.2 (http://​www.​brain​map.​org/​ale/).
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